JP3564098B2 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP3564098B2
JP3564098B2 JP2001331359A JP2001331359A JP3564098B2 JP 3564098 B2 JP3564098 B2 JP 3564098B2 JP 2001331359 A JP2001331359 A JP 2001331359A JP 2001331359 A JP2001331359 A JP 2001331359A JP 3564098 B2 JP3564098 B2 JP 3564098B2
Authority
JP
Japan
Prior art keywords
fuel
swirler
flow path
groove
injection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001331359A
Other languages
Japanese (ja)
Other versions
JP2003139017A (en
Inventor
範久 福冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001331359A priority Critical patent/JP3564098B2/en
Publication of JP2003139017A publication Critical patent/JP2003139017A/en
Application granted granted Critical
Publication of JP3564098B2 publication Critical patent/JP3564098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料噴射装置に関し、詳しくは燃料に旋回エネルギーを与えてそれを自動車用エンジンなどの内燃機関の燃焼室内に供給するための燃料噴射装置に関するものである。
【0002】
【従来の技術】
燃料噴射装置として、従来からニードル弁やボール弁などの弁体を有する筒状の弁本体の一端にスワラーおよび弁座を設け、外部から供給された燃料をスワラーにより旋回させて上記弁座の燃料噴射口から噴射する構造のものが知られている。図7は従来のスワラーの弁座側の平面図であり、図8は図7のVIII−VIII線に沿った断面図である。
【0003】
図7〜図8において、3は弁装置、4はスワラー、5は弁座である。弁装置3は、弁本体31、弁体32、スワラー4、および弁座5から構成されている。スワラー4は、弁体32が挿通される中孔を有する厚肉の円筒体であって、上記厚肉の壁内を軸方向に貫通する6個の燃料通路41、弁座5との対向面に形成された6個のV字状突起42、互いに隣接する2個のV字状突起42の間に形成された6個のスワラー溝43、スワラー溝43の入り口Aよりも上流に位置する6個の燃料通路44から構成されている。弁本体31は、軸に直交する方向の断面が図7に示すように円リング状を呈していて、燃料通路44は、弁本体31の内壁面と上記6個のV字状突起42との間に形成されている。
【0004】
燃料は、弁本体31からスワラー4の燃料通路41を経由してスワラー4と弁座5との対向面間に至り、ついで燃料通路44、スワラー溝43を順次経由してスワラー溝43の出口Bから弁座5の噴射口51に到達し、そこからエンジンの気筒7に供給される。
【0005】
ところで従来の燃料噴射装置は、該装置間あるいは6個のスワラー溝43間における燃料噴射流量のばらつきが大きい問題がある。燃料噴射流量のばらつきが大きいと、エンジンの上記気筒間での燃焼状態のばらつきが増加し、トルク変動によるエンジン振動や最悪の場合はエンジンが停止することがある。
【0006】
【発明が解決しようとする課題】
本発明は、従来技術における如上の問題が改善されて、燃料噴射流量のばらつきが小さい燃料噴射装置を提供することを課題とするものである。
【0007】
【課題を解決するための手段】
本発明の請求項1に係る燃料噴射装置は、燃料を噴射する噴射孔を有する弁座、上記燃料に旋回エネルギーを与えて上記噴射孔に上記燃料を供給するスワラーを備えた燃料噴射装置において、上記スワラーと上記弁座との間に形成されたスワラー溝は、流路断面積が上記スワラー溝の他の部分より小さい第一絞り部を有し、上記第一絞り部は、上記スワラー溝のうちの上流側に設けられ、且つ上記スワラー溝の他の部分より流路深さが大きいことを特徴とするものである。
【0008】
本発明の請求項2に係る燃料噴射装置は、上記請求項1において、上記第一絞り部の流路長は、上記スワラー溝の全流路長の25〜45%程度であることを特徴とするものである。
【0009】
本発明の請求項3に係る燃料噴射装置は、燃料を噴射する噴射孔を有する弁座、上記燃料に旋回エネルギーを与えて上記噴射孔に上記燃料を供給するスワラーを備えた燃料噴射装置において、上記スワラーと上記弁座との間に形成されると共にスワラー溝の入り口よりも上流に位置する燃料通路は、流路断面積が上記燃料通路の他の部分より小さい第二絞り部を有し、上記第二絞り部は、上記燃料通路のうちの円周方向通路部に設けられ、且つ上記燃料通路の他の部分より流路深さが大きいことを特徴とするものである。
0010
【発明の実施の形態】
後記の実施の形態を説明する図1〜図6および前記従来技術を説明した図7〜8においては、互いに同じ部位に就いては同じ符号を付し、実施の形態の説明の際には一部の部位の説明を省略することがある。
0011
実施の形態1.
図1〜図4は、本発明の燃料噴射装置における実施の形態1を説明するものであって、図1は実施の形態1の断面図、図2は前記図7に対応し、図1のスワラーの弁座側の平面図であり、図3は図2のIII−III線に沿った断面図、図4はスワラー溝の流路断面積Sの偏差に対する流量Qの偏差の関係を表すグラフである。
0012
図1〜図3において、1は燃料噴射装置、2は弁作動装置、3は弁装置、4はスワラー、5は弁座、6は燃料供給管、7はエンジンの筒体、T1は前記第一絞り部である。弁装置3は、弁本体31、弁体32、ストッパ33、スワラー4、および弁座5から構成されている。弁作動装置2は、磁気回路を形成して弁体32を作動する機能をなすものであって、上記磁気回路のヨーク部分であるハウジング21、磁気回路の固定鉄心部分であるコア22、コイル23、磁気回路の可動鉄心部分であるアマチュア24から構成されている。なおアマチュア24と弁体32とは、一体構造となっている。弁本体31は、ハウジング21の内径部に挿入後、かしめで結合されている。スワラー4と弁座5は、弁本体31の内径部に圧入された後、弁座5は弁本体31に溶接される。
0013
スワラー4は、弁体32が挿通される中孔を有する厚肉の円筒体であって、上記厚肉の壁内を軸方向に貫通する6個の燃料通路41、弁座5との対向面に形成された6個のV字状突起42、互いに隣接する2個のV字状突起42間に形成された6個のスワラー溝43、スワラー溝43の入り口Aよりも上流に位置する6個の燃料通路44から構成されている。弁本体31は、軸に直交する方向の断面が図2に示すように円リング状を呈していて、燃料通路44は、弁本体31の内壁面と上記6個のV字状突起42との間に形成されている。
0014
6個のスワラー溝43のそれぞれは、各入り口Aと出口Bの間に設けられた上流部431とそれに順次続くテーパ部432、下流部433とから構成されている。上流部431は、第一絞り部T1として機能し、その流路断面積は、下流部433のそれより小さく、テーパ部432は流路断面積において上流部431のそれから下流部433のそれに向かって漸次増大するテーパ構造を有する。図2または図3において、H1およびH3は、それぞれ上流部431および下流部433の各流路深さであり、W1およびW3は、それぞれ上流部431および下流部433の各流路幅であり、K1、K2、およびK3は、それぞれ上流部431、テーパ部432および下流部433の各流路長であり、Lはオフセットの距離である。上流部431の流路深さH1は、図3に示すように、下流部433のそれH3より深く、テーパ部432の路深さは上流部431のそれから下流部433のそれに向かって漸次減少する。換言すると、上流部431は狭幅で深溝であり、下流部433は広幅で浅溝となっている。
0015
以下、実施の形態1の動作並びに作用について説明する。エンジンのマイコンから燃料噴射装置1の弁作動装置2に動作信号が送られると、コイル23に電流が流れて上記磁気回路に磁束が発生し、アマチュア24はコア22側へ吸引されて、アマチュア24と一体構造である弁体32が弁座5から離れて両者間に間隙が生じる。このとき高圧の燃料は、スワラー4の燃料通路41、燃料通路44、スワラー溝43、弁体32と弁座5との上記隙間、および弁座5の噴射口51を経て噴射口51からエンジンの筒7内に噴射される。またスワラー溝43を通過する間に旋回力が付与される。
0016
次に上記マイコンから弁作動装置2に動作の停止信号が送られると、コイル23への通電が停止し、弁体32を常に閉弁方向に押している圧縮ばね11により弁体32と弁座5との間の隙間は閉状態となり、燃料噴射が停止する。なお弁体32は、弁本体31の内壁上を摺動する弁体部分321、スワラー4の内壁上を摺動する弁体部分322、および弁体部分323とから構成されており、開弁状態では弁体部分323がストッパ33の下面と当接する。弁体部分322は、弁座5の面に対する弁体32の径方向の非同軸度(振れ)を規制する手段であるので、スワラー4の内壁と弁体部分322とのクリアランスはなるべく小さく設定されるのが好ましく、実施の形態1では弁体32の耐久磨耗を許容限度以内とするため、10μm以下(片側間隙5μm以下)とされている。
0017
いま、スワラー4により燃料に付与された旋回力即ち角運動量をM、弁座5から噴射される燃料の流量をQとすると、旋回力Mと流量Qとは負の相関関係となっており、即ち旋回力Mが大きいほど弁座5の噴射口51内の燃料流は空洞化が大きくなって流量Qが減少する。またスワラー溝43内における燃料の流速をV、オフセットの距離をL、スワラー溝43の1溝当たりの流路断面積をS、スワラー溝43の溝数をN、燃料の密度をρとすると下式(1)が成立し、同式から流路断面積Sと流量Qとは正の相関関係となる。したがって、溝の総断面積S×Nのばらつきによって流量Qがばらつく。
M=ρ×Q×V×L=ρ×Q×Q/(S×N)×L (1)
0018
図4に流路断面積Sと流量Qの各偏差(%)の関係の実測データを示す。スワラー溝43の流路断面は、通常ほぼ方形であるので、流路断面積Sは、その流路深さHと流路幅Wの積H×Wとなる。スワラー4は、成型で製作される場合、上記流路断面形状も成型によって決定され、成型後に弁座5との接触面(V字突起42の表面)の面精度を高くするためにこの接触面のみ研削により仕上げ加工が施されるが、その際に流路深さHが設計値となるように調整され、かくして流路断面積S(H×W)が高精度に調整される。
0019
一般的に、流路深さHが比較的大きい場合にはその寸法は精度よく調整可能であるが、寸法Hが小さい場合、即ち浅い溝の場合は加工上のばらつき幅の流路深さHに対する比率が大きくなり、流路断面積Sのばらつきが大きくなる問題がある。
0020
一方、スワラー溝43の下流部433、特にスワラー溝43の出口Bおよびその近傍は、6個の各スワラー溝43のそれぞれにおいて燃料が旋回流を形成する最終個所であり、且つ6個の各スワラー溝43のそれぞれから吐出される旋回流の円周方向のムラを可及的に少なくするために各出口Bにおける流路幅は弁体部分322の外径円周長の略1/6に設定する必要がある。これに対して、スワラー溝43の上流部431ではかかる制約がないため、その各流路幅W1は下流部433のそれW3より狭くし、その代わりに流路深さH1をH3より大きくすることができる。この結果、上流部431の大きな流路深さH1を研削加工で調整することにより、各スワラー溝43の実効的な流路断面積Sは、従来より精度よく調整することができる。
0021
実施の形態1では、上流部431の流路幅W1は0.3mm、流路深さH1は0.5mm、流路断面積S1(S1および後記のS3などは図中に不記入)は0.15mmと設定され、下流部433の流路幅W3は0.5mm、流路深さH3は0.35mm、流路断面積S3は0.175mmと設定されている。この場合、下流部433の流路断面積S3より小さい上流部431の流路断面積S1がスワラー溝43における実効的な流路断面積Sとして機能する。図7に示す従来技術におけるスワラー溝43は、その入り口Aから出口Bに至る全流路断面積は一様であって、例えば流路幅Wは0.5mm、流路深さHは0.3mmである。以上において、いま、流路深さHの調整ばらつきが0.03mmであるとすると、従来技術では流路断面積Sのばらつきが0.03/0.3、即ち10%であるのに対して、実施の形態1では0.03/0.5、即ち6%となって、図4から従来技術および実施の形態1における各流量Qの偏差はそれぞれ6%および3.6%となって、実施の形態1における各流量Qのばらつきが小さくなることが分かる。
0022
以上説明した通り、実施の形態1では、スワラー溝43の流路断面積Sを実効的に決定する個所が同溝内の上流部431である。なお流路断面の形状および寸法が互いに異なる上流部431と下流部433とを直結すると渦などの乱流が生じることがあるので、両流部間に設けられたテーパ部432は、かかる乱流の発生を防止して流体的ロスを軽減する機能をなす。
0023
上流部431、テーパ部432、下流部433の各流路長K1、K2、K3は、実施の形態1においては、特に好ましく互いに等流路長とされているが、本発明においてはそれぞれの流部が上記した各機能を奏する限り特に制限はなく、一般的にはスワラー溝43の全長に対する割合は、流路長K1は25〜45%程度、好ましくは33〜41%程度であり、流路長K2は10〜35%程度、好ましくは18〜35%程度であり、流路長K3は25〜45%程度、好ましくは33〜41%程度である。またテーパ部432の傾斜角度θ(図3参照)は、上記した流体的ロスの軽減上から、20度以下とすることが好ましい。
0024
実施の形態2.
図5〜図6は、本発明の燃料噴射装置における実施の形態2を説明するものであって、図5は前記図2に対応したスワラーの弁座側の平面図であり、図6は図5のVI−VI線に沿った断面図である。図5〜図6において、441、442、およびT2は、それぞれ燃料通路44の径方向通路、円周方向通路、および前記第二絞り部である。またH4は、径方向通路441および円周方向通路442の流路深さであり、H5は、第二絞り部T2の流路深さであり、W5は第二絞り部T2の流路幅である。
0025
スワラー溝43の入り口Aよりも上流に位置する燃料通路44は、スワラー4を貫通する燃料通路41の出口とスワラー溝43との間に位置し、広幅の径方向通路441と弁本体31の内壁面に沿った円周方向通路442から構成されており、円周方向通路442の端はスワラー溝43の入り口Aに繋がっている。実施の形態2における6個のV字状突起42の各一端は、図5に示す通り、弁本体31の内壁面と接しており、第二絞り部T2は、円周方向通路442の端に、且つスワラー溝43の入り口Aの手前に設けられており、その流路断面積S4は燃料通路44の他の部分のそれらより小さく、しかして流路断面積S4が燃料通路44の実効的な流路断面積となり、またその流路深さH5を燃料通路44の他の部分のそれらより大きくすることにより、前記実施の形態1の場合と同様に、その流路深さH5のばらつきによる流路断面積S4のばらつきを低減することができる。流路深さH5および流路幅W5は、例えばそれぞれ0.5mmおよび0.3mmである。
0026
実施の形態2では、燃料通路44およびそれに続くスワラー溝43の実効的な流路断面積を決定する第二絞り部分T2は、燃料通路44内に設けられたので、スワラー溝43全長Kが従来技術と同様に燃料に対する旋回力付与機能を奏して、しかしてスワラー溝43の出口Bでの燃料流速が均一化され、弁体32の外周での旋回流が均一に形成されるので、噴射口51から噴射される噴霧の濃度に偏りがなく、エンジン燃焼により望ましい状態で燃料が供給される。
0027
【発明の効果】
本発明の請求項1に係る燃料噴射装置は、燃料を噴射する噴射孔を有する弁座、上記燃料に旋回エネルギーを与えて上記噴射孔に上記燃料を供給するスワラーを備えた燃料噴射装置において、上記スワラーと上記弁座との間に形成されたスワラー溝は、流路断面積が上記スワラー溝の他の部分より小さい第一絞り部を有し、上記第一絞り部は、上記スワラー溝のうちの上流側に設けられ、且つ上記スワラー溝の他の部分より流路深さが大きいものであるので、この第一絞り部における流路断面積がスワラー溝の実効的な流路断面積として機能する。よって、スワラーの成型時に第一絞り部の流路断面積を精度よく調整することによりスワラー溝間、延いては燃料噴射装置間での燃料流量のばらつきを小さくすることができる。したがってスワラー溝の全長にわたって流路断面積の調整を行ってきた従来技術と対比して、本発明では、低コストで高品質の燃料噴射装置を工業的に生産することができる。
0028
また、上記第一絞り部は、上記スワラー溝のうちの上流側に設けられ、さらに上記第一絞り部は、上記スワラー溝の他の部分より流路深さが大きいものであると、上記上流側は、流路幅について設計上の制限のあるスワラー溝下流側と異なって、流路の断面形状の点で自由度が大きいので流路幅並びに流路深さを自由に設定することができる。その際、流路深さを大きくすると前記図4にて説明した通り、第一絞り部の流路断面積のばらつきを、しかして燃料噴射流量のばらつきを低減することができる。
0029
また上記第一絞り部の流路長は、上記スワラー溝の全流路長の25〜45%程度であると、第一絞り部の上記した作用並びに効果が一層顕著となる。
0030
本発明の請求項3に係る燃料噴射装置は、燃料を噴射する噴射孔を有する弁座、上記燃料に旋回エネルギーを与えて上記噴射孔に上記燃料を供給するスワラーを備えた燃料噴射装置において、上記スワラーと上記弁座との間に形成されると共にスワラー溝の入り口よりも上流に位置する燃料通路は、流路断面積が上記燃料通路の他の部分より小さい第二絞り部を有し、上記第二絞り部は、上記燃料通路のうちの円周方向通路部に設けられ、且つ上記燃料通路の他の部分より流路深さが大きいものであるので、第二絞り部が前記した第一絞り部と同様の作用をなして、その流路断面積が上記燃料通路の実効的な流路断面積として機能する。さらに第二絞り部分は、スワラー溝の上流に設けられるので、スワラー溝の全長が燃料に対する旋回力付与機能を奏して、スワラー溝の出口での燃料流速が均一化され、噴射口から噴射される噴霧の濃度に偏りがなく、エンジン燃焼に望ましい状態で燃料が供給される。
【図面の簡単な説明】
【図1】本発明における実施の形態1の断面図。
【図2】図1におけるスワラーの弁座側の平面図。
【図3】図2のIII−III線に沿った断面図。
【図4】スワラー溝における流路断面積偏差と流量偏差の関係のグラフ。
【図5】本発明における実施の形態2でのスワラーの弁座側の平面図。
【図6】図5のVI−VI線に沿った断面図。
【図7】従来のスワラーの弁座側の平面図。
【図8】図7のVIII−VIII線に沿った断面図。
【符号の説明】
1 燃料噴射装置、31 弁本体、32 弁体、33 ストッパ、
4 スワラー、43 スワラー溝、431 上流部、432 テーパ部、
433 下流部、44 燃料通路、441 径方向通路、
442 円周方向通路、T1 第一絞り部、T2 第二絞り部、5 弁座。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection device, and more particularly to a fuel injection device for giving swirling energy to fuel and supplying it to a combustion chamber of an internal combustion engine such as an automobile engine.
[0002]
[Prior art]
Conventionally, a swirler and a valve seat are provided at one end of a cylindrical valve body having a valve element such as a needle valve or a ball valve, and the fuel supplied from the outside is swirled by the swirler to provide fuel for the valve seat. BACKGROUND ART A structure in which an injection is performed from an injection port is known. FIG. 7 is a plan view of a conventional swirler on the valve seat side, and FIG. 8 is a cross-sectional view taken along line VIII-VIII of FIG.
[0003]
7 and 8, 3 is a valve device, 4 is a swirler, and 5 is a valve seat. The valve device 3 includes a valve body 31, a valve body 32, a swirler 4, and a valve seat 5. The swirler 4 is a thick-walled cylindrical body having a bore through which the valve body 32 is inserted. The swirler 4 has six fuel passages 41 penetrating in the axial direction through the thick-walled wall, and faces the valve seat 5. , Six swirl grooves 43 formed between two adjacent V-shaped protrusions 42, and 6 located upstream of the entrance A of the swirler groove 43. The fuel passage 44 includes a plurality of fuel passages 44. The valve body 31 has a circular cross section in a direction perpendicular to the axis as shown in FIG. 7, and the fuel passage 44 is formed between the inner wall surface of the valve body 31 and the six V-shaped protrusions 42. It is formed between.
[0004]
The fuel flows from the valve body 31 through the fuel passage 41 of the swirler 4 to the space between the opposing surfaces of the swirler 4 and the valve seat 5, and then passes through the fuel passage 44 and the swirler groove 43 in order, and the outlet B of the swirler groove 43. To the injection port 51 of the valve seat 5, from which it is supplied to the cylinder 7 of the engine.
[0005]
Meanwhile, the conventional fuel injection device has a problem that the fuel injection flow rate varies greatly between the devices or between the six swirler grooves 43. If the variation in the fuel injection flow rate is large, the variation in the combustion state among the cylinders of the engine increases, and the engine may stop due to engine vibration or worst case due to torque fluctuation.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fuel injection device in which the problems in the prior art are improved and the variation in the fuel injection flow rate is small.
[0007]
[Means for Solving the Problems]
The fuel injection device according to claim 1 of the present invention is a fuel injection device including a valve seat having an injection hole for injecting fuel, and a swirler for supplying swirling energy to the fuel and supplying the fuel to the injection hole. The swirler groove formed between the swirler and the valve seat has a first constricted portion whose flow path cross-sectional area is smaller than the other portion of the swirler groove, and wherein the first constricted portion is formed of the swirler groove. The swirler groove is provided upstream of the swirler groove, and has a larger flow path depth than other portions of the swirler groove .
[0008]
A fuel injection device according to a second aspect of the present invention is the fuel injection device according to the first aspect, wherein a flow path length of the first throttle portion is about 25 to 45% of a total flow path length of the swirler groove. Is what you do.
[0009]
The fuel injection device according to claim 3 of the present invention is a fuel injection device comprising: a valve seat having an injection hole for injecting fuel; and a swirler for supplying swirling energy to the fuel to supply the fuel to the injection hole. The fuel passage formed between the swirler and the valve seat and located upstream from the entrance of the swirler groove has a second throttle portion having a smaller flow passage cross-sectional area than the other portion of the fuel passage, The second throttle portion is provided in a circumferential passage portion of the fuel passage, and has a larger flow depth than other portions of the fuel passage .
[ 0010 ]
BEST MODE FOR CARRYING OUT THE INVENTION
In FIGS. 1 to 6 for describing an embodiment to be described later and FIGS. 7 to 8 for describing the conventional technique, the same reference numerals are given to the same parts, and one of them will be described in the description of the embodiment. The description of the parts may be omitted.
[ 0011 ]
Embodiment 1 FIG.
1 to 4 is for explaining the first embodiment of the fuel injection device of the present invention, FIG. 1 is a sectional view of the first embodiment, FIG. 2 corresponds to FIG. 7, FIG. 1 3 is a cross-sectional view taken along the line III-III of FIG. 2, and FIG. 4 shows a relationship between a deviation of the flow rate Q and a deviation of the cross-sectional area S of the swirler groove. It is a graph.
[ 0012 ]
1 to 3, reference numeral 1 denotes a fuel injection device, 2 denotes a valve actuating device, 3 denotes a valve device, 4 denotes a swirler, 5 denotes a valve seat, 6 denotes a fuel supply pipe, 7 denotes a cylinder of an engine, and T1 denotes the first cylinder. This is one stop. The valve device 3 includes a valve body 31, a valve body 32, a stopper 33, a swirler 4, and a valve seat 5. The valve actuating device 2 has a function of forming a magnetic circuit and operating the valve element 32, and includes a housing 21 which is a yoke portion of the magnetic circuit, a core 22 which is a fixed core portion of the magnetic circuit, and a coil 23. , An armature 24 which is a movable core portion of a magnetic circuit. Note that the armature 24 and the valve body 32 have an integral structure. After the valve main body 31 is inserted into the inner diameter portion of the housing 21, the valve main body 31 is connected by caulking. After the swirler 4 and the valve seat 5 are pressed into the inner diameter of the valve body 31, the valve seat 5 is welded to the valve body 31.
[ 0013 ]
The swirler 4 is a thick-walled cylindrical body having a bore through which the valve body 32 is inserted. The swirler 4 has six fuel passages 41 penetrating in the axial direction through the thick-walled wall, and faces the valve seat 5. , Six swirl grooves 43 formed between two adjacent V-shaped protrusions 42, and six swirl grooves 43 located upstream from the entrance A of the swirl groove 43. Of the fuel passage 44. The cross section of the valve body 31 in a direction perpendicular to the axis has a circular ring shape as shown in FIG. 2. The fuel passage 44 is formed between the inner wall surface of the valve body 31 and the six V-shaped protrusions 42. It is formed between.
[ 0014 ]
Each of the six swirler grooves 43 includes an upstream portion 431 provided between each of the entrance A and the exit B, and a tapered portion 432 and a downstream portion 433 successively following the upstream portion 431. The upstream portion 431 functions as a first constricted portion T1, and its flow passage cross-sectional area is smaller than that of the downstream portion 433, and the tapered portion 432 extends in the flow passage cross-sectional area from that of the upstream portion 431 to that of the downstream portion 433. It has a taper structure that gradually increases. 2 or 3, H1 and H3 are the respective channel depths of the upstream portion 431 and the downstream portion 433, respectively, and W1 and W3 are the respective channel widths of the upstream portion 431 and the downstream portion 433, respectively. K1, K2, and K3 are the flow path lengths of the upstream section 431, the tapered section 432, and the downstream section 433, respectively, and L is the offset distance. As shown in FIG. 3, the flow path depth H1 of the upstream part 431 is deeper than that of the downstream part 433, and the path depth of the tapered part 432 gradually decreases from that of the upstream part 431 toward that of the downstream part 433. . In other words, the upstream portion 431 is narrow and deep, and the downstream portion 433 is wide and shallow.
[ 0015 ]
Hereinafter, the operation and operation of the first embodiment will be described. When an operation signal is sent from the microcomputer of the engine to the valve operating device 2 of the fuel injection device 1, a current flows through the coil 23 to generate a magnetic flux in the magnetic circuit, and the armature 24 is attracted to the core 22 side, and the armature 24 is And the valve body 32, which is an integral structure, is separated from the valve seat 5 to form a gap between them. At this time, the high-pressure fuel passes through the fuel passage 41 of the swirler 4, the fuel passage 44, the swirler groove 43, the gap between the valve body 32 and the valve seat 5, and the injection port 51 of the valve seat 5 from the injection port 51. It is injected into the cylinder 7. Further, a turning force is applied while passing through the swirler groove 43.
[ 0016 ]
Next, when a stop signal of the operation is sent from the microcomputer to the valve operating device 2, the energization of the coil 23 is stopped, and the valve body 32 and the valve seat 5 are pressed by the compression spring 11 which always pushes the valve body 32 in the valve closing direction. Is closed, and the fuel injection stops. The valve element 32 includes a valve element part 321 sliding on the inner wall of the valve body 31, a valve element part 322 sliding on the inner wall of the swirler 4, and a valve element part 323. In this case, the valve element portion 323 contacts the lower surface of the stopper 33. Since the valve body portion 322 is means for restricting the radial non-coaxiality (runout) of the valve body 32 with respect to the surface of the valve seat 5, the clearance between the inner wall of the swirler 4 and the valve body portion 322 is set as small as possible. In the first embodiment, the thickness is set to 10 μm or less (a gap on one side is 5 μm or less) in order to keep the durable wear of the valve body 32 within an allowable limit.
[ 0017 ]
Now, assuming that the swirling force or angular momentum applied to the fuel by the swirler 4 is M and the flow rate of the fuel injected from the valve seat 5 is Q, the swirling force M and the flow rate Q have a negative correlation, That is, as the turning force M increases, the hollowing of the fuel flow in the injection port 51 of the valve seat 5 increases, and the flow rate Q decreases. Further, when the flow velocity of the fuel in the swirler groove 43 is V, the distance of the offset is L, the cross-sectional area of the swirler groove 43 per channel is S, the number of the swirler grooves 43 is N, and the density of the fuel is ρ. Equation (1) holds, and from the equation, the flow path cross-sectional area S and the flow rate Q have a positive correlation. Therefore, the flow rate Q varies due to the variation of the total cross-sectional area S × N of the groove.
M = ρ × Q × V × L = ρ × Q × Q / (S × N) × L (1)
[ 0018 ]
FIG. 4 shows measured data of the relationship between the flow path cross-sectional area S and the deviation (%) of the flow rate Q. Since the cross-section of the flow path of the swirler groove 43 is generally substantially rectangular, the cross-sectional area S of the flow path is a product H × W of the flow path depth H and the flow path width W. When the swirler 4 is manufactured by molding, the cross-sectional shape of the flow passage is also determined by molding, and this contact surface is formed in order to increase the surface accuracy of the contact surface (the surface of the V-shaped projection 42) with the valve seat 5 after molding. Only the finishing is performed by grinding, but at that time, the flow path depth H is adjusted to a design value, and thus the flow path cross-sectional area S (H × W) is adjusted with high accuracy.
[ 0019 ]
Generally, when the flow path depth H is relatively large, the dimension can be adjusted with high precision. However, when the dimension H is small, that is, in the case of a shallow groove, the flow path depth H of the variation width in processing is large. Therefore, there is a problem that the ratio of the flow path cross-sectional area S increases.
[ 0020 ]
On the other hand, the downstream portion 433 of the swirler groove 43, in particular, the outlet B of the swirler groove 43 and the vicinity thereof are the final places where the fuel forms a swirling flow in each of the six swirler grooves 43, and the six swirlers. In order to minimize the circumferential unevenness of the swirling flow discharged from each of the grooves 43, the flow path width at each outlet B is set to approximately 1/6 of the outer diameter circumferential length of the valve body portion 322. There is a need to. On the other hand, since there is no such restriction in the upstream portion 431 of the swirler groove 43, the width W1 of each flow passage is made smaller than that of the downstream portion 433, and the flow passage depth H1 is made larger than H3 instead. Can be. As a result, by adjusting the large channel depth H1 of the upstream portion 431 by grinding, the effective channel cross-sectional area S of each swirler groove 43 can be adjusted more accurately than in the past.
[ 0021 ]
In the first embodiment, the flow path width W1 of the upstream portion 431 is 0.3 mm, the flow path depth H1 is 0.5 mm, and the flow path cross-sectional area S1 (S1 and S3 described below are not shown in the drawing) is 0. It is set to .15mm 2, channel width W3 of the downstream portion 433 0.5 mm, channel depth H3 is 0.35 mm, the flow path cross-sectional area S3 is set to 0.175 mm 2. In this case, the flow path cross-sectional area S1 of the upstream section 431 smaller than the flow path cross-sectional area S3 of the downstream section 433 functions as an effective flow path cross-sectional area S in the swirler groove 43. The swirler groove 43 in the prior art shown in FIG. 7 has a uniform cross-sectional area of the entire flow path from the entrance A to the exit B. For example, the flow path width W is 0.5 mm, and the flow path depth H is 0. 3 mm. As described above, assuming now that the variation in the adjustment of the flow channel depth H is 0.03 mm, the variation in the flow channel cross-sectional area S is 0.03 / 0.3, that is, 10% in the related art. In the first embodiment, the difference is 0.03 / 0.5, that is, 6%. From FIG. 4, the deviation of each flow rate Q in the related art and the first embodiment is 6% and 3.6%, respectively. It can be seen that the variation of each flow rate Q in the first embodiment is reduced.
[ 0022 ]
As described above, in the first embodiment, the location where the flow path cross-sectional area S of the swirler groove 43 is effectively determined is the upstream portion 431 in the swirler groove 43. When the upstream portion 431 and the downstream portion 433 having different cross-sectional shapes and dimensions are directly connected to each other, a turbulent flow such as a vortex may occur. Therefore, the tapered portion 432 provided between the two flow portions may cause the turbulent flow. It has the function of preventing the occurrence of fluid and reducing fluid loss.
[ 0023 ]
In the first embodiment, the flow path lengths K1, K2, and K3 of the upstream section 431, the tapered section 432, and the downstream section 433 are particularly preferably equal to each other. There is no particular limitation as long as the portion performs each of the functions described above. Generally, the ratio of the swirler groove 43 to the entire length is such that the flow path length K1 is about 25 to 45%, preferably about 33 to 41%. The length K2 is about 10 to 35%, preferably about 18 to 35%, and the flow path length K3 is about 25 to 45%, preferably about 33 to 41%. In addition, the inclination angle θ of the tapered portion 432 (see FIG. 3) is preferably 20 degrees or less from the viewpoint of reducing the above-described fluid loss.
[ 0024 ]
Embodiment 2 FIG.
5 and 6 illustrate a second embodiment of the fuel injection device of the present invention. FIG. 5 is a plan view of the swirler corresponding to FIG. 2 on the valve seat side, and FIG. It is sectional drawing along the VI-VI line of No. 5. 5 to 6, 441, 442, and T2 are a radial passage, a circumferential passage, and the second throttle portion of the fuel passage 44, respectively. H4 is the flow path depth of the radial passage 441 and the circumferential passage 442, H5 is the flow path depth of the second throttle T2, and W5 is the flow width of the second throttle T2. is there.
[ 0025 ]
The fuel passage 44 located upstream of the entrance A of the swirler groove 43 is located between the outlet of the fuel passage 41 penetrating the swirler 4 and the swirler groove 43, and has a wide radial passage 441 and the inside of the valve body 31. It is composed of a circumferential passage 442 along the wall surface, and an end of the circumferential passage 442 is connected to the entrance A of the swirler groove 43. One end of each of the six V-shaped projections 42 in the second embodiment is in contact with the inner wall surface of the valve body 31 as shown in FIG. The swirler groove 43 is provided just before the entrance A, and has a flow path cross-sectional area S4 smaller than those of the other parts of the fuel passage 44. By making the flow path cross-sectional area larger and the flow path depth H5 larger than those of the other parts of the fuel passage 44, the flow rate due to the variation of the flow path depth H5 is increased as in the case of the first embodiment. Variations in the road cross-sectional area S4 can be reduced. The channel depth H5 and the channel width W5 are, for example, 0.5 mm and 0.3 mm, respectively.
[ 0026 ]
In the second embodiment, since the second throttle portion T2 that determines the effective flow path cross-sectional area of the fuel passage 44 and the subsequent swirler groove 43 is provided in the fuel passage 44, the overall length K of the swirler groove 43 is reduced. In the same manner as in the technology, the function of imparting a swirling force to the fuel is exerted, so that the fuel flow velocity at the outlet B of the swirler groove 43 is made uniform and the swirl flow around the outer periphery of the valve body 32 is formed uniformly. Fuel is supplied in a desirable state by engine combustion without bias in the concentration of the spray injected from 51.
[ 0027 ]
【The invention's effect】
The fuel injection device according to claim 1 of the present invention is a fuel injection device including a valve seat having an injection hole for injecting fuel, and a swirler for supplying swirling energy to the fuel and supplying the fuel to the injection hole. The swirler groove formed between the swirler and the valve seat has a first constricted portion whose flow path cross-sectional area is smaller than the other portion of the swirler groove, and wherein the first constricted portion is formed of the swirler groove. among provided upstream of, and the swirler der having a large channel depth than other portions of the groove Runode, the effective flow path cross-sectional area of the flow path cross-sectional area of the swirler groove in the first throttle portion Function as Therefore, by accurately adjusting the cross-sectional area of the flow path of the first throttle portion at the time of molding the swirler, it is possible to reduce the variation in the fuel flow rate between the swirler grooves and thus between the fuel injection devices. Therefore, in comparison with the related art in which the cross-sectional area of the flow path is adjusted over the entire length of the swirler groove, the present invention can industrially produce a low-cost, high-quality fuel injection device.
[ 0028 ]
Further, the first throttle portion is provided on the upstream side of the swirler groove, and further, the first throttle portion, when the flow path depth is larger than other portions of the swirler groove, the upstream On the side, unlike the swirler groove downstream side where there is a design limitation on the flow path width, the degree of freedom is large in terms of the cross-sectional shape of the flow path, so that the flow path width and the flow path depth can be set freely. . At this time, if the flow channel depth is increased, as described with reference to FIG. 4, it is possible to reduce the variation in the cross-sectional area of the flow channel of the first throttle portion and the variation in the fuel injection flow rate.
[ 0029 ]
Further, when the flow path length of the first throttle section is about 25 to 45% of the total flow path length of the swirler groove, the above-described operation and effect of the first throttle section become more remarkable.
[ 0030 ]
The fuel injection device according to claim 3 of the present invention is a fuel injection device comprising: a valve seat having an injection hole for injecting fuel; and a swirler for supplying swirling energy to the fuel to supply the fuel to the injection hole. The fuel passage formed between the swirler and the valve seat and located upstream from the entrance of the swirler groove has a second throttle portion having a smaller flow passage cross-sectional area than the other portion of the fuel passage , The second throttle portion is provided in a circumferential passage portion of the fuel passage, and has a channel depth greater than other portions of the fuel passage . The same function as the one throttle portion is performed, and the flow path cross-sectional area functions as an effective flow path cross-sectional area of the fuel passage. Further, since the second throttle portion is provided upstream of the swirler groove, the entire length of the swirler groove has a function of imparting a swirling force to the fuel, so that the fuel flow velocity at the outlet of the swirler groove is uniform, and the fuel is injected from the injection port Fuel is supplied in a state desired for engine combustion without unevenness in the concentration of the spray.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of Embodiment 1 of the present invention.
FIG. 2 is a plan view of the swirler in FIG. 1 on a valve seat side.
FIG. 3 is a sectional view taken along the line III-III in FIG. 2;
FIG. 4 is a graph showing a relationship between a flow path cross-sectional area deviation and a flow rate deviation in a swirler groove.
FIG. 5 is a plan view of a swirler according to a second embodiment of the present invention on a valve seat side.
FIG. 6 is a sectional view taken along the line VI-VI of FIG. 5;
FIG. 7 is a plan view of a conventional swirler on a valve seat side.
FIG. 8 is a sectional view taken along the line VIII-VIII in FIG. 7;
[Explanation of symbols]
1 fuel injection device, 31 valve body, 32 valve body, 33 stopper,
4 swirler, 43 swirler groove, 431 upstream part, 432 taper part,
433 downstream, 44 fuel passage, 441 radial passage,
442 circumferential passage, T1 first throttle, T2 second throttle, 5 valve seat.

Claims (3)

燃料を噴射する噴射孔を有する弁座、上記燃料に旋回エネルギーを与えて上記噴射孔に上記燃料を供給するスワラーを備えた燃料噴射装置において、上記スワラーと上記弁座との間に形成されたスワラー溝は、流路断面積が上記スワラー溝の他の部分より小さい第一絞り部を有し、上記第一絞り部は、上記スワラー溝のうちの上流側に設けられ、且つ上記スワラー溝の他の部分より流路深さが大きいことを特徴とする燃料噴射装置。In a fuel injection device having a valve seat having an injection hole for injecting fuel and a swirler supplying swirling energy to the fuel and supplying the fuel to the injection hole, the fuel injection device is formed between the swirler and the valve seat. The swirler groove has a first throttle portion whose flow path cross-sectional area is smaller than the other portion of the swirler groove , and the first throttle portion is provided on the upstream side of the swirler groove, and A fuel injection device characterized in that the flow path depth is larger than other parts . 上記第一絞り部の流路長は、上記スワラー溝の全流路長の25〜45%程度であることを特徴とする請求項1記載の燃料噴射装置。The fuel injection device according to claim 1, wherein a flow path length of the first throttle portion is about 25 to 45% of a total flow path length of the swirler groove. 燃料を噴射する噴射孔を有する弁座、上記燃料に旋回エネルギーを与えて上記噴射孔に上記燃料を供給するスワラーを備えた燃料噴射装置において、上記スワラーと上記弁座との間に形成されると共にスワラー溝の入り口よりも上流に位置する燃料通路は、流路断面積が上記燃料通路の他の部分より小さい第二絞り部を有し、上記第二絞り部は、上記燃料通路のうちの円周方向通路部に設けられ、且つ上記燃料通路の他の部分より流路深さが大きいことを特徴とする燃料噴射装置。In a fuel injection device having a valve seat having an injection hole for injecting fuel, and a swirler supplying swirling energy to the fuel and supplying the fuel to the injection hole, the fuel injection device is formed between the swirler and the valve seat. The fuel passage located upstream from the entrance of the swirler groove has a second throttle portion having a flow path cross-sectional area smaller than the other portion of the fuel passage, and the second throttle portion is one of the fuel passages. A fuel injection device provided in a circumferential passage portion and having a flow passage depth larger than other portions of the fuel passage.
JP2001331359A 2001-10-29 2001-10-29 Fuel injection device Expired - Fee Related JP3564098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331359A JP3564098B2 (en) 2001-10-29 2001-10-29 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331359A JP3564098B2 (en) 2001-10-29 2001-10-29 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2003139017A JP2003139017A (en) 2003-05-14
JP3564098B2 true JP3564098B2 (en) 2004-09-08

Family

ID=19146954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331359A Expired - Fee Related JP3564098B2 (en) 2001-10-29 2001-10-29 Fuel injection device

Country Status (1)

Country Link
JP (1) JP3564098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034263B2 (en) 2003-12-25 2008-01-16 三菱電機株式会社 Fuel injection valve and swirler manufacturing method

Also Published As

Publication number Publication date
JP2003139017A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US8888021B2 (en) Fuel injector
JP5875443B2 (en) Fuel injection valve
JP5961383B2 (en) Fuel injection valve
JP5185973B2 (en) Fuel injection valve
US9103309B2 (en) Fuel injection valve
JP2014173479A (en) Fuel injection valve
US10907601B2 (en) Fuel injection valve
WO2014175112A1 (en) Fuel injection valve
JP2016070070A (en) Fuel injection valve
JP3564098B2 (en) Fuel injection device
JP2009250122A (en) Fuel injection valve
US10876508B2 (en) Fuel injection valve
JP6523984B2 (en) Fuel injection valve
WO2018198309A1 (en) Fuel injection valve
JP6190917B1 (en) Fuel injection valve
JP6545333B2 (en) Fuel injection valve and injection hole plate
JP6141350B2 (en) Fuel injection valve
JP6644164B2 (en) Fuel injection valve and method of adjusting injection flow rate
JP3572044B2 (en) Fuel injection device
CN110546375B (en) Fuel injection valve
JP2014025365A (en) Fuel injection valve
JP3445805B2 (en) Fuel injection valve
JP3707603B2 (en) Fuel injection valve
JP2007303442A (en) Fuel injection valve
JP3707602B2 (en) Manufacturing method of fuel injection valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees