JP3562924B2 - Noble metal supported catalyst with excellent durability - Google Patents

Noble metal supported catalyst with excellent durability Download PDF

Info

Publication number
JP3562924B2
JP3562924B2 JP02470597A JP2470597A JP3562924B2 JP 3562924 B2 JP3562924 B2 JP 3562924B2 JP 02470597 A JP02470597 A JP 02470597A JP 2470597 A JP2470597 A JP 2470597A JP 3562924 B2 JP3562924 B2 JP 3562924B2
Authority
JP
Japan
Prior art keywords
palladium
carrier
component
supported
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02470597A
Other languages
Japanese (ja)
Other versions
JPH10216515A (en
Inventor
辰男 山口
節男 山松
裕重 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP02470597A priority Critical patent/JP3562924B2/en
Publication of JPH10216515A publication Critical patent/JPH10216515A/en
Application granted granted Critical
Publication of JP3562924B2 publication Critical patent/JP3562924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パラジウムを含む金属成分が担体上に担持された貴金属担持物からなるメタクリル酸メチル製造用触媒に関する。
【0002】
【従来の技術】
パラジウム又はパラジウム金属化合物は、触媒として広く工業的に利用されている。パラジウムの利用形態として単独で使用される例もみられるが、パラジウムが高価であることや高い反応性を実現するために、一般的な利用形態としては担体上に担持して用いられている。該パラジウム担持触媒は、化学工業プロセスにおいては様々な反応に用いられており、例えば、酸化反応、還元反応、水素化反応等が挙げられる。また、自動車排ガスの浄化触媒などとしても広く使用されている。
【0003】
該パラジウム担持触媒は、反応の特性、用途によって様々な種類の担体に担持され用いられているが、粒子表面に担持された触媒成分が、反応の種類や反応装置などによっては、反応副生物の吸着、被毒物質の蓄積等によって覆われ失活するケースがあり、また、粒子同士や壁面等の衝突による摩耗によって粒子が削れ、触媒活性成分が脱落して失活するケースがある。そこで、触媒の寿命を向上させる狙いから、触媒活性成分を担体の外表面には分布させず、やや内部に担持する担持法がこれまでにも試みられている。
【0004】
例えば、パラジウム成分の分布を変化させた例が、日本化学会誌、(4)p.261−268(1991)に報告されている。ここでは担体として粒子径3mm(3000μm)球状アルミナを用い、塩酸に溶かしたパラジウムをイオン交換によって吸着させて1分後、25分後、1時間後、12時間後、20時間後で測定し、吸着時間によってパラジウムの分布や担持量が変化し、吸着が約1時間でほぼ平衡に達していることを報告している。ところが、吸着時間が1分の場合でさえも、パラジウムは、担体の外表面から約300μmの範囲に殆ど分布せず、担体内部約300μmから巾約150μmの範囲に帯状に分布している。さらに時間の経過とともにパラジウム担持量は増加し、1時間以上では担体全体に均一な分布となっている。該報告には1分以内の記載はないが、1分間で担体の外表面から約300μmの深さまでにはパラジウムが存在せず、さらに内部に巾約150μmの範囲に帯状に分布することを考えれば、この方法で担体外表面から15μmという非常に狭い範囲内にパラジウム成分を実質的に存在させないようにするという分布制御は現実には不可能である。また、担体としてシリカゲルを用い、パラジウムイオンとアンモニウムイオン共存させた調製例も示されているが、この場合パラジウムは担体粒子内に均一に担持されている。
【0005】
すなわち担体外表面から15μmという極めて狭い表層に貴金属触媒成分を担持させずに貴金属担持物を調製するということはこれまでに知られていなっかった。
【0006】
【発明が解決しようとする課題】
パラジウム成分の担持されていない層を担体外表面から極めて薄く設けることにより、触媒として用いた際の触媒被毒物質の蓄積や摩耗による活性成分の脱落を防ぎ、長期触媒寿命を達成すると共に、反応活性を悪化させることのない貴金属担持物からなるメタクリル酸メチル製造用触媒を提供する。
【0007】
【課題を解決するための手段】
本発明者らは、重質油改質、燃焼触媒等における被毒物質の蓄積が起こる反応や、流動層、気泡塔、撹拌型反応器など、触媒粒子の摩耗が懸念される反応器を用いる反応においても有効なパラジウム金属担持触媒を得るべく研究を進めてきた。高価なパラジウム等の貴金属成分を触媒成分として担体に担持し、反応に用いる場合の手段として、担体の外表面層に極めて薄くパラジウム等の貴金属成分を担持しない層を設け、やや内部にパラジウム等の貴金属成分を担持することができれば、反応の活性低下を招くことなく、触媒の耐久性を大幅に改善できると推測した。反応活性を低下させることなく耐久性を改善することができれば、触媒寿命を大幅に伸ばすことができ、経済性を高めることができる。
【0008】
本発明者らは、パラジウム金属又はパラジウム金属間化合物担持触媒の担体の外表面層近傍の精密制御法の研究を鋭意行い、ついに本発明を完成させるに至った。すなわち、本発明は以下の通りである。
(1) メタクリル酸メチル製造用触媒であって、パラジウムを含む金属成分が担体の外表面から深さ方向に20μm迄の範囲に実質的に担持されており、かつ、該担体の外表面から担体の深さ方向に0.1〜15μmの厚みで実質的にパラジウム成分が担持されていない層を有する貴金属担持物からなることを特徴とするメタクリル酸メチル製造用触媒。
(2) パラジウムを含む金属成分がパラジウム金属、パラジウム合金又はパラジウム金属間化合物である上記(1)のメタクリル酸メチル製造用触媒
(3) パラジウムを含む金属成分がパラジウム−鉛金属間化合物である上記(1)のメタクリル酸メチル製造用触媒
(4) パラジウムを含む金属成分がパラジウム−ビスマス金属間化合物である上記(1)のメタクリル酸メチル製造用触媒
【0009】
本発明は、担体の外表面層が実質的にパラジウム成分が担持されていない層であって、該層の厚みが15μm以下であることを特徴とする貴金属担持物あり、外表面層が実質的にパラジウム成分が担持されていない層であることから、触媒被毒に強く、摩耗による触媒成分の脱落を抑制した触媒として利用することができると共に、担体の外表面層のパラジウム成分を含まない層を極めて薄く制御できることから、活性の大幅な低下を招くこともなく、種々の反応に好ましく用いることができるものである。
【0010】
以下に本発明を詳細に説明する。
本発明はパラジウムを効果的、有効に利用するためパラジウム成分の分布を制御した、担体の外表面層が実質的にパラジウム成分が担持されていない層である貴金属担持物である。
本発明の貴金属担持物における、実質的にパラジウム成分が担持されていない層の厚みは、担体物性、反応の種類、反応形式、及び担体の厚み又は粒径によって、該担体の外表面から深さ方向に0.1〜15μmまでの範囲で最適な厚さを選定することができる。実質的にパラジウム成分が担持されていない層の厚みが15μmを超えると、該貴金属担持物を触媒に用いた際に触媒の寿命の向上効果は変わらないにも係わらず、触媒活性の大幅な低下を招くことになる。下限の0.1μmについては、本発明で用いているX線マイクロプローブ分析法による測定で確認できる限界である。製造方法から、実質的にパラジウム成分が担持されていない層の厚みが0.05μm程度のものができているのではないかと発明者らが推定している貴金属担持物においても本発明の効果を有していた。
【0011】
本発明において、パラジウム成分の担持は、パラジウム成分の実質的に担持していない外表面層の内側の担体内部に均一に担持されたものでも良いし、パラジウム成分の実質的に担持しない外表面層の内側で、担体外表面から20μmまでの範囲に外表面側に偏らして担持されたものでも良い。触媒活性を高め、パラジウムを効率的に使用する目的から、パラジウム成分を担体外表面から20μmまでの範囲に外表面側に偏らして担持されたものが好ましい。。
【0012】
本発明の貴金属担持物は、パラジウム成分が実質的に担持されない担体外表面層を有し、その厚みが0.1〜15μmの範囲である担持物である。用いる担体の厚さ又は粒径により、外表面からの深さ方向にパラジウム成分が実質的に担持されない層やパラジウム成分の担持分布を設計、調整することで本発明の特性を発現させる貴金属担持物を得ることができる。
【0013】
球状の粒子を例に説明すると、例えば粒径50μm程度の担体においては、該担体の外表面からの深さ方向にパラジウム成分を実質担持しない層を0.1〜10μmの範囲と薄くし、かつパラジウム成分を担体内部に均一に、又は担体外表面から15μmの範囲に担持することで特性を発現させることができる。さらに粒子径の小さい30μm程度の担体の場合は、該担体の外表面から深さ方向にパラジウム成分を実質担持しない層を層厚み0.1〜5μmの範囲と薄く形成し、かつパラジウム成分を均一、又は外表面から10μmの範囲に担持することで特性を発現させることができる。30μm未満の粒径の担体においては、更に薄く外表面から深さ方向にパラジウム成分が実質的にない層を層厚み0.1〜2μmの範囲で形成させ、かつパラジウム成分を均一、又は外表面から数μmの範囲に担持することで特性を発現させることができる。
【0014】
本発明において、実質的にパラジウム成分の分布がないとは発明の実施の形態の欄に記載されているX線マイクロプローブ分析法において、相対強度10%以上のパラジウムの分布を示すピークがないことである。
本発明は、実質的な担体の厚さ又は粒径がμm以上からミリ、センチのオーダーの様々の大きさの、種々の形状を持つ担体に利用できる。形状に関しての具体例を示すと、球状、楕円状、円柱状、錠剤状、中空円柱状、板状、シート状、ハニカム状等の形状が挙げられる。
【0015】
本発明に用いられる担体としては、例えば、シリカゲル、アルミナ、活性炭、シリカ−アルミナ、シリカ−アルミナ−マグネシア、ゼオライト、結晶性メタロシリケート等の通常用いられる担体であれば、特に制限はないが、高い担体表面積が求められる場合には、例えば活性炭類が用いられ、一方、機械的強度が要求される場合には、例えば、アルミナ、シリカ−アルミナ、シリカ−アルミナ−マグネシア、ゼオライト、結晶性メタロシリケートなどが用いられる。また、反応形式によって、固定床反応では圧力損失の少ない構造の、中空円柱状、ハニカム状の形態が選択され、液相スラリー懸濁条件では一般的に球状の形態が選ばれる。このように利用目的に併せて種類、形態をかえて本発明の貴金属担持物を利用することができる。
【0016】
本発明においては、担体に予めLi、Na、K、Rb、Cs等のアルカリ金属、Be、Mg、Ca,Sr、Ba等のアルカリ土類金属、及びLa、Ce、Pr等の稀土類元素の中から選ばれる単独もしくは複数の金属の塩基性成分を担持して使用する。担持する金属塩基性成分としては、例えば、硝酸塩や酢酸塩等の焼成等の操作によって酸化物となるものが好ましい。
【0017】
本発明で用いられる担体の調製の一例を示すと、シリカゲル、アルミナ、活性炭、シリカ−アルミナ、ゼオライト、結晶性メタロシリケート等の担体にアルカリ金属、アルカリ土類金属、稀土類の可溶性塩を含浸、吸着等により担持し、乾燥焼成して得る。または、シリカゾル溶液にアルカリ金属、アルカリ土類金属、稀土類の可溶性塩を均一に分散させ噴霧乾燥、さらに焼成する方法によってアルカリ金属、アルカリ土類、稀土類等の分散を高めたシリカゲルを得る。シリカ及びアルミナゾル溶液にアルカリ金属、アルカリ土類、稀土類の可溶性塩を分散させ、噴霧乾燥後焼成してアルカリ金属、アルカリ土類金属、稀土類分散シリカ−アルミナを得る。シリカアルミナゾルにアルカリ金属、アルカリ土類、稀土類の可溶性塩を分散させ、噴霧乾燥後焼成してアルカリ金属、アルカリ土類金属、稀土類分散シリカ−アルミナを得る。シリカゾル溶液に硝酸マグネシウム、硝酸アルミニウム等の可溶性塩を溶解分散させ、さらにアルカリ金属、アルカリ土類、稀土類の可溶性塩を均一に分散させておき噴霧乾燥させ、さらに焼成する方法によってアルカリ金属、アルカリ土類、稀土類等分散シリカ−アルミナ−マグネシア等を得ることができる。
【0018】
アルカリ金属、アルカリ土類金属、稀土類金属等の金属塩基性成分を担持した担体の乾燥温度は100℃以上、好ましくは110℃以上300℃未満で1〜48時間で行われる。焼成温度は300〜800℃、好ましくは300〜700℃で1〜48時間の範囲で行う。
本発明の貴金属担持物の製造において使用できる担体は、上記したアルカリ金属、アルカリ土類、稀土類等の塩基性金属成分を予め担持し、乾燥後焼成したものであれば使用可能である。
【0019】
本発明において用いられるアルミニウム化合物としては塩化アルミニウム、硝酸アルミニウムなどの可溶性塩であれば用いることができる。
本発明において用いられるパラジウム化合物としては塩化パラジウム、酢酸パラジウムなどの可溶性塩が挙げられるが、特に塩化パラジウムが好ましい。
塩化パラジウム溶液は、塩化パラジウムが水に完全に溶解しないため、通常は塩酸水溶液に溶解する方法、または、食塩水に溶解する方法によってパラジウムを完全に溶解させて使用する。
【0020】
本発明の貴金属担持物の製造方法は、まず、アルミニウム化合物としては塩化アルミニウム、硝酸アルミニウムなどの可溶性塩を用い、該アルミニウム化合物と、担体上に予め担持したアルカリ金属、アルカリ土類金属、稀土類元素等の金属塩基性成分のうち、担体外表面層に担持された該金属塩基性成分とを反応させ、パラジウムの反応場である担体外表面層に担持された金属塩基性成分を消費させる。その後に、該担体とパラジウム成分とを反応させると、パラジウム成分は担体内部のアルカリ金属、アルカリ土類金属、稀土類元素等の金属塩基性成分と反応することによって固定されるという原理に基づくものである。用いるアルミニウム成分の量はパラジウム金属成分を担持させない層の厚さをいくらに設定するかによって異なり、また、担体に予め担持したアルカリ金属、アルカリ土類金属、稀土類元素等の金属塩基性成分の量によっても異なる。通常、予め担持したアルカリ金属、アルカリ土類金属、稀土類元素等の金属塩基性成分量に対して、通常0.001〜2倍モル、好ましくは0.005〜1倍モル用いられる。
【0021】
本発明のパラジウム成分の分布がいかなる機構により達成されるのか詳細については不明な点も多いが、アルミニウム成分と担体外表面近傍の上記金属塩基性成分とを反応させて、担体外表面近傍の、パラジウム成分と反応できる金属塩基性成分を消費する。ついでパラジウム成分を担持すると、担体外表面近傍の反応性金属塩基性成分は消費されているために、パラジウム成分は担体内部の金属塩基性成分と反応することによって固定化されるためと推定される。
【0022】
したがって、アルミニウムによって担体外表面近傍にパラジウム成分を担持することのできない層を形成させた後、パラジウム溶液と担体との反応温度を制御することで、該パラジウム成分を担持することのできない層の内側にパラジウム成分を均一に担持したもの、又は外表面から20μmの範囲にシャープにパラジウム成分を担持したものを得ることができる。
【0023】
本発明の貴金属担持物の製造は、アルカリ金属、アルカリ土類金属及び稀土類金属から選ばれた1種以上の金属の塩基性成分を予め分散させ、乾燥及び焼成した担体を、70℃以上のアルミニウム溶液に瞬時に投入してアルミニウムと反応させ、担体外表面近傍にパラジウム成分が実質的に担持されない層を形成させ、ついで塩化パラジウムなどのパラジウム化合物溶液と反応させる。該反応温度を室温〜60℃で行うとパラジウム成分が担体内部に均一に担持されたものを得ることができるし、アルミニウムと反応させた担体を瞬時に70℃以上に保持されたパラジウム化合物溶液に投入し、反応させると外表面から20μmの範囲にパラジウム成分がシャープに担持された担持物を得ることができる。
【0024】
本発明の製造方法は、化学反応による固定化法であって短時間に反応が完結することから、イオン交換法による担持の場合とは異なり、分布状態を制御するために、担体を反応溶液中に投入後短時間で該担体を反応溶液から取り出す必要がない。また、パラジウム成分を実質的に含まない層を精度良くしかもシャープに制御することができる。さらに、パラジウム化合物溶液と担体との反応温度を制御することで、パラジウム成分を担体内部に均一に担持することも、担体外表面近傍に偏らせて担持することもできる画期的方法である。
【0025】
本発明の貴金属担持物の製造方法において、担体をアルミニウム化合物溶液中に投入すると外表面近傍のアルカリ金属等の金属塩基性成分と反応して不溶化固定される。したがって、この不溶化固定化反応が遅いと、アルミニウム成分は細孔内を担体の中心部まで拡散してしまい、担体外表面近傍のパラジウム成分の実質的に担持されない層は広がることになる。すなわち、本発明の製造方法においては、▲1▼アルミニウム化合物溶液の温度を70℃以上の温度に保持する、▲2▼アルカリ金属、アルカリ土類金属、稀土類金属の中から選ばれる金属塩基性成分を予め分散させた担体を乾燥、焼成して用いる、▲3▼乾燥状態の担体をアルミニウム化合物溶液に加える、▲4▼担体をアルミニウム化合物溶液に瞬時に加える、の4つの要件を満たすことで達成できる。
【0026】
▲1▼の反応温度は制御因子の一つであり、担体に予め担持するアルカリ金属、アルカリ土類金属、稀土類元素等の金属塩基性成分の量により異なるが、温度が低くなりすぎると反応が遅くなり分布が広がる。本発明の貴金属担持物の製造においては、高い反応速度が得られる高温であることがシャープな層を得るためには好ましく、70℃以上であることが重要であり、好ましくは80℃以上、さらに好ましくは90℃以上で実施する。上限温度は、加圧下で沸点以上で行うこともできるが、操作の容易性から、通常は沸点以下で行う。
【0027】
▲2▼アルカリ金属、アルカリ土類金属、稀土類金属から選ばれる1種以上の金属の塩基性成分を予め分散させた担体を用いる必要がある。本発明の製造方法は金属塩基性成分とアルミニウムおよびパラジウムとの不溶化固定反応によって、パラジウム成分の担持していない担体外表面層を設け、パラジウムを担体内部に固定するものである。また、予め乾燥及び/又は焼成して用いる必要がある。乾燥及び/又は焼成した担体の細孔には空気等のガス成分が充填されており、これが分布をシャープにする要因の一つであると推定している。
【0028】
▲3▼乾燥状態の担体を直接にアルミニウム化合物溶液に加える。担体を予め水等に分散させておき、該分散溶液にアルミニウム化合物溶液に加えても、▲1▼、▲2▼、▲4▼の条件が満たされておれば、パラジウム成分の実質担持していない層の分布が比較的シャープなものを得ることができるが、液性が悪く、操作性が悪い。
▲4▼担体の投入時間については、瞬時に行う必要がある。担体の投入を長時間かけて行うと、投入に要した時間履歴に対応する推定される様々な分布状態の担持物の混合物となる。本発明において瞬時にとは、投入する担体の厚さ、粒径にもよるが担体の投入時間が15秒以内、好ましくは10秒以内であることを意味し、限りなく0秒に近づけることがより好ましい。
【0029】
担体に予め分散固定しておくアルカリ金属化合物、アルカリ土類金属化合物、稀土類化合物としては、アルカリ金属、アルカリ土類金属、稀土類元素の有機酸塩、無機塩、水酸化物などから選ぶ1種以上を用いることができるが、焼成することによって酸化物になる酢酸塩及び硝酸塩が好ましい。
また、本発明の貴金属担持物はアルミニウムイオン、パラジウムイオンとアルカリ金属成分等の金属塩基性成分との反応であるから、担体に分散固定化するアルカリ金属、アルカリ土類金属、稀土類元素の塩基性成分の量は、パラジウムを担持しない外表面層の厚さ、また担持するパラジウム成分の量によっても異なるが、担持するパラジウム成分に対し等モル〜100倍モル、好ましくは2〜50倍モルの範囲が選ばれる。
【0030】
本発明の製造方法において、用いる担体の量は、通常、担持するパラジウム量に対して5〜200倍の過剰量用いる。
次に、パラジウム化合物を固定した担持物を、還元操作によってパラジウム金属担持物とする方法について述べる。パラジウム成分を分散固定化した担持物を水溶液等に分散させ、かき混ぜながら、ホルマリン、蟻酸、ヒドラジン、メタノールあるいは水素ガスなどを用い還元処理によってパラジウム金属担持物を得ることができる。
【0031】
以上述べたように、本発明の方法によってはじめて、担体外表面から狭い範囲にパラジウム成分が実質担持されていな層を有したパラジウム含有金属担持物を得ることができる。かつ担体に定量的にパラジウム成分を担持することが可能になった。
さらに、本発明の方法によって、パラジウムの格子が異種金属によって置換されたパラジウム金属間化合物や、パラジウムに異種金属が固溶したパラジウム合金等が担持された貴金属担持物も製造することができる。
【0032】
以下に、アルデヒドとアルコールから、酸素存在下で酸化的カルボニル化反応によりカルボン酸エステルを製造する際に、触媒として有効なパラジウム鉛金属間化合物の製造方法を例に挙げて説明する。
まず、前述した本発明の貴金属担持物の製造方法により塩化パラジウムなどの可溶性のパラジウム化合物を担体に不溶固定化する。この段階でパラジウム成分の分布は制御されている。次に、例えば硝酸鉛などの可溶性鉛塩溶液を用いて鉛成分を担持する。その後に還元する操作によってパラジウム−鉛金属間化合物の担持物を得ることができる。この際に用いられる鉛化合物としては有機酸塩、有機錯体、無機酸塩、水酸化物などが挙げられるが、例えば、硝酸鉛、酢酸鉛などが好適である。さらに本発明者らの見いだしたカルボン酸エステル反応に優れた性能を示す極めて高純度のパラジウム−鉛金属間化合物触媒を形成させる場合には、C1−C5脂肪酸、アルカリ金属塩およびアルカリ土類金属塩から選ばれる少なくとも1種の化合物並びに鉛イオンの存在下で、担持されたパラジウムイオン及び鉛イオンを還元処理すると純度の高いパラジウム−鉛金属間化合物触媒を効果的に得ることができる。
【0033】
本発明の貴金属担持物の製造方法によって、パラジウムおよび鉛以外の異種元素、例えば水銀、タリウム、ビスマス、テルル、ニッケル、クロム、コバルト、インジウム、タンタル、銅、亜鉛、ジルコニウム、ハフニウム、タングステン、マンガン、銀、レニウム、アンチモン、スズ、ロジウム、ルテニウム、イリジウム、白金、金、チタン、アルミニウム、硼素、珪素などを少量担持したパラジウム−鉛金属間化合物担持物を、担体におけるパラジウム−鉛金属間化合物の分布を制御して、即ちパラジウム−鉛金属間化合物の分布しない担体外表面層を有する担持物として得ることができる。
【0034】
該製造に用いられる、水銀、タリウム、ビスマス、テルル、ニッケル、クロム、コバルト、インジウム、タンタル、銅、亜鉛、ジルコニウム、ハフニウム、タングステン、マンガン、銀、レニウム、アンチモン、スズ、ロジウム、ルテニウム、イリジウム、白金、金、チタン、アルミニウム、硼素、珪素などの化合物としては有機酸塩、有機錯体、無機酸塩、水酸化物などが挙げられる。
【0035】
パラジウム−鉛金属間化合物の場合においてもパラジウムの担持量は特に限定はないが、担体重量に対して通常0.1〜20重量%、好ましくは1〜10重量%である。鉛の担持量も特に限定はなく担体重量に対して通常0.1〜20重量%、好ましくは1〜10重量%である。
アルデヒドとアルコールからカルボン酸エステルを得る触媒として特に有効な、パラジウム−鉛金属間化合物の場合には、パラジウム、鉛のそれぞれの担持量よりも、むしろ担持されたパラジウム/鉛の原子比が重要である。即ち、パラジウム−鉛金属間化合物の場合には、パラジウム及び鉛を担体に担持してなる触媒のPd/Pb原子比は、3/0.1〜3/3と広い範囲、実用的には3/0.1〜3/2.0の範囲、さらに好ましくは3/0.8〜3/1.5の範囲から選ばれる。
【0036】
パラジウム−鉛金属間化合物を形成する還元工程において用いるC1−C5脂肪酸としてはプロピオン酸、酢酸、酪酸、マレイン酸、アクリル酸、メタクリル酸等を挙げることができるが、入手容易な酢酸等が好ましい。C1−C5脂肪酸は、触媒の担持パラジウムを基準に0.1〜30倍モル程度加えることが好ましく、より好ましくは1〜15倍モルの範囲から選び、低級脂肪酸の溶解度の範囲内で使用することができる。
【0037】
パラジウム−鉛金属間化合物を形成する還元工程で用いるアルカリ又はアルカリ土類金属は水酸化物でも脂肪酸の塩でも良いが、操作性等から脂肪酸塩が好ましい。
本発明のパラジウム−鉛金属間化合物担持物を形成する還元操作温度は室温〜200℃の温度で行うことができる。沸点以上の場合は液相に保つために必要な圧力をかけておく。好ましくは室温〜160℃、常圧から数気圧の条件で行う。また、還元処理の時間は処理条件により変わるが、一般に0.5〜50時間である。通常は24時間以内に処理が完了するように条件を設定するのが操作性から好都合である。
【0038】
本発明の貴金属担持物の製造方法によって、パラジウム−鉛金属間化合物担持物の他に、金属種としてビスマス、タリウム、水銀、テルル、銅、金等の場合もパラジウムとの金属間化合物を担体上に分布を制御して得ることができる。
本発明方法により得られるパラジウム金属担持物、パラジウム金属間化合物担持物、パラジウム合金担持物は種々の反応において触媒として使用する事が出来る。例えば、アルデヒドとアルコールから酸化的カルボン酸エステル化反応、アセチレン類のオレフィン類への部分水素化反応、パラフィン類への完全水素化反応、ジオレフィン類のモノオレフィン化反応、オレフィンの選択水素化反応、脂肪族脱ハロゲン化、芳香族脱ハロゲン化反応、酸クロライドの還元反応、芳香族ニトロ化合物のアミンへの水素化反応、芳香族カルボニルの水素化反応、安息香酸の環水素化反応、フェノールのシクロヘキサンへの水素化、芳香族ケトンのアルコールへの水素化、芳香族ケトンのアルキル芳香族への水素化、芳香族カルボニルの水素化分解、芳香族カルボニルの脱カルボニル、芳香族ニトリルのアミンへの水素化、芳香族ニトリルアルデヒドへの水素化、シクロヘキセンの不均化、オレフィンの移動、アニリン類の還元N−メチル化、芳香族ニトロ化合物のヒドラゾベンゼン化合物への水素化、ニトロヘキサン類のシクロオキサノン類への水素化、ニトロオレフィン類のアルキルアミン類への水素化、オキサム類の第一アミンへの水素化、脱ベンジル反応、エポキサイドのアルコールへの水素化、還元アミノ化、キノン類のハイドロキノン類への水素化、芳香族エステル類の環水素化、フラン環の水素化、ピリジン化合物の環の水素化、硝酸塩のヒドロキシアミンへの水素化、過酸化物の水素化、脂肪族ニトロ化合物の水素化、アセトオキシレーション、カルボニレーション、脱水素反応、液相酸化反応、デオキソ反応、一酸化炭素の酸化、NOXの還元などの触媒として利用出来る。
【0039】
【発明の実施の形態】
以下に、実施例及び比較例によって、本発明をより具体的に説明する。
<EPMAによるパラジウム分布の測定>
得られた貴金属担持物を樹脂に包埋し研磨して得た試料を、X線マイクロプローブ(EPMA)(日本電子(株)製 JXA−8800R)を用い、下記の測定条件で粒子断面の深さ方向の線分析を行った。
加速電圧:15kV
スキャン方法:ステージスキャン
測定ステップ間隔:0.2〜0.3μm
測定時間/1ステップ:150msec
電子ビーム直径設定:0μm
電子線電流値:2X10−8A
分光結晶:Pd=PETH、Pb=PETH、Si=TAP
<担体製造例>
水性シリカゾルとして、日産化学社製スノーテックスN−30(SiO分:30重量%)に硝酸アルミニウム、硝酸マグネシウムをそれぞれAl/(Si+Al)の割合が10モル%、Mg/(Si+Mg)の割合が10モル%となるように加え溶解させた後、130℃の温度に設定した噴霧乾燥機で噴霧乾燥して平均粒子径60μmの球状担体を得た。空気中で300℃で2時間、ついで600℃で3時間焼成した後、これを担体とした。
【0040】
【実施例1】
担体100重量部に対しアルミニウムとして0.35重量部となるように調製した硝酸アルミニウム水溶液を90℃に加温し撹拌しておく。つぎに担体製造例の担体100重量部を乾燥状態で瞬時に投入し90℃でさらに15分間撹拌する。溶液の温度を40℃に下げた後に、担体100重量部当たりパラジウムとして5重量部となるように調製した塩化パラジウム及び塩化ナトリウム含有水溶液(塩化パラジウム:15重量%、塩化ナトリウム:10重量%)を撹拌しながら加えて塩化パラジウムを担体に完全に担持させた。ついで、液をデカントし、パラジウムを担持させた担体を数回蒸留水にて洗浄した。洗浄後のパラジウムを担持した担体に蒸留水を加え60℃で攪拌しながら、パラジウムに対して3倍モル量のヒドラジン水溶液を約30分かけてゆっくりと滴下して、還元処理を24時間行いパラジウム金属担持物を得た。得られたパラジウム金属担持物をEPMAによって分析した結果を図1に示す。図1から担体外表面から約3μmまでの範囲にはパラジウムの分布が実質的にないことがわかる。
【0041】
【比較例1】
アルミニウムを担持させる工程を行わない以外は実施例1と同様の操作でパラジウム金属担持物を得た。得られたパラジウム金属担持物のEPMA分析結果を図2に示す。図2からパラジウムの分布が担体外表面から内部まで一様に分布担持されていることがわかる。
【0042】
【実施例2】
担体100重量部に対しアルミニウムとして0.35重量部となるように調製した硝酸アルミニウム水溶液を90℃に加温し撹拌しておく。つぎに担体製造例の担体100重量部を乾燥状態で瞬時に投入し90℃でさらに15分間撹拌する。つぎに、担体100重量部当たりパラジウムとして5重量部となるように調製した塩化パラジウム及び塩化ナトリウム含有水溶液(塩化パラジウム:15重量%、塩化ナトリウム:10重量%)を90℃に加温し、瞬時に担体分散液に投入し90℃でさらに1時間撹拌し、塩化パラジウムを担体に完全に担持させた後に液をデカントし、パラジウムを担持させた担体を数回蒸留水にて洗浄した。次に酢酸ナトリウムをパラジウムに対し18倍モル量に調製した水溶液(酢酸ナトリウム:18重量%)に、上記の得られた塩化パラジウム担持担体を投入し撹拌した。次に酢酸鉛をPd/Pb=3/1.3相当量を加えて約30分間90℃でかき混ぜた。次にPd+Pbに対して3倍モル量のヒドラジン水溶液をかき混ぜながら約30分間かけてゆっくりと滴下して、還元処理を24時間行った。
【0043】
得られたパラジウム−鉛金属間化合物担持物を粉末X線回折法で分析したところ、最大強度ピークのX線回折角(2θ)が38.625度のパラジウム−鉛金属間化合物であった。また、EPMA分析法によって分析を行った結果を図3に示す。図3から明らかな様にパラジウム成分は外表面から2μmまでには存在せず、パラジウム及び鉛が外表面から8μm以内にシヤープに担持されている。
【0044】
【実施例3および比較例2】
実施例1、比較例1の貴金属担持物、それぞれ200gを、触媒分離器を備え、液相部が1.2リットルの撹拌型ステンレス製反応器に仕込み、1.2リットルになるようにメタノールを加えた。撹拌羽の先端速度が10m/sの速度となるように撹拌速度を設定し、上記貴金属担持物の耐久性評価を、溶液温度80℃で2000時間行った。(2000時間後Pd担持量)/初期Pd担持量を比較したところ、実施例1はほぼ100%であったが比較例1では90%となり、10%のPdが摩耗により脱落していた。
【0045】
【実施例4】
実施例2で得られた貴金属担持物200gを触媒分離器を備え、液相部が1.2リットルの撹拌型ステンレス製反応器に仕込み、撹拌羽の先端速度が4m/sの速度になるように撹拌しながら、アルデヒドとアルコールからの酸化的カルボン酸エステルの生成反応を実施した。36.7重量%のメタクロレイン/メタノール溶液を0.54リットル/hr、2〜4重量%NaOH/メタノール溶液を0.06リットル/hrで連続的に反応器に供給し(上記2種の溶液よりなる反応系のメタクロレイン濃度は約33重量%)、反応温度80℃、反応圧力5kg/cmで反応系のpHが7.1となるように反応器に供給するNaOH濃度をコントロールした。反応生成物は、反応器出口からオーバーフローにより連続的に抜き出しガスクロマトグラフィーにより比較評価した。目的生成物であるメタクリル酸メチル(MMA)の選択率:91.4%、MMAの生成速度:5.02mol/h/Kg−触媒が得られた。2000時間反応後のパラジウムロスは全く認められなかった。
【0046】
【実施例5】
カリウムとして4重量部となるように調製した硝酸カリウム水溶液に球状アルミナ100重量部(住友化学工業(株)製 KHD(3mm径))を投入、含浸、乾燥させた。さらに600℃で3時間空気中で焼成した。アルミニウムとして0.6重量部となるように調製した硝酸アルミニウム水溶液を90℃に加温し撹拌しておく。つぎに空気中で焼成して得られた上記担体を乾燥状態で硝酸アルミニウム水溶液に瞬時に投入し、90℃でさらに15分間撹拌する。温度を室温まで下げてから、パラジウムとして5重量部となるように調製した塩化パラジウムおよび塩化ナトリウムを含有する水溶液(塩化パラジウム:15重量%、塩化ナトリウム:10重量%)を撹拌しながら加え、塩化パラジウムを担体に完全に担持させた。ついで、液をデカントし、パラジウムを担持させた担体を数回蒸留水にて洗浄した。洗浄後、該パラジウム担持担体に蒸留水を加え60℃でかき混ぜた状態でパラジウムに対して3倍モル量のヒドラジン水溶液を約30分間かけてゆっくりと滴下して、還元処理を24時間行いパラジウム担持物を得た。得られた貴金属担持物をEPMA分析法によってパラジウムの分布を測定したところ、外表面から5μmまでの範囲にパラジウムが実質的に存在しない層を有し、担体内部にほぼ一様に担持されていた。
【0047】
【実施例6】
担体100重量部に対しアルミニウムとして0.20重量部となるように調製した硝酸アルミニウム水溶液を90℃に加温し撹拌しておく。つぎに担体製造例の焼成後の担体100重量部を乾燥状態で瞬時に投入し90℃でさらに15分間撹拌する。つぎに、担体100重量部当たりパラジウムとして3重量部となるように調製した塩化パラジウム及び塩化ナトリウム含有水溶液(塩化パラジウム:15重量%、塩化ナトリウム:10重量%)を90℃に加温し、瞬時に担体分散液に投入し90℃でさらに1時間撹拌し、塩化パラジウムを担体に完全に担持させた後に液をデカントし、パラジウムを担持させた担体を数回蒸留水にて洗浄した後、1−プロパノールに置換した。60℃に加温後担体100重量部に対しビスマスとして2.3重量部のトリフェニルビスマス/1プロパノール溶液を添加し、かき混ぜた状態でパラジウムに対して3倍モル量のヒドラジン/1−プロパノール溶液を約30分間かけてゆっくりと滴下して、還元処理を24時間行いパラジウム−ビスマス担持物を得た。得られたパラジウム−ビスマス担持物をEPMA分析法によって分析を行ったところ、外表面から3μmの範囲にはパラジウム成分が実質的に担持されていず、外表面から15μm以内の深さにパラジウム成分が担持されていた。
【0048】
【発明の効果】
本発明のメタクリル酸メチル製造用触媒は、摩耗等によるパラジウム成分の脱落が抑制でき、触媒として用いた時の寿命が延びる上に、例えばアルデヒドとアルコールからのメタクリル酸メチル生成反応で見られるように、触媒活性の低下もない。このことから経済的効果は大きく、産業上大いに有用である。
【図面の簡単な説明】
【図1】実施例1で得られた本発明の貴金属担持物のEPMA分析結果を示すチャート図である。
【図2】比較例1で得られた貴金属担持物のEPMA分析結果を示すチャート図である。
【図3】実施例2で得られた本発明の貴金属担持物のEPMA分析結果を示すチャート図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, a metal component containing palladium is supported on a carrier.Noble metal carrierThe present invention relates to a catalyst for producing methyl methacrylate.
[0002]
[Prior art]
Palladium or a palladium metal compound is widely and industrially used as a catalyst. Although there is an example in which palladium is used alone as a use form, palladium is generally used by being supported on a carrier in order to realize high cost and high reactivity. The palladium-supported catalyst is used in various reactions in a chemical industrial process, and examples thereof include an oxidation reaction, a reduction reaction, and a hydrogenation reaction. It is also widely used as a catalyst for purifying automobile exhaust gas.
[0003]
The palladium-supported catalyst is used by being supported on various types of carriers depending on the characteristics of the reaction and the intended use.However, depending on the type of reaction and the reaction apparatus, the catalyst component supported on the particle surface may be a reaction product. There are cases where the particles are covered and deactivated due to adsorption, accumulation of poisoning substances, and the like. In addition, there are cases where the particles are shaved due to abrasion due to collision between the particles or a wall surface, and the catalytically active components are dropped and deactivated. Therefore, for the purpose of improving the life of the catalyst, a loading method has been attempted in which the catalytically active component is not distributed on the outer surface of the support but is loaded on the inside of the support.
[0004]
For example, an example in which the distribution of the palladium component is changed is described in the journal of the Chemical Society of Japan, (4) p. 261-268 (1991). Here, spherical alumina having a particle diameter of 3 mm (3000 μm) was used as a carrier, and palladium dissolved in hydrochloric acid was adsorbed by ion exchange, and after 1 minute, 25 minutes, 1 hour, 12 hours, and 20 hours, measurement was performed. It is reported that the distribution and loading of palladium change depending on the adsorption time, and that the adsorption has almost reached equilibrium in about 1 hour. However, even when the adsorption time is 1 minute, palladium is hardly distributed in a range of about 300 μm from the outer surface of the carrier, but is distributed in a band from about 300 μm inside the carrier to about 150 μm in width. Furthermore, the amount of supported palladium increases with the passage of time, and after one hour or more, the distribution becomes uniform over the entire carrier. Although there is no description within 1 minute in the report, it is considered that palladium is not present at a depth of about 300 μm from the outer surface of the carrier in 1 minute, and is distributed in a band shape within a width of about 150 μm inside. For example, in this method, it is practically impossible to control the distribution such that the palladium component does not substantially exist within a very narrow range of 15 μm from the outer surface of the carrier. Also, there is shown a preparation example in which silica gel is used as a carrier and palladium ions and ammonium ions coexist. In this case, palladium is uniformly supported in the carrier particles.
[0005]
That is, it has not been known that a noble metal supported material is prepared without supporting a noble metal catalyst component on an extremely narrow surface layer of 15 μm from the outer surface of the carrier.
[0006]
[Problems to be solved by the invention]
By providing a layer that does not carry a palladium component extremely thinly from the outer surface of the carrier, it prevents accumulation of catalyst poisoning substances when used as a catalyst and the loss of active components due to abrasion. Does not degrade activityNoble metal carrierProvided is a catalyst for producing methyl methacrylate.
[0007]
[Means for Solving the Problems]
The present inventors use a reactor in which there is a concern that abrasion of catalyst particles, such as a reaction in which accumulation of poisoning substances in heavy oil reforming and a combustion catalyst occurs, a fluidized bed, a bubble column, and a stirred reactor. Research has been conducted to obtain a palladium metal-supported catalyst that is effective in the reaction. An expensive noble metal component such as palladium is supported on a carrier as a catalyst component, and as a means for use in the reaction, an extremely thin layer not supporting a noble metal component such as palladium is provided on the outer surface layer of the carrier, and a slightly It was presumed that if the noble metal component could be supported, the durability of the catalyst could be significantly improved without lowering the activity of the reaction. If the durability can be improved without lowering the reaction activity, the life of the catalyst can be greatly extended, and the economy can be improved.
[0008]
The present inventors have intensively studied a precise control method in the vicinity of the outer surface layer of the support of the catalyst supporting the palladium metal or the palladium intermetallic compound, and have finally completed the present invention. That is, the present invention is as follows.
(1)A catalyst for producing methyl methacrylate, wherein a metal component containing palladium is substantially supported in a range of up to 20 μm in a depth direction from an outer surface of the carrier, and a depth of the carrier from an outer surface of the carrier is reduced. A catalyst for producing methyl methacrylate, comprising a noble metal supported material having a thickness of 0.1 to 15 μm in a direction and substantially not supporting a palladium component.
(2) The metal component containing palladium is palladium metal, palladium alloy or palladium intermetallic compoundThe catalyst for producing methyl methacrylate according to the above (1).
(3) The metal component containing palladium is a palladium-lead intermetallic compoundThe catalyst for producing methyl methacrylate according to the above (1).
(4) The metal component containing palladium is a palladium-bismuth intermetallic compoundThe catalyst for producing methyl methacrylate according to the above (1).
[0009]
In the present invention, there is provided a noble metal carrier wherein the outer surface layer of the carrier is a layer substantially not supporting a palladium component, and the thickness of the layer is 15 μm or less, and the outer surface layer is substantially Since the palladium component is not supported on the layer, the layer is resistant to catalyst poisoning, can be used as a catalyst in which the catalyst component is prevented from falling off due to abrasion, and has a layer containing no palladium component on the outer surface layer of the carrier. Can be controlled very thinly, so that it can be preferably used for various reactions without causing a significant decrease in activity.
[0010]
Hereinafter, the present invention will be described in detail.
The present invention is a noble metal-supported material in which the outer surface layer of the carrier is a layer in which the palladium component is not substantially supported, in which the distribution of the palladium component is controlled in order to use palladium effectively and effectively.
In the noble metal supported material of the present invention, the thickness of the layer substantially not supporting a palladium component is the depth from the outer surface of the support, depending on the physical properties of the support, the type of reaction, the type of reaction, and the thickness or particle size of the support. The optimum thickness can be selected in the direction from 0.1 to 15 μm. When the thickness of the layer substantially not supporting the palladium component exceeds 15 μm, the catalyst activity is significantly reduced even though the effect of improving the life of the catalyst is not changed when the noble metal supported material is used for the catalyst. Will be invited. The lower limit of 0.1 μm is a limit that can be confirmed by measurement by the X-ray microprobe analysis used in the present invention. From the production method, the effect of the present invention is also achieved in a noble metal supported material estimated by the inventors that the thickness of a layer substantially not supporting a palladium component may be about 0.05 μm. Had.
[0011]
In the present invention, the support of the palladium component may be one that is uniformly supported inside the support inside the outer surface layer that does not substantially support the palladium component, or the outer surface layer that does not substantially support the palladium component. Inside the carrier, the carrier may be supported in a range from the outer surface of the carrier up to 20 μm toward the outer surface side. In order to enhance the catalytic activity and to use palladium efficiently, it is preferable that the palladium component is supported on the outer surface side in a range from the outer surface of the carrier to 20 μm in a direction toward the outer surface. .
[0012]
The noble metal support of the present invention is a support having a carrier outer surface layer on which a palladium component is not substantially supported and having a thickness in the range of 0.1 to 15 μm. Depending on the thickness or particle size of the carrier used, a layer in which the palladium component is not substantially supported in the depth direction from the outer surface or a noble metal supported material that exhibits the characteristics of the present invention by designing and adjusting the distribution of the supported palladium component Can be obtained.
[0013]
Taking spherical particles as an example, for example, in a carrier having a particle size of about 50 μm, a layer that does not substantially support a palladium component in the depth direction from the outer surface of the carrier is thinned to a range of 0.1 to 10 μm, and The properties can be exhibited by uniformly supporting the palladium component inside the carrier or within a range of 15 μm from the outer surface of the carrier. Further, in the case of a carrier having a small particle diameter of about 30 μm, a layer substantially not supporting a palladium component is formed as a thin layer having a thickness of 0.1 to 5 μm in the depth direction from the outer surface of the carrier, and the palladium component is uniformly formed. Alternatively, characteristics can be exhibited by supporting the particles in a range of 10 μm from the outer surface. In a carrier having a particle diameter of less than 30 μm, a layer having a smaller thickness in the depth direction from the outer surface and substantially no palladium component is formed in a thickness range of 0.1 to 2 μm, and the palladium component is uniform or the outer surface is formed. By supporting the particles in the range of 1 to several μm, characteristics can be exhibited.
[0014]
In the present invention, "substantially no distribution of the palladium component" means that there is no peak indicating a distribution of palladium having a relative intensity of 10% or more in the X-ray microprobe analysis described in the section of the embodiment of the invention. It is.
INDUSTRIAL APPLICABILITY The present invention can be applied to carriers having various shapes, in which the thickness or the particle size of the substantial carrier varies from μm or more to millimeters and centimeters. Specific examples of the shape include a spherical shape, an elliptical shape, a cylindrical shape, a tablet shape, a hollow cylindrical shape, a plate shape, a sheet shape, and a honeycomb shape.
[0015]
The carrier used in the present invention is not particularly limited as long as it is a commonly used carrier such as silica gel, alumina, activated carbon, silica-alumina, silica-alumina-magnesia, zeolite, and crystalline metallosilicate. When the carrier surface area is required, for example, activated carbons are used, while when mechanical strength is required, for example, alumina, silica-alumina, silica-alumina-magnesia, zeolite, crystalline metallosilicate, and the like Is used. Further, depending on the reaction mode, a hollow columnar shape or a honeycomb shape having a small pressure loss is selected in the fixed bed reaction, and a spherical shape is generally selected in the liquid phase slurry suspension condition. As described above, the noble metal support of the present invention can be used in different types and forms according to the purpose of use.
[0016]
In the present invention, an alkali metal such as Li, Na, K, Rb, and Cs, an alkaline earth metal such as Be, Mg, Ca, Sr, and Ba, and a rare earth element such as La, Ce, and Pr are added to the support in advance. One or a plurality of metal basic components selected from the above are supported and used. As the metal basic component to be supported, for example, those which become an oxide by an operation such as baking of nitrate or acetate are preferable.
[0017]
As an example of the preparation of the carrier used in the present invention, silica gel, alumina, activated carbon, silica-alumina, zeolite, alkali metal, alkaline earth metal, impregnated with soluble salts of rare earths, such as crystalline metallosilicate, It is obtained by carrying by adsorption or the like and drying and firing. Alternatively, a silica gel having an alkali metal, an alkaline earth, a rare earth, or the like dispersed therein is obtained by a method in which a soluble salt of an alkali metal, an alkaline earth metal, or a rare earth is uniformly dispersed in a silica sol solution, spray-dried, and further calcined. A soluble salt of an alkali metal, an alkaline earth, or a rare earth is dispersed in a silica or alumina sol solution, spray-dried and calcined to obtain an alkali metal, alkaline earth metal, or rare earth dispersed silica-alumina. A soluble salt of an alkali metal, an alkaline earth, or a rare earth is dispersed in a silica alumina sol, spray-dried and then fired to obtain an alkali metal, alkaline earth metal, or rare earth dispersed silica-alumina. Soluble salts such as magnesium nitrate and aluminum nitrate are dissolved and dispersed in a silica sol solution, and alkali metal, alkaline earth, and rare earth soluble salts are uniformly dispersed and spray-dried. Earth- and rare-earth dispersed silica-alumina-magnesia and the like can be obtained.
[0018]
The drying temperature of the carrier supporting a metal basic component such as an alkali metal, an alkaline earth metal and a rare earth metal is 100 ° C. or higher, preferably 110 ° C. or higher and lower than 300 ° C. for 1 to 48 hours. The firing is performed at a temperature of 300 to 800 ° C, preferably 300 to 700 ° C for 1 to 48 hours.
As the carrier that can be used in the production of the noble metal carrier of the present invention, any carrier can be used as long as the carrier supports the above-described basic metal component such as an alkali metal, an alkaline earth, or a rare earth, and is dried and calcined.
[0019]
As the aluminum compound used in the present invention, any soluble salts such as aluminum chloride and aluminum nitrate can be used.
Examples of the palladium compound used in the present invention include soluble salts such as palladium chloride and palladium acetate, and palladium chloride is particularly preferable.
Since palladium chloride is not completely dissolved in water, the palladium chloride solution is usually used by completely dissolving palladium by a method of dissolving in an aqueous hydrochloric acid solution or a method of dissolving in a saline solution.
[0020]
In the method for producing a noble metal support of the present invention, first, a soluble salt such as aluminum chloride or aluminum nitrate is used as an aluminum compound, and the aluminum compound is mixed with an alkali metal, an alkaline earth metal, a rare earth element previously supported on a carrier. By reacting the metal basic component such as an element with the metal basic component supported on the outer surface layer of the carrier, the metal basic component supported on the outer surface layer of the carrier which is a palladium reaction field is consumed. Thereafter, when the palladium component is reacted with the carrier, the palladium component is fixed by reacting with a basic metal component such as an alkali metal, an alkaline earth metal, or a rare earth element in the carrier. It is. The amount of the aluminum component used depends on how much the thickness of the layer not supporting the palladium metal component is set.Also, the amount of the alkali metal, the alkaline earth metal, the metal basic component such as the rare earth element, etc. It depends on the amount. Usually, it is usually used in an amount of 0.001 to 2 moles, preferably 0.005 to 1 mole, based on the amount of a metal basic component such as an alkali metal, an alkaline earth metal, or a rare earth element previously supported.
[0021]
There are many unclear points about the details of what mechanism achieves the distribution of the palladium component of the present invention, but by reacting the aluminum component with the metal basic component near the outer surface of the carrier, near the outer surface of the carrier, It consumes a metal basic component that can react with the palladium component. Subsequently, when the palladium component is supported, it is presumed that the reactive metal basic component near the outer surface of the carrier is consumed, and the palladium component is fixed by reacting with the metal basic component inside the carrier. .
[0022]
Therefore, after forming a layer in which the palladium component cannot be supported near the outer surface of the carrier by using aluminum, by controlling the reaction temperature of the palladium solution and the carrier, the inside of the layer in which the palladium component cannot be supported is controlled. Can be obtained in which the palladium component is uniformly supported on the substrate or the palladium component is sharply supported in a range of 20 μm from the outer surface.
[0023]
The production of the noble metal support of the present invention is performed by previously dispersing a basic component of at least one metal selected from alkali metals, alkaline earth metals and rare earth metals, drying and calcining the carrier at 70 ° C. or higher. The solution is instantaneously charged into an aluminum solution and reacted with aluminum to form a layer substantially free of a palladium component near the outer surface of the carrier, and then reacted with a solution of a palladium compound such as palladium chloride. When the reaction temperature is from room temperature to 60 ° C., a palladium component uniformly supported inside the carrier can be obtained, and the carrier reacted with aluminum is instantaneously converted into a palladium compound solution maintained at 70 ° C. or higher. When charged and allowed to react, it is possible to obtain a supported material in which the palladium component is sharply supported within a range of 20 μm from the outer surface.
[0024]
Since the production method of the present invention is an immobilization method by a chemical reaction and the reaction is completed in a short time, unlike the case of loading by an ion exchange method, in order to control the distribution state, the carrier is placed in the reaction solution. There is no need to remove the carrier from the reaction solution in a short time after the introduction into the reaction solution. Further, it is possible to precisely and sharply control a layer substantially containing no palladium component. Further, by controlling the reaction temperature between the palladium compound solution and the carrier, it is an epoch-making method in which the palladium component can be carried uniformly inside the carrier or can be carried near the outer surface of the carrier.
[0025]
In the method for producing a noble metal support of the present invention, when the carrier is put into an aluminum compound solution, it reacts with a metal basic component such as an alkali metal near the outer surface to be insolubilized and fixed. Therefore, if the insolubilization / immobilization reaction is slow, the aluminum component diffuses in the pores to the center of the carrier, and the layer substantially free of the palladium component near the outer surface of the carrier spreads. That is, in the production method of the present invention, (1) the temperature of the aluminum compound solution is maintained at a temperature of 70 ° C. or higher, and (2) a metal basic material selected from among alkali metals, alkaline earth metals, and rare earth metals. By satisfying the four requirements of drying and calcining the carrier in which the components are dispersed in advance and using the carrier, (3) adding the carrier in a dry state to the aluminum compound solution, and (4) instantly adding the carrier to the aluminum compound solution. Can be achieved.
[0026]
The reaction temperature of (1) is one of the control factors, and varies depending on the amount of a basic metal component such as an alkali metal, an alkaline earth metal, or a rare earth element previously supported on a carrier. And the distribution spreads. In the production of the noble metal support of the present invention, it is preferable to obtain a sharp layer at a high temperature at which a high reaction rate can be obtained, and it is important that the temperature is 70 ° C. or higher, preferably 80 ° C. or higher. It is preferably carried out at 90 ° C. or higher. The upper limit temperature may be higher than the boiling point under pressure, but is usually lower than the boiling point for ease of operation.
[0027]
{Circle around (2)} It is necessary to use a carrier in which a basic component of at least one metal selected from alkali metals, alkaline earth metals and rare earth metals is dispersed in advance. In the production method of the present invention, an outer surface layer of a carrier not carrying a palladium component is provided by an insolubilization fixation reaction of a metal basic component with aluminum and palladium, and palladium is fixed inside the carrier. In addition, it is necessary to dry and / or fire beforehand. The pores of the dried and / or calcined carrier are filled with a gas component such as air, which is presumed to be one of the factors that sharpen the distribution.
[0028]
(3) The carrier in a dry state is directly added to the aluminum compound solution. Even if the carrier is previously dispersed in water or the like and added to the aluminum compound solution in the dispersion solution, the palladium component is substantially supported if the conditions (1), (2), and (4) are satisfied. A layer having a relatively sharp distribution can be obtained, but the liquid property is poor and the operability is poor.
{Circle around (4)} The carrier charging time needs to be instantaneous. When the carrier is charged over a long period of time, a mixture of carriers having various distribution states estimated corresponding to the time history required for the charging is obtained. In the present invention, "instantly" means that the charging time of the carrier is within 15 seconds, preferably within 10 seconds, depending on the thickness of the carrier to be charged and the particle diameter, and can be as close to 0 seconds as possible. More preferred.
[0029]
The alkali metal compound, the alkaline earth metal compound and the rare earth compound which are dispersed and fixed on the carrier in advance are selected from alkali metals, alkaline earth metals, organic acid salts of rare earth elements, inorganic salts, hydroxides and the like. More than one species can be used, but acetates and nitrates which become oxides upon firing are preferred.
In addition, since the noble metal support of the present invention is a reaction between aluminum ions and palladium ions and a metal basic component such as an alkali metal component, the alkali metal, alkaline earth metal, and rare earth element bases dispersed and immobilized on a carrier. The amount of the acidic component varies depending on the thickness of the outer surface layer that does not support palladium, and also on the amount of the palladium component that is supported, but is equimolar to 100-fold molar, preferably 2 to 50 times the molar amount of the supported palladium component. A range is chosen.
[0030]
In the production method of the present invention, the amount of the carrier to be used is usually 5 to 200 times the amount of the supported palladium.
Next, a method of converting a supported substance having a fixed palladium compound into a palladium metal supported substance by a reduction operation will be described. A palladium metal-carrying material can be obtained by dispersing a carrier in which a palladium component is dispersed and immobilized in an aqueous solution or the like, and performing a reduction treatment with formalin, formic acid, hydrazine, methanol, hydrogen gas, or the like while stirring.
[0031]
As described above, a palladium-containing metal support having a layer in which a palladium component is not substantially supported in a narrow range from the outer surface of the carrier can be obtained for the first time by the method of the present invention. In addition, it became possible to carry the palladium component on the carrier quantitatively.
Furthermore, a palladium intermetallic compound in which the lattice of palladium is substituted by a dissimilar metal, a noble metal support carrying a palladium alloy in which a dissimilar metal is dissolved in palladium, or the like can be produced by the method of the present invention.
[0032]
Hereinafter, a method for producing a palladium-lead intermetallic compound effective as a catalyst when producing a carboxylic acid ester from an aldehyde and an alcohol by an oxidative carbonylation reaction in the presence of oxygen will be described as an example.
First, a soluble palladium compound such as palladium chloride is immobilized and immobilized on a carrier by the method for producing a noble metal support of the present invention described above. At this stage, the distribution of the palladium component is controlled. Next, a lead component is supported using a soluble lead salt solution such as lead nitrate. Thereafter, by carrying out an operation of reduction, a support of the palladium-lead intermetallic compound can be obtained. Examples of the lead compound used at this time include an organic acid salt, an organic complex, an inorganic acid salt, and a hydroxide. For example, lead nitrate and lead acetate are preferable. Further, when forming a very high-purity palladium-lead intermetallic compound catalyst exhibiting excellent performance in the carboxylic acid ester reaction found by the present inventors, C1-C5 fatty acids, alkali metal salts and alkaline earth metal salts are required. When the supported palladium ion and lead ion are reduced in the presence of at least one compound selected from the group consisting of lead ions and lead ions, a highly pure palladium-lead intermetallic compound catalyst can be effectively obtained.
[0033]
According to the method for producing a noble metal support of the present invention, different elements other than palladium and lead, such as mercury, thallium, bismuth, tellurium, nickel, chromium, cobalt, indium, tantalum, copper, zinc, zirconium, hafnium, tungsten, manganese, Silver, rhenium, antimony, tin, rhodium, ruthenium, iridium, platinum, gold, titanium, aluminum, boron, silicon, etc. , That is, as a carrier having an outer surface layer of the carrier in which the palladium-lead intermetallic compound is not distributed.
[0034]
Mercury, thallium, bismuth, tellurium, nickel, chromium, cobalt, indium, tantalum, copper, zinc, zirconium, hafnium, tungsten, manganese, silver, rhenium, antimony, tin, rhodium, ruthenium, iridium, Examples of compounds such as platinum, gold, titanium, aluminum, boron, and silicon include organic acid salts, organic complexes, inorganic acid salts, and hydroxides.
[0035]
In the case of a palladium-lead intermetallic compound as well, the amount of palladium carried is not particularly limited, but is usually 0.1 to 20% by weight, preferably 1 to 10% by weight based on the weight of the carrier. The amount of lead carried is not particularly limited either, and is usually 0.1 to 20% by weight, preferably 1 to 10% by weight, based on the weight of the carrier.
In the case of a palladium-lead intermetallic compound which is particularly effective as a catalyst for obtaining a carboxylic acid ester from an aldehyde and an alcohol, the supported palladium / lead atomic ratio is more important than the supported amounts of palladium and lead. is there. That is, in the case of a palladium-lead intermetallic compound, the Pd / Pb atomic ratio of a catalyst comprising palladium and lead supported on a carrier is in a wide range of 3 / 0.1 to 3/3, and practically 3 /0.1 to 3 / 2.0, more preferably 3 / 0.8 to 3 / 1.5.
[0036]
Examples of the C1-C5 fatty acid used in the reduction step of forming the palladium-lead intermetallic compound include propionic acid, acetic acid, butyric acid, maleic acid, acrylic acid, and methacrylic acid, and acetic acid, which is easily available, is preferable. The C1-C5 fatty acid is preferably added in an amount of about 0.1 to 30 moles based on the supported palladium of the catalyst, more preferably in the range of 1 to 15 moles, and used within the solubility range of the lower fatty acid. Can be.
[0037]
The alkali or alkaline earth metal used in the reduction step of forming the palladium-lead intermetallic compound may be a hydroxide or a salt of a fatty acid, but a fatty acid salt is preferred from the viewpoint of operability and the like.
The reduction operation temperature for forming the palladium-lead intermetallic compound carrier of the present invention can be performed at room temperature to 200 ° C. If the temperature is above the boiling point, apply the necessary pressure to maintain the liquid phase. Preferably, it is carried out under the conditions of room temperature to 160 ° C. and normal pressure to several atmospheres. The time of the reduction treatment varies depending on the treatment conditions, but is generally 0.5 to 50 hours. Usually, it is convenient from the operability to set conditions so that the processing is completed within 24 hours.
[0038]
According to the method for producing a noble metal support of the present invention, in addition to the palladium-lead intermetallic compound support, bismuth, thallium, mercury, tellurium, copper, gold, and the like as metal species also use an intermetallic compound with palladium on the carrier. Can be obtained by controlling the distribution.
The palladium metal carrier, palladium intermetallic compound carrier, and palladium alloy carrier obtained by the method of the present invention can be used as a catalyst in various reactions. For example, oxidative carboxylic esterification of aldehydes and alcohols, partial hydrogenation of acetylenes to olefins, complete hydrogenation of paraffins, monoolefination of diolefins, selective hydrogenation of olefins , Aliphatic dehalogenation, aromatic dehalogenation, acid chloride reduction, hydrogenation of aromatic nitro compounds to amines, hydrogenation of aromatic carbonyls, ring hydrogenation of benzoic acid, Hydrogenation to cyclohexane, hydrogenation of aromatic ketone to alcohol, hydrogenation of aromatic ketone to alkyl aromatic, hydrogenolysis of aromatic carbonyl, decarbonylation of aromatic carbonyl, conversion of aromatic nitrile to amine Hydrogenation, hydrogenation to aromatic nitrile aldehydes, disproportionation of cyclohexene, transfer of olefins, N-methylation of olefins, hydrogenation of aromatic nitro compounds to hydrazobenzene compounds, hydrogenation of nitrohexanes to cyclooxanones, hydrogenation of nitroolefins to alkylamines, oxams Hydrogenation to primary amine, debenzylation reaction, hydrogenation of epoxide to alcohol, reductive amination, hydrogenation of quinones to hydroquinones, ring hydrogenation of aromatic esters, hydrogenation of furan ring, Hydrogenation of ring of pyridine compound, hydrogenation of nitrate to hydroxyamine, hydrogenation of peroxide, hydrogenation of aliphatic nitro compound, acetooxylation, carbonylation, dehydrogenation reaction, liquid phase oxidation reaction, deoxo It can be used as a catalyst for reactions, oxidation of carbon monoxide, reduction of NOx, etc.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
<Measurement of palladium distribution by EPMA>
A sample obtained by embedding the obtained noble metal support in a resin and polishing the obtained sample was measured for the depth of the particle cross section under the following measurement conditions using an X-ray microprobe (EPMA) (JXA-8800R manufactured by JEOL Ltd.). Vertical line analysis was performed.
Acceleration voltage: 15 kV
Scan method: Stage scan
Measurement step interval: 0.2-0.3 μm
Measurement time / 1 step: 150msec
Electron beam diameter setting: 0 μm
Electron beam current value: 2X10-8A
Spectral crystal: Pd = PETH, Pb = PETH, Si = TAP
<Example of carrier production>
As an aqueous silica sol, Snowtex N-30 (SiO2Min: 30% by weight), aluminum nitrate and magnesium nitrate were added and dissolved such that the ratio of Al / (Si + Al) became 10 mol% and the ratio of Mg / (Si + Mg) became 10 mol%. Spray drying was performed with a spray dryer set at a temperature to obtain a spherical carrier having an average particle size of 60 μm. After calcination in air at 300 ° C. for 2 hours and then at 600 ° C. for 3 hours, this was used as a carrier.
[0040]
Embodiment 1
An aqueous solution of aluminum nitrate prepared to be 0.35 parts by weight of aluminum with respect to 100 parts by weight of the carrier is heated to 90 ° C. and stirred. Next, 100 parts by weight of the carrier of the carrier production example is instantaneously charged in a dry state and stirred at 90 ° C. for another 15 minutes. After lowering the temperature of the solution to 40 ° C., an aqueous solution containing palladium chloride and sodium chloride (palladium chloride: 15% by weight, sodium chloride: 10% by weight) prepared to be 5 parts by weight of palladium per 100 parts by weight of the carrier was added. The mixture was added with stirring to completely support the palladium chloride on the carrier. Next, the liquid was decanted, and the carrier supporting palladium was washed several times with distilled water. Distilled water was added to the washed palladium-supported carrier, and while stirring at 60 ° C., a hydrazine aqueous solution having a molar amount of 3 times the amount of palladium was slowly added dropwise over about 30 minutes. A metal support was obtained. FIG. 1 shows the result of analyzing the obtained palladium metal support by EPMA. From FIG. 1, it can be seen that there is substantially no distribution of palladium in the range from the outer surface of the carrier to about 3 μm.
[0041]
[Comparative Example 1]
A palladium metal support was obtained in the same manner as in Example 1, except that the step of supporting aluminum was not performed. FIG. 2 shows the EPMA analysis result of the obtained palladium metal support. From FIG. 2, it can be seen that the distribution of palladium is uniformly distributed and supported from the outer surface of the carrier to the inside.
[0042]
Embodiment 2
An aqueous solution of aluminum nitrate prepared to be 0.35 parts by weight of aluminum with respect to 100 parts by weight of the carrier is heated to 90 ° C. and stirred. Next, 100 parts by weight of the carrier of the carrier production example is instantaneously charged in a dry state and stirred at 90 ° C. for another 15 minutes. Next, an aqueous solution containing palladium chloride and sodium chloride (palladium chloride: 15% by weight, sodium chloride: 10% by weight) prepared to be 5 parts by weight of palladium per 100 parts by weight of the carrier was heated to 90 ° C. Was added to the carrier dispersion, and the mixture was further stirred at 90 ° C. for 1 hour. After the palladium chloride was completely supported on the carrier, the liquid was decanted, and the carrier supporting palladium was washed several times with distilled water. Next, the obtained palladium chloride-supported carrier was charged into an aqueous solution (sodium acetate: 18% by weight) prepared by adjusting the amount of sodium acetate to 18 times the molar amount of palladium, followed by stirring. Next, lead acetate was added in an amount equivalent to Pd / Pb = 3 / 1.3, and the mixture was stirred at 90 ° C. for about 30 minutes. Next, a hydrazine aqueous solution having a molar amount three times the amount of Pd + Pb was slowly added dropwise over about 30 minutes while stirring, and a reduction treatment was performed for 24 hours.
[0043]
When the obtained palladium-lead intermetallic compound support was analyzed by powder X-ray diffraction, it was a palladium-lead intermetallic compound having an X-ray diffraction angle (2θ) of the maximum intensity peak of 38.625 degrees. FIG. 3 shows the results of analysis by the EPMA analysis method. As is clear from FIG. 3, the palladium component does not exist up to 2 μm from the outer surface, and palladium and lead are supported on the shear within 8 μm from the outer surface.
[0044]
Example 3 and Comparative Example 2
200 g of each of the noble metal supports of Example 1 and Comparative Example 1 were charged into a stirred stainless steel reactor equipped with a catalyst separator and having a liquid phase of 1.2 liters, and methanol was added to 1.2 liters. added. The stirring speed was set such that the tip speed of the stirring blade became 10 m / s, and the durability of the noble metal support was evaluated at a solution temperature of 80 ° C. for 2000 hours. (Compared amount of Pd carried after 2,000 hours) / Compared amount of initial Pd carried out, it was almost 100% in Example 1, but 90% in Comparative Example 1, and 10% of Pd was dropped due to abrasion.
[0045]
Embodiment 4
200 g of the noble metal support obtained in Example 2 was charged into a stirred stainless steel reactor equipped with a catalyst separator having a liquid phase portion of 1.2 liters, and the tip speed of the stirring blade was set to 4 m / s. The formation reaction of the oxidative carboxylic acid ester from the aldehyde and the alcohol was carried out with stirring. A 36.7% by weight methacrolein / methanol solution was continuously supplied to the reactor at a rate of 0.54 l / hr and a 2-4% by weight NaOH / methanol solution at a rate of 0.06 l / hr. The concentration of methacrolein in the reaction system is about 33% by weight), the reaction temperature is 80 ° C., and the reaction pressure is 5 kg / cm.2The concentration of NaOH supplied to the reactor was controlled so that the pH of the reaction system became 7.1. The reaction product was continuously withdrawn from the reactor outlet by overflow, and comparatively evaluated by gas chromatography. The selectivity of the target product, methyl methacrylate (MMA), was 91.4%, and the production rate of MMA was 5.02 mol / h / Kg-catalyst. No palladium loss was observed after the reaction for 2000 hours.
[0046]
Embodiment 5
100 parts by weight of spherical alumina (KHD (3 mm diameter) manufactured by Sumitomo Chemical Co., Ltd.) was added to an aqueous solution of potassium nitrate prepared to be 4 parts by weight as potassium, impregnated, and dried. Further, firing was performed at 600 ° C. for 3 hours in the air. An aluminum nitrate aqueous solution prepared to be 0.6 parts by weight as aluminum is heated to 90 ° C. and stirred. Next, the carrier obtained by calcination in air is instantaneously put into an aqueous solution of aluminum nitrate in a dry state, and stirred at 90 ° C. for another 15 minutes. After the temperature was lowered to room temperature, an aqueous solution (palladium chloride: 15% by weight, sodium chloride: 10% by weight) containing palladium chloride and sodium chloride prepared to be 5 parts by weight as palladium was added with stirring, and chloride was added. The palladium was completely supported on the carrier. Next, the liquid was decanted, and the carrier supporting palladium was washed several times with distilled water. After washing, distilled water was added to the palladium-supported carrier, and a hydrazine aqueous solution having a molar amount of 3 times the amount of palladium was slowly added dropwise over about 30 minutes while stirring at 60 ° C., and a reduction treatment was performed for 24 hours. I got something. When the distribution of palladium was measured by EPMA analysis on the obtained noble metal support, it had a layer in which palladium was substantially absent from the outer surface up to 5 μm, and was almost uniformly supported inside the support. .
[0047]
Embodiment 6
An aqueous solution of aluminum nitrate prepared to be 0.20 parts by weight of aluminum with respect to 100 parts by weight of the carrier is heated to 90 ° C. and stirred. Next, 100 parts by weight of the calcined carrier of the carrier production example is instantaneously charged in a dry state and stirred at 90 ° C. for another 15 minutes. Next, an aqueous solution containing palladium chloride and sodium chloride (palladium chloride: 15% by weight, sodium chloride: 10% by weight) prepared to be 3 parts by weight of palladium per 100 parts by weight of the carrier was heated to 90 ° C. Was added to the carrier dispersion, and the mixture was further stirred at 90 ° C. for 1 hour. After the palladium chloride was completely supported on the carrier, the liquid was decanted, and the carrier supporting palladium was washed several times with distilled water. -Replaced by propanol. After heating to 60 ° C., 2.3 parts by weight of triphenylbismuth / 1 propanol solution as bismuth was added to 100 parts by weight of the carrier, and a hydrazine / 1-propanol solution having a molar ratio of 3 times the amount of palladium with stirring was added. Was slowly added dropwise over about 30 minutes, and a reduction treatment was performed for 24 hours to obtain a palladium-bismuth support. When the obtained palladium-bismuth carrier was analyzed by EPMA analysis, the palladium component was not substantially supported in a range of 3 μm from the outer surface, and the palladium component was not more than 15 μm deep from the outer surface. It was carried.
[0048]
【The invention's effect】
Of the present inventionCatalyst for the production of methyl methacrylateCan suppress the removal of the palladium component due to abrasion and the like, prolong the service life when used as a catalyst, and have no decrease in catalytic activity as seen in, for example, a methyl methacrylate production reaction from an aldehyde and an alcohol. This has a great economic effect and is very useful in industry.
[Brief description of the drawings]
FIG. 1 is a chart showing an EPMA analysis result of a noble metal supported material of the present invention obtained in Example 1.
FIG. 2 is a chart showing an EPMA analysis result of a noble metal support obtained in Comparative Example 1.
FIG. 3 is a chart showing an EPMA analysis result of the noble metal supported material of the present invention obtained in Example 2.

Claims (4)

メタクリル酸メチル製造用触媒であって、パラジウムを含む金属成分が担体の外表面から深さ方向に20μm迄の範囲に実質的に担持されており、かつ、該担体の外表面から担体の深さ方向に0.1〜15μmの厚みで実質的にパラジウム成分が担持されていない層を有する貴金属担持物からなることを特徴とするメタクリル酸メチル製造用触媒。A catalyst for producing methyl methacrylate, wherein a metal component containing palladium is substantially supported in a range of up to 20 μm in a depth direction from an outer surface of the carrier, and a depth of the carrier from an outer surface of the carrier is reduced. A catalyst for producing methyl methacrylate, comprising a noble metal supported material having a thickness of 0.1 to 15 μm in a direction and substantially not supporting a palladium component. パラジウムを含む金属成分がパラジウム金属、パラジウム合金又はパラジウム金属間化合物である請求項1記載のメタクリル酸メチル製造用触媒The catalyst for producing methyl methacrylate according to claim 1, wherein the metal component containing palladium is a palladium metal, a palladium alloy, or a palladium intermetallic compound. パラジウムを含む金属成分がパラジウム−鉛金属間化合物である請求項1記載のメタクリル酸メチル製造用触媒The catalyst for producing methyl methacrylate according to claim 1 , wherein the metal component containing palladium is a palladium-lead intermetallic compound. パラジウムを含む金属成分がパラジウム−ビスマス金属間化合物である請求項1記載のメタクリル酸メチル製造用触媒The catalyst for producing methyl methacrylate according to claim 1 , wherein the metal component containing palladium is a palladium-bismuth intermetallic compound.
JP02470597A 1997-02-07 1997-02-07 Noble metal supported catalyst with excellent durability Expired - Lifetime JP3562924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02470597A JP3562924B2 (en) 1997-02-07 1997-02-07 Noble metal supported catalyst with excellent durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02470597A JP3562924B2 (en) 1997-02-07 1997-02-07 Noble metal supported catalyst with excellent durability

Publications (2)

Publication Number Publication Date
JPH10216515A JPH10216515A (en) 1998-08-18
JP3562924B2 true JP3562924B2 (en) 2004-09-08

Family

ID=12145605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02470597A Expired - Lifetime JP3562924B2 (en) 1997-02-07 1997-02-07 Noble metal supported catalyst with excellent durability

Country Status (1)

Country Link
JP (1) JP3562924B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534438B1 (en) * 2000-07-26 2003-03-18 Bp Chemicals Limited Catalyst composition
JP4571809B2 (en) * 2004-02-05 2010-10-27 三菱レイヨン株式会社 Method for producing noble metal-containing catalyst
JP4908189B2 (en) * 2006-01-04 2012-04-04 三菱レイヨン株式会社 Method for producing α, β-unsaturated carboxylic acid, etc. using palladium supported catalyst
JP2007275854A (en) * 2006-04-12 2007-10-25 Asahi Kasei Chemicals Corp Carboxylate production catalyst excellent in reaction stability and method for producing carboxylate
JP5006175B2 (en) * 2007-12-10 2012-08-22 三菱レイヨン株式会社 Palladium-containing supported catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP5280239B2 (en) * 2009-02-09 2013-09-04 三菱レイヨン株式会社 Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
US10829433B2 (en) * 2017-07-28 2020-11-10 Dow Global Technologies Llc Method for production of methyl methacrylate by oxidative esterification using a heterogeneous catalyst

Also Published As

Publication number Publication date
JPH10216515A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
JP4108133B2 (en) Method for producing noble metal carrier
CA2297651C (en) Process for producing catalysts comprising nanosize metal particles on a porous support, in particular for the gas-phase oxidation of ethylene and acetic acid to give vinyl acetate
JP4803767B2 (en) COMPOSITE PARTICLE CARRIER, METHOD FOR PRODUCING COMPOSITE PARTICLE CARRIER, AND METHOD FOR PRODUCING COMPOUND USING THE COMPOSITE PARTICLE CARRIER AS CATALYST FOR CHEMICAL SYNTHESIS
JP4970634B2 (en) Supported catalysts that can be used in organic compound conversion reactions
US4764498A (en) Silica-containing shaped articles and a process for their preparation
TWI378826B (en)
EP1175939A1 (en) Catalyst composition &amp; process for making same
JP2004528176A (en) Large surface area, small crystal size catalyst for Fischer-Tropsch synthesis
CN110612281B (en) Method for oxidative esterification of aldehydes to carboxylic esters
JP4772695B2 (en) Zirconia-containing support for catalyst
JP2012196674A (en) Halide free precursor for catalyst
JP4772694B2 (en) Layered support for catalysts
JP3562924B2 (en) Noble metal supported catalyst with excellent durability
US20010018402A1 (en) Fixed bed raney copper catalyst
JP3556397B2 (en) Improved method for producing catalyst for carboxylic acid ester production
JPH1147597A (en) Catalyst for hydrogenation reaction and hydrogenation method
JPH10263399A (en) Catalyst for production of carboxylic ester
JP4056782B2 (en) Catalyst for producing carboxylic acid ester, process for producing the same, and process for producing carboxylic acid ester using the catalyst
JP2007514542A (en) Rhodium-containing catalyst
JP2000288392A (en) Production of benzyl esters
CN116273055A (en) Nickel-based bimetallic catalyst and preparation method and application thereof
JPH0957101A (en) Method for enhancing purity and grade of carboxylic ester producing catalyst
TW200930697A (en) Process for hydrogenating 4-carboxybenzaldehyde to p-toluic acid
JPH09192495A (en) Catalyst for producing carboxylic ester

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term