JP3563610B2 - Rotary coating device - Google Patents

Rotary coating device Download PDF

Info

Publication number
JP3563610B2
JP3563610B2 JP26018598A JP26018598A JP3563610B2 JP 3563610 B2 JP3563610 B2 JP 3563610B2 JP 26018598 A JP26018598 A JP 26018598A JP 26018598 A JP26018598 A JP 26018598A JP 3563610 B2 JP3563610 B2 JP 3563610B2
Authority
JP
Japan
Prior art keywords
coated
annular body
coating
air flow
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26018598A
Other languages
Japanese (ja)
Other versions
JPH11151462A (en
Inventor
雄一 立川
善昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26018598A priority Critical patent/JP3563610B2/en
Publication of JPH11151462A publication Critical patent/JPH11151462A/en
Application granted granted Critical
Publication of JP3563610B2 publication Critical patent/JP3563610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体ウエハの表面にレジスト等を塗布するときに用いられる回転塗布装置に関する。
【0002】
【従来の技術】
周知のように、半導体ウエハ等の被塗布体上に均一な厚さの塗膜を形成する方法として回転塗布法が広く採用されている。これは、塗布液の滴下された被塗布体を回転させ、遠心力で塗布液を被塗布体上の全面に広げるとともに塗布液中の溶媒を蒸発させて塗膜を形成する方法である。
【0003】
図14には上述した回転塗布法を実施する従来の回転塗布装置の概略構成が示されている。
同図において、1はウエハ等の被塗布体を示している。この被塗布体1は真空吸着式のチャック2の上に水平に保持される。チャック2は軸3を介してモータ4の回転軸に連結されている。チャック2の上方には被塗布体1の上面にレジスト等の塗布液5を滴下させるノズル6が配置されている。そして、これらの要素は塗布液5の飛散防止及び回収用のカバー7で覆われている。
【0004】
このように構成された装置によって被塗布体1にレジスト等の塗膜を形成するには、まず被塗布体1をチャック2の上に固定し、モータ4を回転開始させる。そして、図15に示すように、例えば被塗布体1を低速で回転させている状態でノズル6から塗布液5を被塗布体1の上面中央部に滴下させる。なお、ノズル6は、塗布前は被塗布体1上より退避した位置におかれる。続いて、被塗布体1の回転数を所定値まで上昇させ、この状態を一定時間保持する。
【0005】
このように被塗布体1を回転させると、塗布液5が遠心力によって被塗布体上の全面に広がるとともに塗布液5の中の溶媒が蒸発して膜厚(液層の厚み)が減少する。この膜厚の減少は、塗布過程初期では遠心力による塗布液5の広がりが支配的であるが、溶媒の蒸発に伴う粘性の増大とともに塗布液5の流動性が低くなるにしたがって溶媒の蒸発が支配的となり、最終的に気液界面から溶媒が蒸発できなくなった時点で終了する。したがって、塗膜の厚さは、被塗布体1の回転数が高いほど、また塗布液5の粘性が低いほど薄くなる。
【0006】
このようにして、被塗布体1の上に塗膜を形成するようにしている。なお、塗膜形成時に被塗布体1の上から飛び散る塗布液5はカバー7でトラップされる。しかしながら、上記のように構成された従来の回転塗布装置にあっては次のような問題があった。
【0007】
すなわち、最近では、塗膜のより一層の薄膜化及び被塗布体1の大型化が求められている。このより一層の薄膜化を実現するには被塗布体1の回転数を増加させる必要があるが、従来の回転塗布装置では、被塗布体1の回転数を高くすると、被塗布体1の上面外周域に気流の乱れが起こり易く、この影響で被塗布体1の上面外周域に塗膜厚ムラが発生するという問題があった。
【0008】
例えば、図16に示すように、直径がある値の被塗布体1を例にとる。この被塗布体1を取り囲んでいる雰囲気ガスは通常、粘性を有している。このため、被塗布体1が回転すると、この回転に伴って被塗布体1の上面に接している雰囲気ガスが遠心ポンプ作用で被塗布体1の周縁接線方向へと吐出される。上述した遠心ポンプ作用で被塗布体1の上面に沿って流れる気流は、被塗布体1の回転角速度がある速度ω 以下のときには層流に近い状態で流れる。しかし、被塗布体1の回転角速度がω を越えてω まで上昇すると、図17に示すように、被塗布体1の上面に沿って流れる気流8は、特に周速の大きい外周域9において乱流化する。このため、この乱れが原因して外周域に塗膜厚ムラ領域10が発生する。 被塗布体1の回転角速度がω を越えてω まで上昇すると、被塗布体1の上面に沿って流れる気流8の乱れ領域が被塗布体1の中心寄りまで発達し、塗膜厚ムラ領域10も被塗布体1の中心寄りへと拡大する。このため、使用可能な最高回転数が必然的に制限されることになる。
【0009】
なお、上述した気流の乱れは、次式で示されるレイノルズ数Reによって決まり、レイノルズ数Reが大きくなると気流が乱れ始める。すなわち、Re=86000で層流から乱流への遷移がはじまり、Re=320000で完全に乱れる。ここで、レイノルズ数Reは、Re=r ・ω/ν(r:回転半径,ω:回転角速度,ν:雰囲気気体の動粘度)で表される。
【0010】
レイノルズ数Reの式から明らかなように、気流の乱れの発生は被塗布体1の大きさ(回転半径)にも依存しており、被塗布体1の径が大きくなると、径の小さなものと同じ回転数でもその外周域に気流の乱れが発生する。すなわち、被塗布体1の径が大きくなると、その使用可能最高回転数は益々低くなることになる。実際、例えば半導体ウエハにおいては、ウエハ径が6インチから8インチになったことにより、乱流を起こさない最高回転数が半分程度に低下している。
【0011】
このように、従来の回転塗布装置にあっては、使用可能な最高回転数の制限により、被塗布体の大型化に対して所定の厚みの塗膜が得られないという問題があった。なお、塗布液5の低粘度化で塗膜の薄膜化を図ることも考えられるが、塗布液本来の機能を満足させるためには、その粘度調整にも限界がある。
【0012】
【発明が解決しようとする課題】
上述の如く、従来の回転塗布装置では、気流の乱れによる塗膜厚ムラの発生する回転数(速度)の制限により、大型の被塗布体や塗膜のより一層の薄膜化が要求される被塗布体に対しては対応できないという問題があった。
【0013】
そこで本発明は、気流の乱れによる塗膜厚ムラの発生する回転数(速度)を大幅に向上させることができ、もって大型の被塗布体の塗膜のより一層の薄膜化が要求される被塗布体に対しても十分に対応できる回転塗布装置を提供することを目的としている。
【0014】
【課題を解決するための手段】
上記目的を達成するために本発明では、塗布液が付着可能な被塗布体を回転させ、遠心力で上記塗布液を上記被塗布体上に広げることによって上記被塗布体の表面に塗膜を形成する回転塗布装置において、前記被塗布体の表面で前記塗膜の形成される面に向けて気流を送り込む給気手段と、この給気手段の位置を基準にして前記被塗布体より後流側に設けられ、上記給気手段によって送り込まれた気流を排気する排気手段と、内径が前記被塗布体の直径より小さく形成され、外形が上記被塗布体の直径以上に形成されて、前記被塗布体の前記塗膜の形成される面に同軸に対向配置された環状体と、前記給気手段によって送り込まれた気流の全量を前記被塗布体と前記環状体との間に形成された流路を通して前記排気手段側に導く気流案内手段と、前記環状体の外側を通り前記排気手段側に導かれるように不活性ガスを流し、前記気流案内手段によって前記排気手段側に導かれる気流の周りにパージガスの層を形成するパージガス流形成手段とを具備してなることを特徴とする。
【0018】
なお、前記給気手段は、前記被塗布体の回転による遠心ポンプ作用によって前記被塗布体の外周側に流出する気体流量より多い流量の気体を前記被塗布体に向けて送り込むことが好ましい。
【0021】
本発明では、被塗布体の表面で塗膜の形成される面に対向させて環状体を配置するとともに被塗布体の表面で塗膜の形成される面に向けて気流を送り込む給気手段およびこれを排気する排気手段を設け、さらに給気手段によって送り込まれた気流の全量を被塗布体と環状体との間に形成された流路を通して排気手段側に導く気流案内手段を設けているので、被塗布体と環状体との間を流れる気流の量を一定に保持できる。この結果、塗膜形成範囲で乱流が発生しない被塗布体と環状体との間の間隔を見つけ出すことが容易で、最良の間隔に設定することができる。
【0022】
【発明の実施の形態】
以下、図面を参照しながら発明の実施形態を説明する。
図1には本発明の第1の実施形態に係る回転塗布装置の概略構成が示されている。なお、この図では図14と同一機能部分が同一符号で示されている。したがって、重複する部分の詳しい説明は省略する。
【0023】
この例に係る回転塗布装置が従来の装置と異なる点は、カバー7の上方位置、つまり被塗布体1の上方位置に給気口21を設け、この吸気口21を温度及び湿度の調整可能なポンプを含む給気装置22に接続し、さらにカバー7の低壁周縁部に排気口23を周方向に等間隔に複数設け、これら排気口23をポンプを含む排気装置24に接続して被塗布体1に沿って上方から下方に向かう気流を強制的に形成する気体給排気手段を設けていることにある。なお、カバー7は上下方向の途中位置において、上側と下側とに選択的に分割分離できる構成となっている。
【0024】
ここで、給気装置22及び排気装置24としては、これらを動作させていないときに、被塗布体1の回転による遠心ポンプ作用で被塗布体1の表面に沿って吐出される気体流量より多い流量の気体を給排気する能力を備えたものが用いられている。
【0025】
次に、上記のように構成された回転塗布装置の使用例を説明する。
まず、カバー7を上下方向に分割分離した状態で被塗布体1をチャック2上に固定し、カバー7を再び結合させた状態でモータ4を回転開始させる。次に、被塗布体1を低速で回転させている状態でノズル6から塗布液5を被塗布体1の上面中央部に所定量滴下させる。続いて、給気装置22及び排気装置24を動作開始させ、さらに被塗布体1の回転数を所定値まで上昇させ、この状態を一定時間保持する。なお、被塗布体1の回転数を所定値まで上昇させた後に塗布液5を滴下することもできる。給気装置22及び排気装置24を動作させる工程以外は従来の装置を用いたときと同じである。
【0026】
上記のように排気装置24を動作させると、給気口21から排気口23に向かう気流の流れが形成され、被塗布体1の上面に、図2に示すように、被塗布体1の回転に伴う吐出流量より多い量で被塗布体1の上方から下方に向かう強制気流25が形成される。
【0027】
この強制気流25は、被塗布体1の回転に伴って被塗布体1の上面に気流の乱れが生じようとしたとき、つまり気流の舞い上がりが生じようとしたときに、これを押さえ込むように機能する。このため、排気装置24を動作させて強制気流25を形成しない場合に比べて乱流の発生する回転数を上昇させることができる。したがって、従来装置より塗膜の薄膜化を図れ、同時に塗膜厚ムラの発生を抑制することができる。
【0028】
なお、被塗布体1の回転に伴う吐出流量Qは一般に次式で与えられる。
Q=0.885πr (νω)0.5 …(1)
(1) 式において、rは回転半径、νは雰囲気気体の動粘度、ωは回転角速度である。
【0029】
被塗布体1の上に供給する強制気流25の流量は、排気口23からの排気流量で制御することができる。すなわち、目的とする供給流量に対して、被塗布体1の表面積に対する被塗布体1と同一平面でのカバー7の開口面積の比分の排気流量となるように雰囲気気体を供給すればよい。今、被塗布体1の半径をr 、カバー7の開口部の半径をr とすると、(r /r )Qの排気流量とすれば、被塗布体1に対して回転に伴う吐出流量Qを与えたことになる。
【0030】
強制気流の流量、つまり供給流量と乱流発生回転数との間には図3の実験結果に示すように、供給流量を増加させるほど乱流発生回転数が高くなる関係がある。なお、図3において、ωは静止流体中での乱流発生回転数で、Qはそのときの吐出流量である。したがって、被塗布体1の直径、塗布液5の粘度、要求される塗膜厚等に応じて回転数を決定し、この回転数では乱流を発生させない供給流量を選択すればよいことになる。
【0031】
このように、この例に係る回転塗布装置では、被塗布体1の上部に図2に示すような気流25を強制的に形成するようにしているので、この強制気流25で被塗布体1の回転に伴い被塗布体1の上部外周に発生する気流の乱れを抑制でき、被塗布体1の外周部の塗膜厚ムラの発生を抑えることが可能となる。
【0032】
図4には本発明の第2の実施形態に係る回転塗布装置の概略構成が示されている。この図においても、図14と同一機能部分が同一符号で示してある。したがって、重複する部分の詳しい説明は省略する。
【0033】
この例に係る回転塗布装置では、被塗布体1の上方に、該被塗布体1の最外周域を含むように、被塗布体1の上面に対向させて環状体31を設けている。
すなわち、環状体31は、内径が被塗布体1の直径より小さく、外径が被塗布体1の直径以上に形成され、被塗布体1との間隔が周方向で一定となるように被塗布体1と同軸的に図示しない支持機構を介して設置されている。したがって、環状態31の中央部は雰囲気気体の導入が可能なように開口している。
【0034】
この回転塗布装置においても塗膜の形成工程は先の例と同様である。
このように、被塗布体1の上方に前記関係に環状体31を配置しておくと、被塗布体1の回転に伴なって被塗布体1の上部外周に発生する気流に乱れが生じようとしても、この乱れが環状体31によって抑制される。
【0035】
すなわち、図5に示すように、被塗布体1の上面に沿う一様な気流32が渦となって舞い上がり、乱れようとしても、被塗布体1の上方に配置された環状体31とその下を通る気流によって押さえ込まれ、結局、乱流の発生が抑制される。したがって、被塗布体1の回転数を上げて塗膜の薄膜化を図れると同時に被塗布体1の外周部に塗膜厚ムラが発生するのを抑制することが可能となる。
【0036】
なお、環状体31による乱流抑制効果は、被塗布体1との間の距離L、つまり被塗布体1との隙間によって大きく左右される。図6には被塗布体1との間の距離Lと乱流発生回転数との関係を調べた実験結果が示されている。この図において、ωは環状体31を設けていないときの乱流回転数を示している。
【0037】
この図6から判るように、被塗布体1との間の距離Lが短い程、乱流抑制効果が大きい。なお、環状体31は、要求される回転数に対して、少なくとも被塗布体1上の気流が層流から乱流に遷移し始める位置(レイノルズ数Re=86000で定まる半径)から最外周までを覆っていなければならない。したがって、環状体31の外径は被塗布体1の外径によって決まり、また環状体31の内径は図7に示すように被塗布体1の回転数によって決まる。なお、図7は1気圧、25℃の空気中として求めた計算結果である。すなわち、環状体31の内径は被塗布体1の回転数が高い程、小さくする必要がある。
【0038】
そして、上記条件を満していれば、環状体31の形状は、図4に示すような被塗布体1に平行な平板である必要はなく、図8(a) に示すように被塗布体1の中心部に近づくにしたがって被塗布体1との間の距離Lが徐々に大きくなる形状の環状体31aを用いてもよいし、図8(b) に示すように被塗布体1の中心部に近づく途中位置から被塗布体1との間の距離Lが徐々に大きくなる形状の環状体31bを用いてもよい。
【0039】
図8に示すような環状体31a(31b)を用いた場合には、被塗布体1上に雰囲気ガスを導入し易く、また雰囲気ガス流速が被塗布体1の外周に向かって徐々に増加していくため、被塗布体1上での雰囲気ガスの不連続性が生じ難い利点がある。
【0040】
なお、環状体を構成する材料は、密な板である必要はなく、細かい穴の開いたものでもよい。さらに、環状体の最外周は円形である必要はなく、多角形でもよい。
【0041】
図9には本発明の第3の実施形態に係る回転塗布装置の概略構成が示されている。この図においては、図1と同一機能部分が同一符号で示してある。したがって、重複する部分の詳しい説明は省略する。
【0042】
この例に係る回転塗布装置では、図4に示した装置と同様に、被塗布体1の上面に対向させて環状体31を配置している。但し、この例では、環状体31の外周縁部を外方に延出させ、この延出部33の外周部をカバ−7に気密に固定した構造を採用している。このような構造を採用することによって、延出部33に気流案内機能を持たせ、給気装置22から送り出された気流の全量を環状体31と被塗布体1との間に形成された流路を通して下流側に流すようにしている。なお、この例においては、カバー7の周壁で延出部33が固着されている部分と排気口23が設けられている部分との間の位置にカバー7を上下方向に選択的に分割分離する図示しない分離機構が設けてあり、被塗布体1をチャック2に固定するときには、この分離機構を使って固定作業が行われる。
【0043】
ここで、給気装置22と排気装置24とは、これらを動作させていないときに被塗布体1の回転による遠心ポンプ作用で被塗布体1の表面に沿って排出される気体流量より多い流量の気体を供給、排気する能力を備えたものが用いられている。
【0044】
次に、上記のように構成された回転塗布装置の使用例を説明する。
まず、前述した分離機構を使ってカバー7を上下方向に分離し、この状態で被塗布体1をチャック2上に固定し、カバー7を再び結合される。次に、モータ4を回転開始させ、被塗布体1を低速で回転させている状態でノズル6から塗布液5を被塗布体1の上面中央部に所定量滴下させる。続いて、給気装置22及び排気装置24を動作開始させ、さらに被塗布体1の回転数を所定値まで上昇させ、この状態を一定時間保持して塗膜を形成させる。なお、被塗布体1の回転数を所定値まで上昇させた後に塗布液5を滴下することもできる。
【0045】
上記のように給気装置22及び排気装置24を動作させると、図10に示すように、被塗布体1の回転に伴う吐出流量より多い量で給気口21から排気口23に向かう強制気流34の流れが形成され、この強制気流34の全量が被塗布体1と環状体31との間に形成された流路を通して流れる。
【0046】
このように、強制気流34の全量を被塗布体1と環状体31との間に形成された流路に流すことには次のような意味がある。すなわち、先に説明したように、被塗布体1の塗膜形成面に沿って流れる気流の乱れを抑制するには、被塗布体1に対向させて環状体31を配置することが有効である。
【0047】
この方法によれば、環状体31の位置が被塗布体1に近ければ気流の乱れを抑制する効果も大きい。しかし、その反面、塗膜の半径方向厚み分布に対して今度は環状体31の影響が現れる。すなわち、半径方向に塗膜の厚み分布を見た場合、環状体31の挿入位置(環状体31の内縁部位置)で急激に塗膜の厚みが変化する。これを避けるためには、環状体31と被塗布体1との間の距離Lを大きくすればよいが、このようにすると今度は、気流の乱れが生じやすくなってしまう。つまり、環状体31の設置位置については、二律背反の面があり、設置位置の設定については、実際に塗布膜を形成しながら実験的に決定せざるを得ない。
【0048】
こうした装置では、装置の利用効率を図るために1つの装置で異なる条件下、例えば同じレジストで異なる膜厚みの塗布膜を形成する必要があったり、また異なるレジストで同じ膜厚みの塗布膜を形成する必要があったりするので、多くの時間をかけて環状体の位置を決定する方法では、時間的制約やノウハウの蓄積が必要などの難点も多い。したがって、環状体31の最適位置を如何にして短時間に見出すかが問題となる
もしも、図11に示すように、環状体31より外側に給気口21から排気口23に向かう通路35が存在しているような場合には、給気装置22から供給された気流が装置内部で被塗布体1の表面に沿って流れる気流Aと環状体31より外側を流れる気流Bとの2つの流れが生じることになる。半径方向の膜厚分布に影響する気流、すなわち被塗布体1の表面に沿って流れる気流Aの量は、環状体31と被塗布体1との間の距離Lを狭めれば流体抵抗が増加して減少し、広げれば流体抵抗が小さくなって増加する。したがって、膜厚分布に影響を与える被塗布体1と環状体31との間の距離Lを変化させると、膜厚ムラに影響を与える被塗布体1の表面に沿って流れる気流Aの量も同時に変化してしまうことになり、調整がきわめて難しい。
【0049】
しかし、図9(図10)に示す例のように、強制気流34の全量を被塗布体1と環状体31との間に形成された流路に流す構造であると、環状体31と被塗布体1との間の距離Lを変化させても膜厚ムラに影響を与える被塗布体1の表面に沿って流れる気流の量を一定に保持できるので、均一な膜厚が得られる距離Lを容易に設定することができる。
【0050】
すなわち、このように構成された回転塗布装置において、被塗布体1に形成された塗膜の均一性を確保するためには、実際に使用する回転数や雰囲気、温度、湿度、塗布液を用いて実際に塗布を行い膜厚みを測定して均一性を確認する必要がある。もし、所定の均一性が得られていなければ、環状版31と被塗布体1との間の距離Lを調整して所定の均一性を得るようにすればよく、上記構成であると距離Lの設定を容易化できる。
【0051】
図12には本発明の第4の実施形態に係る回転塗布装置の概略構成が示されている。この図においては、図9と同一機能部分が同一符号で示されている。したがって、重複する部分の詳しい説明は省略する。
【0052】
この回転塗布装置では、給気装置22の吹出口から被塗布体1の上面側に向けて環状体31の内径とほぼ等しい内径のダクト36を被塗布体1と同軸的に配置し、このダクト36の下端縁に環状体31を固着している。ダクト36は図示しない支持機構によって図中上下方向に移動可能に設けられている。
【0053】
したがって、この例においても、給気装置22から供給された気流の全量が環状体31と被塗布体1との間に形成された流路を通って排気口23側へと流れることになり、先の例と同様に均一な膜厚が得られる距離Lを容易に設定することができる。
【0054】
図13には本発明の第5の実施形態に係る回転塗布装置の概略構成が示されている。この図においては、図12と同一機能部分が同一符号で示してある。したがって、重複する部分の詳しい説明は省略する。
【0055】
この回転塗布装置では、図12の例とは違ってカバー7を密閉構造とし、カバー7の上壁に周方向に等間隔にガス導入口37を設け、不活性ガス供給源38からガス導入口37を介してカバー7内に不活性ガスを供給する構造となっている。この例においても、カバー7は上下方向の途中位置において、上側と下側とに選択的に分割分離できる構成となっている。
【0056】
通常、こうした装置は一般雰囲気下(空気中)で運転されることが多いが、一部の特殊な塗布液は湿度を嫌う性質のものがあるため、この例では不活性ガスを通流させて外気を遮断できる構造となっている。
【0057】
なお、環状体の形状は、円形に限らず多角形でもよいし、その厚みは回転中心に対して対称であれば一定でなくてもよい。また、ここで説明した回転塗布装置は、半導体ウエハに限らず、各種被塗布体への塗膜形成に使用できる。
【0058】
【発明の効果】
以上説明したように、本発明によれば、気流の乱れによる塗膜厚ムラの発生する回転数(速度)を大幅に上昇させることができるので、大型の被塗布体や塗膜の薄膜化が要求される被塗布体に対しても十分に対応することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る回転塗布装置の概略構成図
【図2】同装置における強制気流の通流形態を説明するための図
【図3】同装置において強制気流供給量と乱流発生回転数との関係を示す図
【図4】本発明の第2の実施形態に係る回転塗布装置の概略構成図
【図5】同装置における吐出気流の通流形態を説明するための図
【図6】同装置において被塗布体ー環状体間距離と乱流発生回転数との関係を示す図
【図7】同装置において被塗布体の回転数と環状体の必要内径との関係を示す図
【図8】環状体の変形例を説明するための図
【図9】本発明の第3の実施形態に係る回転塗布装置の概略構成図
【図10】同装置における強制気流の流れ形態を説明するための図
【図11】参考例における強制気流の流れ形態を説明するための図
【図12】本発明の第4の実施形態に係る回転塗布装置の概略構成図
【図13】本発明の第5の実施形態に係る回転塗布装置の概略構成図
【図14】従来の回転塗布装置の概略構成図
【図15】同装置の運転形態の一例を説明するための図
【図16】同装置の問題点を説明するための図
【図17】同装置の問題点を説明するための図
【符号の説明】
1…被塗布体
2…チャック
3…軸
4…モータ
5…塗布液
6…ノズル
7、7a…カバー
21…給気口
22…空気装置
23…排気口
24…排気装置
25、34…強制気流
31,31a,31b…環状体
32…気流
33…気流案内手段としての延出部
36…ダクト
37…ガス導入口
38…不活性ガス供給源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a spin coating apparatus used for applying a resist or the like to a surface of a semiconductor wafer, for example.
[0002]
[Prior art]
As is well known, a spin coating method is widely used as a method for forming a coating film having a uniform thickness on a coating object such as a semiconductor wafer. This is a method in which an object to be coated on which an application liquid is dropped is rotated, the application liquid is spread over the entire surface of the object by centrifugal force, and a solvent in the application liquid is evaporated to form a coating film.
[0003]
FIG. 14 shows a schematic configuration of a conventional spin coating apparatus that performs the spin coating method described above.
In FIG. 1, reference numeral 1 denotes an object to be coated such as a wafer. The object 1 is horizontally held on a chuck 2 of vacuum suction type. The chuck 2 is connected to a rotating shaft of a motor 4 via a shaft 3. Above the chuck 2, a nozzle 6 for dropping a coating liquid 5 such as a resist on the upper surface of the object 1 is disposed. These components are covered with a cover 7 for preventing the application liquid 5 from scattering and collecting.
[0004]
In order to form a coating film such as a resist on the object to be coated 1 by the apparatus configured as described above, first, the object to be coated 1 is fixed on the chuck 2 and the motor 4 is started to rotate. Then, as shown in FIG. 15, for example, the coating liquid 5 is dropped from the nozzle 6 onto the center of the upper surface of the coating target 1 while the coating target 1 is rotating at a low speed. The nozzle 6 is located at a position retracted from the object 1 before coating. Subsequently, the number of rotations of the object 1 is increased to a predetermined value, and this state is maintained for a certain time.
[0005]
When the object 1 is rotated as described above, the coating liquid 5 spreads over the entire surface of the object by centrifugal force, and the solvent in the coating liquid 5 evaporates, thereby reducing the film thickness (the thickness of the liquid layer). . Although the spread of the coating liquid 5 due to the centrifugal force is dominant in the early stage of the coating process, the decrease in the film thickness causes the evaporation of the solvent to decrease as the viscosity of the coating liquid increases and the fluidity of the coating liquid 5 decreases. It becomes dominant and ends when the solvent cannot finally evaporate from the gas-liquid interface. Therefore, the thickness of the coating film becomes thinner as the number of rotations of the coating object 1 is higher and as the viscosity of the coating liquid 5 is lower.
[0006]
In this way, a coating film is formed on the object 1 to be coated. The coating liquid 5 scattered from above the object to be coated 1 during coating film formation is trapped by the cover 7. However, the conventional spin coating apparatus configured as described above has the following problems.
[0007]
That is, recently, a further reduction in the thickness of the coating film and an increase in the size of the object to be coated 1 have been demanded. In order to realize this further thinning, it is necessary to increase the number of revolutions of the object 1. However, in a conventional spin coating apparatus, when the number of revolutions of the object 1 is increased, the upper surface of the object 1 is increased. Turbulence of the air flow is likely to occur in the outer peripheral area, and there is a problem that the coating thickness unevenness occurs in the outer peripheral area of the upper surface of the coated object 1 due to this effect.
[0008]
For example, as shown in FIG. 16, an object 1 having a certain diameter is taken as an example. The atmosphere gas surrounding the object 1 usually has viscosity. Therefore, when the object 1 rotates, the atmospheric gas that is in contact with the upper surface of the object 1 is discharged in the peripheral tangential direction of the object 1 by a centrifugal pump action with the rotation. Airflow flowing along the upper surface of the member to be coated 1 by a centrifugal pumping action described above, when the speed omega 1 below there is a rotational angular velocity of the member to be coated 1 flows in a state close to a laminar flow. However, when the rotational angular velocity of the medium to be coated 1 is raised to omega 2 beyond the omega 1, as shown in FIG. 17, the air flow 8 flows along the upper surface of the member to be coated 1 is greater outer circumferential region, especially the peripheral speed 9 Turbulence. For this reason, the unevenness causes the coating film thickness unevenness region 10 to occur in the outer peripheral region. When the rotation angular velocity of the medium to be coated 1 is raised to the omega 3 beyond omega 2, turbulence region of the air 8 that flows along the upper surface of the member to be coated 1 is developed to the center side of the member to be coated 1, film thickness unevenness The area 10 also expands toward the center of the object 1. For this reason, the maximum usable rotation speed is necessarily limited.
[0009]
The above-described turbulence of the airflow is determined by the Reynolds number Re represented by the following equation. When the Reynolds number Re increases, the turbulence of the airflow starts. That is, the transition from laminar flow to turbulent flow starts at Re = 86000, and is completely disturbed at Re = 320000. Here, the Reynolds number Re is represented by Re = r 2 ω / ν (r: radius of rotation, ω: angular velocity of rotation, ν: kinematic viscosity of atmospheric gas).
[0010]
As is clear from the equation of the Reynolds number Re, the occurrence of the turbulence of the air flow also depends on the size (rotation radius) of the object 1, and as the diameter of the object 1 increases, the diameter of the object 1 decreases. Even at the same rotation speed, turbulence of the air flow occurs in the outer peripheral region. That is, as the diameter of the object to be coated 1 increases, the maximum usable rotational speed thereof becomes lower. In fact, for example, in the case of a semiconductor wafer, the maximum rotation speed at which turbulence does not occur is reduced to about half as the wafer diameter is changed from 6 inches to 8 inches.
[0011]
As described above, in the conventional spin coating apparatus, there is a problem that a coating film having a predetermined thickness cannot be obtained due to an increase in the size of an object to be coated due to a limitation on the maximum number of rotations that can be used. Although it is conceivable to reduce the viscosity of the coating liquid 5 to reduce the thickness of the coating film, there is a limit in adjusting the viscosity of the coating liquid in order to satisfy the original function of the coating liquid.
[0012]
[Problems to be solved by the invention]
As described above, in the conventional spin coating apparatus, the number of rotations (speed) at which the coating thickness unevenness occurs due to the turbulence of the airflow is limited, so that a large coating object or a coating film that requires further thinning is required. There was a problem that it could not be applied to the coated body.
[0013]
Therefore, the present invention can significantly improve the number of revolutions (speed) at which unevenness of the coating thickness occurs due to the turbulence of the air flow, and therefore, it is necessary to further reduce the thickness of the coating film on the large coated object. It is an object of the present invention to provide a spin coating apparatus which can sufficiently cope with a coating body.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a coating object is applied to the surface of the object by rotating the object to which the application liquid can be adhered, and spreading the application liquid on the object by centrifugal force. In the spin coating device for forming, an air supply means for sending an air flow toward the surface on which the coating film is formed on the surface of the object, and a wake from the object with reference to the position of the air supply means. Exhaust means for exhausting the air flow sent by the air supply means, and an inner diameter formed to be smaller than the diameter of the object to be coated, and an outer shape formed to be greater than or equal to the diameter of the object to be coated; An annular body coaxially arranged on the surface of the coating body on which the coating film is formed, and a flow formed between the body to be coated and the annular body by using the entire amount of the air flow sent by the air supply means. Airflow guiding means for guiding the exhaust means through a passage Purge gas flow forming means for flowing an inert gas so as to be guided to the exhaust means side through the outside of the annular body, and forming a purge gas layer around an air flow guided to the exhaust means side by the air flow guide means. It is characterized by comprising.
[0018]
In addition, it is preferable that the air supply means sends a gas having a flow rate larger than a gas flow rate flowing out to the outer peripheral side of the object to be coated toward the object to be coated by a centrifugal pump action by rotation of the object to be coated.
[0021]
In the present invention, an air supply means for arranging an annular body facing the surface on which the coating film is formed on the surface of the object to be coated and sending airflow toward the surface on which the coating film is formed on the surface of the object to be coated, and An exhaust means for exhausting the air is provided, and an air flow guide means for guiding the entire amount of the air flow sent by the air supply means to the exhaust means side through a flow path formed between the coated object and the annular body is provided. In addition, the amount of airflow flowing between the object and the annular body can be kept constant. As a result, it is easy to find the interval between the object to be coated and the annular body in which turbulence does not occur in the coating film forming range, and it is possible to set the best interval.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a spin coating apparatus according to a first embodiment of the present invention. In this figure, the same functional parts as those in FIG. 14 are indicated by the same reference numerals. Therefore, a detailed description of the overlapping part will be omitted.
[0023]
The different point of the spin coating device according to this example from the conventional device is that an air supply port 21 is provided at a position above the cover 7, that is, at a position above the object to be coated 1, and the air inlet 21 can be adjusted for temperature and humidity. It is connected to an air supply device 22 including a pump, and furthermore, a plurality of exhaust ports 23 are provided at equal intervals in the circumferential direction on the peripheral edge of the low wall of the cover 7, and these exhaust ports 23 are connected to an exhaust device 24 including a pump for coating. A gas supply / exhaust means for forcibly forming an air flow from above to below along the body 1 is provided. The cover 7 can be selectively divided and separated into an upper side and a lower side at an intermediate position in the vertical direction.
[0024]
Here, when the air supply device 22 and the exhaust device 24 are not operated, the flow rate of the gas discharged along the surface of the object 1 by the centrifugal pump action by the rotation of the object 1 is larger than the gas flow rate. What has the ability to supply and exhaust gas at a flow rate is used.
[0025]
Next, an example of use of the spin coating device configured as described above will be described.
First, the object to be coated 1 is fixed on the chuck 2 in a state where the cover 7 is divided and separated in the vertical direction, and the motor 4 is started to rotate in a state where the cover 7 is connected again. Next, a predetermined amount of the coating liquid 5 is dropped from the nozzle 6 onto the center of the upper surface of the object 1 while the object 1 is rotating at a low speed. Subsequently, the operation of the air supply device 22 and the exhaust device 24 is started, the number of revolutions of the object 1 is increased to a predetermined value, and this state is maintained for a certain time. The application liquid 5 can be dropped after the number of rotations of the object 1 is increased to a predetermined value. Except for the step of operating the air supply device 22 and the exhaust device 24, the operation is the same as when the conventional device is used.
[0026]
When the exhaust device 24 is operated as described above, an airflow is formed from the air supply port 21 to the exhaust port 23, and the rotation of the object 1 is formed on the upper surface of the object 1 as shown in FIG. As a result, a forced airflow 25 is formed from the upper side to the lower side of the object to be coated 1 by an amount larger than the discharge flow rate.
[0027]
The forced airflow 25 functions to suppress airflow turbulence on the upper surface of the object 1 as the object 1 rotates, that is, when airflow soars. I do. Therefore, the rotation speed at which the turbulent flow occurs can be increased as compared with the case where the exhaust device 24 is operated and the forced airflow 25 is not formed. Therefore, it is possible to make the coating film thinner than the conventional apparatus, and at the same time, it is possible to suppress the occurrence of coating film thickness unevenness.
[0028]
Note that the discharge flow rate Q accompanying the rotation of the object 1 is generally given by the following equation.
Q = 0.885πr 2 (νω) 0.5 (1)
In the equation (1), r is the radius of rotation, ν is the kinematic viscosity of the atmospheric gas, and ω is the rotational angular velocity.
[0029]
The flow rate of the forced airflow 25 supplied onto the coating target 1 can be controlled by the exhaust flow rate from the exhaust port 23. That is, the atmospheric gas may be supplied such that the exhaust gas flow rate is equal to the ratio of the opening area of the cover 7 on the same plane as the object 1 to the object 1 to the target supply flow rate. Now, r 1 the radius of the medium to be coated 1, and the radius of the opening of the cover 7, r 2, if the exhaust flow rate (r 2 2 / r 1 2 ) Q, rotated with respect to the medium to be coated 1 Is given by the discharge flow rate Q associated with.
[0030]
As shown in the experimental results of FIG. 3, there is a relationship between the flow rate of the forced air flow, that is, the supply flow rate and the turbulence generation rotation speed, that the turbulence generation rotation speed increases as the supply flow rate increases. In FIG. 3, ω is the number of revolutions at which turbulence occurs in the stationary fluid, and Q is the discharge flow rate at that time. Therefore, the number of rotations is determined according to the diameter of the object 1 to be coated, the viscosity of the coating solution 5, the required thickness of the coating film, and the like, and the supply flow rate at which the turbulence does not occur may be selected at this number of rotations. .
[0031]
As described above, in the spin coating apparatus according to this example, the airflow 25 as shown in FIG. Turbulence of the airflow generated on the outer periphery of the object 1 due to the rotation can be suppressed, and it is possible to suppress the occurrence of unevenness in the coating thickness on the outer periphery of the object 1.
[0032]
FIG. 4 shows a schematic configuration of a spin coating apparatus according to a second embodiment of the present invention. Also in this figure, the same functional portions as those in FIG. 14 are indicated by the same reference numerals. Therefore, a detailed description of the overlapping part will be omitted.
[0033]
In the spin coating apparatus according to this example, an annular body 31 is provided above the object 1 to face the upper surface of the object 1 so as to include the outermost peripheral region of the object 1.
That is, the annular body 31 is formed such that the inner diameter is smaller than the diameter of the object 1 and the outer diameter is greater than or equal to the diameter of the object 1, and the distance between the annular body 31 and the object 1 is constant in the circumferential direction. It is installed coaxially with the body 1 via a support mechanism (not shown). Therefore, the central part of the annular state 31 is opened so that atmospheric gas can be introduced.
[0034]
In this spin coating apparatus, the step of forming the coating film is the same as in the previous example.
In this way, if the annular body 31 is disposed above the object 1 in the above relationship, the airflow generated on the upper periphery of the object 1 with the rotation of the object 1 will be disturbed. In this case, this disturbance is suppressed by the annular body 31.
[0035]
That is, as shown in FIG. 5, the uniform air flow 32 along the upper surface of the coating target 1 rises as a vortex, so that even if it is turbulent, the annular body 31 disposed above the coating target 1 and the lower portion thereof Turbulence is suppressed. Therefore, it is possible to increase the number of revolutions of the object 1 to reduce the thickness of the coating, and at the same time, it is possible to suppress the occurrence of unevenness in the thickness of the coating on the outer peripheral portion of the object 1.
[0036]
Note that the turbulence suppression effect of the annular body 31 largely depends on the distance L between the annular body 31 and the object 1, that is, the gap between the annular body 31 and the object 1. FIG. 6 shows an experimental result obtained by examining the relationship between the distance L to the object 1 and the rotation speed at which turbulence occurs. In this figure, ω indicates the turbulent rotation speed when the annular body 31 is not provided.
[0037]
As can be seen from FIG. 6, the turbulence suppression effect increases as the distance L between the object 1 and the object 1 decreases. It should be noted that the annular body 31 extends from at least the position (the radius determined by the Reynolds number Re = 86000) to the outermost circumference where the airflow on the coating object 1 starts to transition from laminar flow to turbulent flow with respect to the required rotation speed. Must be covered. Therefore, the outer diameter of the annular body 31 is determined by the outer diameter of the body 1 to be coated, and the inner diameter of the annular body 31 is determined by the rotation speed of the body 1 to be coated as shown in FIG. FIG. 7 shows calculation results obtained in the air at 1 atm and 25 ° C. That is, the inner diameter of the annular body 31 needs to be reduced as the number of rotations of the object 1 increases.
[0038]
If the above condition is satisfied, the shape of the annular body 31 does not need to be a flat plate parallel to the object 1 as shown in FIG. 4, but as shown in FIG. An annular body 31a having a shape in which the distance L to the object 1 gradually increases as approaching the center of the object 1 or the center of the object 1 as shown in FIG. An annular body 31b having a shape in which the distance L from the intermediate position approaching the portion to the object 1 gradually increases may be used.
[0039]
When an annular body 31a (31b) as shown in FIG. 8 is used, it is easy to introduce the atmospheric gas onto the object 1 and the flow rate of the atmospheric gas gradually increases toward the outer periphery of the object 1. Therefore, there is an advantage that discontinuity of the atmospheric gas on the object 1 is hardly generated.
[0040]
In addition, the material which comprises an annular body does not need to be a dense board, and may be a thing with a fine hole. Further, the outermost periphery of the annular body does not need to be circular, but may be polygonal.
[0041]
FIG. 9 shows a schematic configuration of a spin coating apparatus according to a third embodiment of the present invention. In this figure, the same functional parts as those in FIG. 1 are indicated by the same reference numerals. Therefore, a detailed description of the overlapping part will be omitted.
[0042]
In the spin coating apparatus according to this example, the annular body 31 is disposed so as to face the upper surface of the coating target 1 as in the apparatus shown in FIG. However, in this example, a structure is employed in which the outer peripheral edge of the annular body 31 is extended outward, and the outer peripheral portion of the extended portion 33 is airtightly fixed to the cover 7. By adopting such a structure, the extension portion 33 is provided with an airflow guiding function, and the entire amount of the airflow sent from the air supply device 22 is controlled by the flow formed between the annular body 31 and the object 1. It is made to flow downstream through the road. In this example, the cover 7 is selectively divided in the vertical direction at a position between the portion where the extension portion 33 is fixed on the peripheral wall of the cover 7 and the portion where the exhaust port 23 is provided. A separating mechanism (not shown) is provided, and when the object 1 is fixed to the chuck 2, a fixing operation is performed using the separating mechanism.
[0043]
Here, the air supply device 22 and the exhaust device 24 have a flow rate larger than the flow rate of gas discharged along the surface of the object 1 by the centrifugal pump action by the rotation of the object 1 when they are not operated. What has the ability to supply and exhaust the gas of this type is used.
[0044]
Next, an example of use of the spin coating device configured as described above will be described.
First, the cover 7 is vertically separated by using the above-described separating mechanism. In this state, the object 1 is fixed on the chuck 2 and the cover 7 is reconnected. Next, the motor 4 is started to rotate, and a predetermined amount of the coating liquid 5 is dropped from the nozzle 6 onto the center of the upper surface of the object 1 while the object 1 is rotating at a low speed. Subsequently, the operation of the air supply device 22 and the exhaust device 24 is started, the number of revolutions of the object 1 is increased to a predetermined value, and this state is maintained for a certain time to form a coating film. The application liquid 5 can be dropped after the number of rotations of the object 1 is increased to a predetermined value.
[0045]
When the air supply device 22 and the exhaust device 24 are operated as described above, as shown in FIG. 10, the forced air flow from the air supply port 21 to the exhaust port 23 by an amount larger than the discharge flow rate accompanying the rotation of the object 1 A flow 34 is formed, and the entire amount of the forced airflow 34 flows through a flow path formed between the object 1 and the annular body 31.
[0046]
As described above, flowing the entire amount of the forced airflow 34 to the flow path formed between the object 1 and the annular body 31 has the following meaning. That is, as described above, in order to suppress the turbulence of the airflow flowing along the coating film forming surface of the object 1, it is effective to dispose the annular body 31 so as to face the object 1. .
[0047]
According to this method, if the position of the annular body 31 is closer to the object 1 to be applied, the effect of suppressing the turbulence of the air flow is great. However, on the other hand, the influence of the annular body 31 appears on the radial thickness distribution of the coating film. That is, when the thickness distribution of the coating film is viewed in the radial direction, the thickness of the coating film rapidly changes at the insertion position of the annular body 31 (the inner edge position of the annular body 31). In order to avoid this, the distance L between the annular body 31 and the object to be coated 1 may be increased. However, in this case, turbulence of the airflow is likely to occur. In other words, the installation position of the annular body 31 has two trade-offs, and the installation position must be experimentally determined while actually forming the coating film.
[0048]
In such an apparatus, it is necessary to form a coating film having a different thickness with the same resist under different conditions, for example, using the same resist, or to form a coating film having the same film thickness with a different resist in order to increase the utilization efficiency of the device. Therefore, the method of determining the position of the annular body over a long period of time has many disadvantages such as time constraints and the need to accumulate know-how. Therefore, how to find the optimum position of the annular body 31 in a short time becomes a problem. However, as shown in FIG. In such a case, the airflow supplied from the air supply device 22 is divided into two flows: an airflow A flowing along the surface of the coating object 1 inside the device and an airflow B flowing outside the annular body 31. Will happen. The amount of the air flow affecting the thickness distribution in the radial direction, that is, the amount of the air flow A flowing along the surface of the coating object 1 increases as the distance L between the annular body 31 and the coating object 1 decreases. The fluid resistance decreases and increases when the fluid resistance increases. Therefore, when the distance L between the object 1 and the annular body 31 that affects the film thickness distribution is changed, the amount of the airflow A flowing along the surface of the object 1 that affects the film thickness unevenness also increases. It will change at the same time, making it extremely difficult to adjust.
[0049]
However, as in the example shown in FIG. 9 (FIG. 10), if the structure is such that the entire amount of the forced airflow 34 flows through the flow path formed between the object 1 and the annular body 31, the annular body 31 Even if the distance L to the coating body 1 is changed, the amount of airflow flowing along the surface of the coating body 1 which affects the film thickness unevenness can be kept constant, so that the distance L at which a uniform film thickness is obtained. Can be easily set.
[0050]
That is, in the spin coating device configured as described above, in order to ensure the uniformity of the coating film formed on the coating target 1, the rotation speed, atmosphere, temperature, humidity, and the coating liquid that are actually used are used. It is necessary to confirm the uniformity by actually applying the film and measuring the film thickness. If the predetermined uniformity is not obtained, the distance L between the annular plate 31 and the object 1 may be adjusted to obtain the predetermined uniformity. Can be easily set.
[0051]
FIG. 12 shows a schematic configuration of a spin coating apparatus according to a fourth embodiment of the present invention. In this figure, the same functional parts as in FIG. 9 are indicated by the same reference numerals. Therefore, a detailed description of the overlapping part will be omitted.
[0052]
In this rotary coating device, a duct 36 having an inner diameter substantially equal to the inner diameter of the annular body 31 is coaxially arranged with the coating object 1 from the outlet of the air supply device 22 toward the upper surface of the coating object 1. An annular body 31 is fixed to the lower end edge of 36. The duct 36 is provided so as to be vertically movable in the figure by a support mechanism (not shown).
[0053]
Therefore, also in this example, the entire amount of the airflow supplied from the air supply device 22 flows toward the exhaust port 23 through the flow path formed between the annular body 31 and the application target 1, As in the previous example, the distance L at which a uniform film thickness can be obtained can be easily set.
[0054]
FIG. 13 shows a schematic configuration of a spin coating apparatus according to a fifth embodiment of the present invention. In this figure, the same functional parts as those in FIG. 12 are denoted by the same reference numerals. Therefore, a detailed description of the overlapping part will be omitted.
[0055]
In this spin coating apparatus, unlike the example of FIG. 12, the cover 7 has a hermetically sealed structure, and gas inlets 37 are provided on the upper wall of the cover 7 at equal intervals in the circumferential direction. An inert gas is supplied into the cover 7 via the cover 37. Also in this example, the cover 7 can be selectively divided and separated into an upper side and a lower side at an intermediate position in the vertical direction.
[0056]
Usually, such a device is often operated under a general atmosphere (in the air). However, since some special coating liquids have a property that dislikes humidity, in this example, an inert gas is allowed to flow. It has a structure that can block outside air.
[0057]
The shape of the annular body is not limited to a circle, but may be a polygon. The thickness may not be constant as long as the thickness is symmetric with respect to the center of rotation. Further, the spin coating apparatus described here can be used for forming a coating film not only on a semiconductor wafer but also on various objects to be coated.
[0058]
【The invention's effect】
As described above, according to the present invention, the number of revolutions (speed) at which unevenness of the coating film thickness due to turbulence of the air flow can be significantly increased, so that a large object or a thin coating film can be formed. It can sufficiently cope with a required object to be coated.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a spin coating device according to a first embodiment of the present invention; FIG. FIG. 4 is a diagram showing a relationship between an amount and a turbulent flow generation rotational speed. FIG. 4 is a schematic configuration diagram of a spin coating apparatus according to a second embodiment of the present invention. FIG. FIG. 6 is a view showing the relationship between the distance between the object to be coated and the annular body and the number of rotations at which turbulence occurs in the same apparatus. FIG. 8 is a view for explaining a modification of the annular body. FIG. 9 is a schematic configuration view of a spin coating apparatus according to a third embodiment of the present invention. FIG. 10 is a forced air flow in the apparatus. FIG. 11 is a view for explaining a flow form of forced airflow in a reference example. FIG. 12 is a schematic configuration diagram of a spin coating device according to a fourth embodiment of the present invention. FIG. 13 is a schematic configuration diagram of a spin coating device according to a fifth embodiment of the present invention. FIG. 15 is a diagram illustrating an example of an operation mode of the spin coating device. FIG. 16 is a diagram illustrating a problem of the same device. FIG. 17 is a diagram illustrating a problem of the same device. [Description of reference numerals]
DESCRIPTION OF SYMBOLS 1 ... Coating object 2 ... Chuck 3 ... Shaft 4 ... Motor 5 ... Coating liquid 6 ... Nozzle 7, 7a ... Cover 21 ... Air supply port 22 ... Air device 23 ... Exhaust port 24 ... Exhaust device 25, 34 ... Forced air flow 31 .., 31a, 31b... Annular body 32... Air flow 33... Extension part 36 as air flow guide means... Duct 37.

Claims (1)

塗布液が付着可能な被塗布体を回転させ、遠心力で上記塗布液を上記被塗布体上に広げることによって上記被塗布体の表面に塗膜を形成する回転塗布装置において、前記被塗布体の表面で前記塗膜の形成される面に向けて気流を送り込む給気手段と、この給気手段の位置を基準にして前記被塗布体より後流側に設けられ、上記気手段によって送り込まれた気流を排気する排気手段と、内径が前記被塗布体の直径より小さく形成され、外形が上記被塗布体の直径以上に形成されて、前記被塗布体の前記塗膜の形成される面に同軸に対向配置された環状体と、前記給気手段によって送り込まれた気流の全量を前記被塗布体と前記環状体との間に形成された流路を通して前記排気手段側に導く気流案内手段と、前記環状体の外側を通り前記排気手段側に導かれるように不活性ガスを流し、前記気流案内手段によって前記排気手段側に導かれる気流の周りにパージガスの層を形成するパージガス流形成手段とを具備してなることを特徴とする回転塗布装置。In a rotary coating apparatus for forming a coating film on the surface of the object to be coated by rotating an object to which the application liquid can be attached and spreading the application liquid on the object by centrifugal force, the object to be coated is provided. wherein the surface of the air supply means for feeding an air flow toward a surface to be formed of a coating film, provided at a position downstream side after the member to be coated on the basis of this air supply means, fed by the air supply means Exhaust means for exhausting the air flow, a surface having an inner diameter formed smaller than the diameter of the object to be coated, and an outer shape formed to be greater than or equal to the diameter of the object to be coated, on which the coating film of the object to be coated is formed; An annular body coaxially and opposed to the air flow guide means for guiding the entire amount of the air flow sent by the air supply means to the exhaust means side through a flow path formed between the coated object and the annular body. If, outside the street the exhaust hand of said annular body As can be derived in the side stream of inert gas, rotation, characterized by comprising; and a purge gas stream forming means for forming a layer of purge gas around the air flow directed to the exhaust unit side by the air flow guiding means Coating device.
JP26018598A 1997-09-12 1998-09-14 Rotary coating device Expired - Fee Related JP3563610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26018598A JP3563610B2 (en) 1997-09-12 1998-09-14 Rotary coating device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-248918 1997-09-12
JP24891897 1997-09-12
JP26018598A JP3563610B2 (en) 1997-09-12 1998-09-14 Rotary coating device

Publications (2)

Publication Number Publication Date
JPH11151462A JPH11151462A (en) 1999-06-08
JP3563610B2 true JP3563610B2 (en) 2004-09-08

Family

ID=26539003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26018598A Expired - Fee Related JP3563610B2 (en) 1997-09-12 1998-09-14 Rotary coating device

Country Status (1)

Country Link
JP (1) JP3563610B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898248B2 (en) * 2006-03-09 2012-03-14 芝浦メカトロニクス株式会社 Spin coating apparatus and spin coating method
JP4979079B2 (en) * 2007-07-09 2012-07-18 東京エレクトロン株式会社 Substrate processing equipment
JP4812704B2 (en) * 2007-07-10 2011-11-09 東京エレクトロン株式会社 Substrate processing equipment
JP2009158767A (en) * 2007-12-27 2009-07-16 Tokyo Electron Ltd Rotary coating device
JP5472169B2 (en) * 2011-03-16 2014-04-16 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and storage medium
JP5929852B2 (en) * 2013-07-29 2016-06-08 東京エレクトロン株式会社 Coating film forming apparatus, coating film forming method, and storage medium

Also Published As

Publication number Publication date
JPH11151462A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
US5358740A (en) Method for low pressure spin coating and low pressure spin coating apparatus
US5532192A (en) Method of spiral resist deposition
JP2010174779A (en) Vacuum process device
JP3563610B2 (en) Rotary coating device
US5591264A (en) Spin coating device
US6261635B1 (en) Method for controlling air over a spinning microelectronic substrate
JPH05166712A (en) Spin coating method
JPH07308625A (en) Spin coater of substrate
JPH10340841A (en) Spin-coating device
JPS6376431A (en) Spin coating equipment
JP3459115B2 (en) Substrate spin coater
JP2697226B2 (en) How to apply coating liquid
JPH03245870A (en) Apparatus for applying coating fluid
JPH09234395A (en) Method for rotary atomizing electrostatic coating and apparatus therefor
JP2002239443A (en) Spin coater
JPH08273996A (en) Spin coating device
JP2004039977A (en) Rotary coater
JPH09260276A (en) Coating method and coater
JP2575959B2 (en) Rotary coating device
KR100282658B1 (en) Rotary coating method and apparatus for film formation on substrate
JPH056855A (en) Apparatus and method for coating
JPS6372373A (en) Rotary applicator
JP2003145014A (en) Rotary coating apparatus
JPS63283131A (en) Rotary coater for semiconductor
JPS63148632A (en) Spin coater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees