JP3562257B2 - High voltage supply circuit - Google Patents

High voltage supply circuit Download PDF

Info

Publication number
JP3562257B2
JP3562257B2 JP25315797A JP25315797A JP3562257B2 JP 3562257 B2 JP3562257 B2 JP 3562257B2 JP 25315797 A JP25315797 A JP 25315797A JP 25315797 A JP25315797 A JP 25315797A JP 3562257 B2 JP3562257 B2 JP 3562257B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
capacitive element
output
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25315797A
Other languages
Japanese (ja)
Other versions
JPH1198378A (en
Inventor
俊之 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP25315797A priority Critical patent/JP3562257B2/en
Publication of JPH1198378A publication Critical patent/JPH1198378A/en
Application granted granted Critical
Publication of JP3562257B2 publication Critical patent/JP3562257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transforming Electric Information Into Light Information (AREA)
  • Details Of Television Scanning (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はCRTを用いたディスプレイにおいて、CRTのアノード電極に高圧を供給する高圧供給回路に関するものである。
【0002】
【従来の技術】
図7に従来の高圧供給回路の構成を示す。図7において、符号1は高圧発生回路、2はCRT、3及び4は容量素子、12は抵抗素子である。以上のように構成された高圧供給回路について、以下その動作について説明する。
図7において、高圧発生回路1で発生された高圧は容量素子3及び4と抵抗素子12で構成されるフィルタを経由してCRT2のアノード電極に供給され、CRT2を駆動する。このように 容量素子3及び4と抵抗素子12で構成されるフィルタを経由する事によってリップルを低減した高圧をCRT2のアノード電極に供給している。
【0003】
【発明が解決しようとする課題】
しかしながら、上述のような従来の構成では、高圧発生回路1で発生された高圧の電流が抵抗素子12を経由してCRTへ供給され、前記抵抗素子12で電圧降下が発生する。また、ディスプレイに接続された信号源の映像信号によってCRTへ供給される電流量は変化するため、前記電圧降下量も変化することになり、高圧の安定度が低下することになる。
高圧安定度が低下した場合、ディスプレイに映出された画像において、直線であるはずの映像が歪んで表示されたり、画面上の輝度が変化しディスプレイ上に輝度むらが見える等、ディスプレイに接続された画像信号源の忠実な再現ができなくなるという課題を有していた。
【0004】
更に、従来の構成では前述のような課題があり、抵抗素子12の抵抗値を高圧リップルを低減するのに十分大きな値を選択できなかった。そのため高圧リップルが十分に低減できず、表示画面上に非同期の輝度むらが発生し映像品位の低下という課題を有していた。また、抵抗素子12で発生する電圧降下による消費電力の増大という課題を有していた。
【0005】
【課題を解決するための手段】
上記従来の課題を解決するために、本発明の高圧供給回路は、高圧放電を防ぐためにエポキシ樹脂等で十分に封止され、さらに、フィルタ効果を得るのに十分なインダクタンス値をもつコイルと容量素子とで構成されたフィルタを用いることで、高圧リップルを十分に低減した高圧をCRTのアノード電極に供給する事を特徴とする。
【0006】
本発明によれば、直流抵抗値が非常に小さいコイルを用いたフィルタ回路により、従来抵抗素子による電圧降下が大きく高圧安定度が損なわれるという課題も容易に解決可能となる。
更に、抵抗素子による電圧降下が無くなり高圧安定度が向上することで、高圧リップルを低減するのに十分大きなインダクタンス値を選択することが可能であるため、高圧リップルが残り、表示画面上に非同期の輝度むらが発生し映像品位の低下という課題も容易に解決可能である。また、抵抗素子による電圧降下が無くなることにより、電圧降下による消費電力の増大という課題も容易に解決可能である。
【0012】
【発明の実施の形態】
の発明の高圧供給回路は、CRTのアノード電極に供給する高電圧を生成する高圧発生回路と、前記高圧発生回路の高電圧出力に接続され、該出力を入力としてコイルの一端に入力し他端に容量素子が接続されて構成され、前記他端を出力とするフィルタと、前記容量素子の2端子のうち前記コイルと接続されていない一方の端子に接続された容量素子変調回路と、を備え、前記容量素子変調回路は、前記高圧発生回路の出力変動信号を検出し、該信号を反転した反転信号により前記容量素子の2端子のうち前記コイルと接続されていない一方の端子を変調することを特徴とし、高圧の安定度を向上させる作用を有する。
【0014】
の発明の高圧供給回路は、第の発明に記載された高圧供給回路において、高圧発生回路の二次側に流れる電流を検出する二次側電流検出回路と、前記二次側電流検出回路で検出した電流を増幅する増幅回路と、をさらに備え、前記増幅回路の出力を前記高圧発生回路の出力変動として前記容量素子変調回路に入力し前記容量素子の2端子のうち前記コイルと接続されていない一方の端子の電位を変調することを特徴とし、高圧の安定度を向上させる作用を有する。
【0015】
の発明の高圧供給回路は、第の発明に記載された高圧供給回路において、前記高圧発生回路の高電圧出力の変動を検出するための高圧変動検出回路と、前記高圧変動検出回路で検出した検出信号を入力とした増幅回路と、をさらに備え、前記増幅回路の出力を前記高圧発生回路の出力変動として前記容量素子変調回路に入力し前記容量素子の2端子のうち前記コイルと接続されていない一方の端子の電位を変調することを特徴とし、高圧の安定度を向上させる作用を有する。
【0016】
の発明の高圧供給回路は、第の発明に記載された高圧供給回路において、CRTのカソードに流れる電流を検出するカソード電流検出回路と、前記カソード電流検出回路で検出した信号を入力とした増幅回路と、前記増幅回路の出力を入力とした遅延回路と、をさらに備え、前記遅延回路の出力を前記高圧発生回路の出力変動として前記容量素子変調回路に入力し前記容量素子の2端子のうち前記コイルと接続されていない一方の端子の電位を変調することを特徴とし、高圧の安定度を向上させる作用を有する。
以下本発明の一実施の形態について、図面を用いて説明する。
【0017】
(実施の形態1)
以下、本発明における第1及び第2の発明に記載された実施の形態について、図1を用いて説明する。
図1において、符号1は高圧発生回路、2はCRT、3及び4は容量素子、5はコイルである。以上のように構成された高圧供給回路について、以下その動作を説明する。
【0018】
高圧発生回路1で発生された高圧は容量素子3、コイル5及び容量素子4を経由してCRT2のアノード電極に供給される。ここで高圧リップルを相殺する容量値とインダクタンス値を持つ容量素子3及び容量素子4,コイル5で構成されるフィルタによって、高圧発生回路のスイッチング動作によって発生する高圧のリップルは低減される。さらにコイル5の直流抵抗値は非常に小さいため、高圧発生回路1から供給される電流がコイル5を流れることで発生する電圧降下はほとんど発生しない。以上のような動作により、高圧発生回路1から非常に大きな電流の供給がCRT2のアノード電極に行われても、高圧安定度が低下することは無い。
【0019】
また前記コイル5は高圧のリップルが高圧発生回路1でのスイッチング周波数と同一の周波数で発生するため、この周波数のリップルを十分に減衰可能とした遮断周波数を有するフィルタを構成することのできるインダクタンス値を持ち、さらに本コイル5は、高電圧部分で使用するために、コイル部分、電極部分ともに高圧放電を十分抑制可能とするため、エポキシ樹脂等で封止する必要がある。
【0020】
(実施の形態2)
次に、第3及び第4の発明に記載された実施の形態について、図2及び図3を用いて説明する。尚、前述した実施の形態と同じ構成については同一の符号を用い、説明を省略する。
【0021】
第1及び第2の発明において容量素子3及び容量素子4は接地されており、さらに高圧リップルを低減するために、容量素子3、コイル5及び容量素子4で構成されるフィルタを用いていた。このような構成の場合、コイル5に高圧発生回路1から電流が流れることによる電圧降下が非常に小さいが発生するために、高圧安定度が低下し、ディスプレイに映出された画像において、直線であるはずの映像がひずんで表示されたり、また画面上の輝度が変化しディスプレイ上に輝度むらが見える等、ディスプレイに接続された画像信号源の忠実な再現ができなくなるという、映像品位の劣化の原因となる。
【0022】
そこで本実施の形態では容量素子4の負電極側の電位を、高圧安定度が最適となるように変調する容量素子変調回路6を設けることによって第1及び第2の発明の構成に対し、より高圧安定度の高い、高圧をCRT2のアノード電極に供給可能となる。
【0023】
最適な変調の様子を図3に示す。図3に示すような高圧の変動に対して、容量素子変調回路6で容量素子4の負電極側の電位を図3に示すような変調信号で、変調することによって、図3に示すような最適な高安定度の高圧をCRT2のアノード電極に供給することが可能となる。
【0024】
(実施の形態3)
次に、第5及び第6の発明に記載された実施の形態について、図4を用いて説明する。尚、前述した実施の形態と同じ構成については同一の符号を用い、説明を省略する。
【0025】
第1及び第2の発明において容量素子3及び容量素子4は接地されており、さらに高圧リップルを低減するために、容量素子3、コイル5及び容量素子4で構成されるフィルタを用いていた。このような構成の場合、コイル5に高圧発生回路1から電流が流れることによる電圧降下が非常に小さいが発生するために、高圧安定度が低下し、ディスプレイに映出された画像において、直線であるはずの映像がひずんで表示されたり、また画面上の輝度が変化しディスプレイ上に輝度むらが見える等、ディスプレイに接続された画像信号源の忠実な再現ができなくなるという、映像品位の劣化の原因となる。
【0026】
そこで第3及び第4の発明に示すように、容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調する方法がある。しかしながら、容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調する信号を発生させると回路が複雑となり、回路規模の増大につながるという課題を有していた。
【0027】
そこで、本実施の形態では、図4に示すように高圧発生回路1の二次側電流検出回路8及び増幅回路7を用いて前記課題を解決する。図4において抵抗素子で構成された二次側電流検出回路8で検出した高圧発生回路1の二次側に流れる電流に比例した電圧信号を、容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調するため、最適な振幅に増幅回路7で増幅し、その電圧信号で容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調する。ここで高圧発生回路1の二次側の電流は高圧の変動に応じた変化をするために、容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調する信号として使用することが可能となる。
【0028】
図4のように容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調する信号に、高圧発生回路1の二次側に流れる電流を用いることで、簡易な回路で第1及び第2の発明の構成に対し高圧安定度の向上を図ることが可能となる。
【0029】
(実施の形態4)
次に、第7及び第8の発明に記載された実施の形態について、図5を用いて説明する。尚、前述した実施の形態と同じ構成については同一の符号を用い、説明を省略する。
【0030】
第1及び第2の発明において容量素子3及び容量素子4は接地されており、さらに高圧リップルを低減するために、容量素子3、コイル5及び容量素子4で構成されるフィルタを用いていた。このような構成の場合、コイル5に高圧発生回路1から電流が流れることによる電圧降下が非常に小さいが発生するために、高圧安定度が低下し、ディスプレイに映出された画像において、直線であるはずの映像がひずんで表示されたり、また画面上の輝度が変化しディスプレイ上に輝度むらが見える等、ディスプレイに接続された画像信号源の忠実な再現ができなくなるという、映像品位の劣化の原因となる。
【0031】
そこで、第5及び第6の発明においては高圧発生回路1の二次側電流を基に、容量素子4の負電極側の電位を容量素子変調回路6で変調する方法を用いていた。しかしながら、高圧発生回路1の制御を、高圧の変動情報を帰還して行っている場合、高圧発生回路1の二次側電流の情報はCRT2のアノード電極位置の高圧の変動から位相遅れを生じたものとなり、高圧発生回路1の二次側電流情報を元に、容量素子4の負電極側の電位を容量素子変調回路6で変調を行っても最適な高圧安定度を得ることが困難となるだけで無く、さらに位相遅れが増大すれば高圧安定度を損なうという課題を有していた。
【0032】
そこで本実施の形態においては、図5に示すような高圧変動検出回路9及び増幅回路7を用いて前記課題を解決する。図5において抵抗素子の抵抗分割で構成された高圧変動検出回路9で検出した高圧の変動に比例した電圧信号を、容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調するのに、最適な振幅に増幅回路7で増幅し、その増幅された信号で容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調する。
【0033】
図5のように容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調する信号に、高圧の変動情報を用いることで、実際の高圧の変動と変調を行う信号との位相関係が同位相となり、第1及び第2の構成に対し、さらに高圧安定度の向上を図ることが可能となる。また、高圧変動検出回路9に用いる抵抗素子は高圧発生回路1の負荷電流に大きな影響を及ぼさないよう非常に大きな抵抗値を持ったものを使用することによって、消費電力の増大を防止することができる。
【0034】
(実施の形態5)
次に、第9及び第10の発明に記載された実施の形態について、図6を用いて説明する。尚、前述した実施の形態と同じ構成については同一の符号を用い、説明を省略する。
【0035】
第1及び第2の発明において容量素子3及び容量素子4は接地されており、さらに高圧リップルを低減するために、容量素子3、コイル5及び容量素子4で構成されるフィルタを用いていた。このような構成の場合、コイル5に高圧発生回路1から電流が流れることによる電圧降下が非常に小さいが発生するために、高圧安定度が低下し、ディスプレイに映出された画像において、直線であるはずの映像がひずんで表示されたり、また画面上の輝度が変化しディスプレイ上に輝度むらが見える等、ディスプレイに接続された画像信号源の忠実な再現ができなくなるという、映像品位の劣化の原因となる。
【0036】
そこで第7及び第8の発明においては高圧の変動を基に、容量素子4の負電極側の電位を容量素子変調回路6で変調する方法を用いていた。しかしながら、高圧の変動を基に、容量素子4の負電極側の電位を容量素子変調回路6で変調する方法を用いると、増幅回路7の入力と容量素子変調回路6の出力で位相遅延が発生し容量素子4の負電極側の電位の変調を行う信号はCRT2のアノード位置での高圧の変動から位相遅れを生じたものとなり、高圧の変動を基に、容量素子4の負電極側の電位を容量素子変調回路6で変調を行っても最適な高圧安定度を得ることが困難となり、さらに位相遅れが増大すれば高圧安定度を損なうという課題を有していた。
【0037】
そこで本実施の形態においては、図6に示すようなCRTのカソード電流検出回路10、増幅回路7及び遅延回路11を用いて前記課題を解決する。図6においてCRTのカソード電流検出回路10で検出したCRTのカソード電流に比例した電圧信号を、容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調するため、増幅回路7で増幅し、さらに実際の高圧の変動位相に対し容量素子変調回路6から供給される信号位相を同一とするために、遅延回路11で位相遅延させ、その信号で容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調する。
【0038】
図6のように容量素子4の負電極側の電位を高圧安定度が最適となるように容量素子変調回路6で変調する信号に、位相制御を行ったCRTのカソードに流れる電流情報を用いることで、実際の高圧の変動と変調を行う信号の位相遅れが無くなり、従来方式に対し、さらに高圧安定度の向上を図ることが可能となる。
【0039】
【発明の効果】
以上のように、本発明の高圧供給回路によれば、コイルを用いたフィルタ回路を構成することで、従来、抵抗素子を用いたフィルタ回路を構成した高圧供給回路において、前記抵抗素子による電圧降下により高圧安定度が低下し、さらに高圧リップルが完全に低減できない課題を解決し、さらに消費電力の増大を抑えることが容易となる。
【0040】
本発明の高圧供給回路において高圧発生回路の二次側に流れる電流を基に容量素子の負電極側の電位の変調を行うことにより高安定度の高圧供給を実現可能となる。
【0041】
また、高圧の変動を基に容量素子の負電極側の電位の変調を行う。これより、さらに高安定度の高圧供給を実現可能となる。
【0042】
また、CRTのカソードに流れる電流を基に容量素子の負電極側の電位の変調を行うことにより高安定度の高圧供給を実現可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における高圧供給回路のブロック構成図
【図2】本発明の実施の形態2における高圧供給回路のブロック構成図
【図3】本発明の実施の形態2における容量素子変調回路の動作説明図
【図4】本発明の実施の形態3における高圧供給回路のブロック構成図
【図5】本発明の実施の形態4における高圧供給回路のブロック構成図
【図6】本発明の実施の形態5における高圧供給回路のブロック構成図
【図7】従来の高圧供給回路のブロック図
【符号の説明】
1 高圧発生回路
2 CRT
3,4 容量素子
5 コイル
6 容量素子変調回路
7 増幅回路
8 二次側電流検出回路
9 高圧変動検出回路
10 カソード電流検出回路
11 遅延回路
12 抵抗素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high voltage supply circuit for supplying a high voltage to an anode electrode of a CRT in a display using a CRT.
[0002]
[Prior art]
FIG. 7 shows a configuration of a conventional high voltage supply circuit. In FIG. 7, reference numeral 1 denotes a high-voltage generation circuit, 2 denotes a CRT, 3 and 4 denote capacitance elements, and 12 denotes a resistance element. The operation of the high voltage supply circuit configured as described above will be described below.
In FIG. 7, the high voltage generated by the high voltage generation circuit 1 is supplied to the anode electrode of the CRT 2 via a filter composed of the capacitance elements 3 and 4 and the resistance element 12 to drive the CRT 2. As described above, high voltage with reduced ripple is supplied to the anode electrode of the CRT 2 through the filter constituted by the capacitance elements 3 and 4 and the resistance element 12.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, a high-voltage current generated by the high-voltage generation circuit 1 is supplied to the CRT via the resistance element 12, and a voltage drop occurs in the resistance element 12. In addition, since the amount of current supplied to the CRT changes according to the video signal of the signal source connected to the display, the amount of the voltage drop also changes, and the high-voltage stability decreases.
When the high-pressure stability is reduced, the image projected on the display may be distorted and the image projected on the display may be distorted, or the luminance on the screen may change and luminance unevenness may be seen on the display. There is a problem that the faithful reproduction of the image signal source cannot be performed.
[0004]
Further, the conventional configuration has the above-described problem, and the resistance value of the resistance element 12 cannot be selected to be large enough to reduce the high-voltage ripple. Therefore, the high-voltage ripple cannot be sufficiently reduced, and asynchronous brightness unevenness occurs on the display screen, which causes a problem that the image quality is deteriorated. In addition, there is a problem that power consumption is increased due to a voltage drop generated in the resistance element 12.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned conventional problems, a high-voltage supply circuit of the present invention is sufficiently sealed with an epoxy resin or the like to prevent high-voltage discharge, and furthermore, a coil and a capacitor having a sufficient inductance value to obtain a filtering effect. It is characterized in that a high voltage with sufficiently reduced high voltage ripple is supplied to an anode electrode of a CRT by using a filter composed of elements.
[0006]
ADVANTAGE OF THE INVENTION According to this invention, the subject that the voltage drop by the conventional resistance element is large and the high-pressure stability is impaired can be easily solved by the filter circuit using the coil whose DC resistance value is very small.
Furthermore, since the voltage drop due to the resistive element is eliminated and the high voltage stability is improved, it is possible to select an inductance value large enough to reduce the high voltage ripple. The problem of uneven brightness and deterioration of the image quality can be easily solved. In addition, since the voltage drop due to the resistance element is eliminated, the problem of increased power consumption due to the voltage drop can be easily solved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
A high-voltage supply circuit according to a first aspect of the present invention includes: a high-voltage generation circuit that generates a high voltage to be supplied to an anode electrode of a CRT; and a high-voltage output of the high-voltage generation circuit. The output is input to one end of a coil. A filter connected to the other end of the capacitive element, the filter having the other end as an output, and a capacitive element modulation circuit connected to one of the two terminals of the capacitive element that is not connected to the coil; The capacitance element modulation circuit detects an output fluctuation signal of the high voltage generation circuit, and modulates one of the two terminals of the capacitance element that is not connected to the coil with an inverted signal obtained by inverting the signal. And has the effect of improving the stability of high pressure.
[0014]
A high-voltage supply circuit according to a second invention is the high-voltage supply circuit according to the first invention , wherein the secondary-side current detection circuit detects a current flowing to the secondary side of the high-voltage generation circuit; An amplifier circuit for amplifying a current detected by the circuit, wherein an output of the amplifier circuit is input to the capacitive modulation circuit as an output variation of the high-voltage generating circuit and connected to the coil among two terminals of the capacitive element It is characterized by modulating the potential of one terminal that is not operated, and has the effect of improving the stability of high voltage.
[0015]
A high-voltage supply circuit according to a third aspect of the present invention is the high-voltage supply circuit according to the first aspect , wherein the high-voltage change detection circuit detects a change in a high-voltage output of the high-voltage generation circuit. An amplifier circuit to which the detected detection signal is input, wherein the output of the amplifier circuit is input to the capacitive modulation circuit as an output variation of the high-voltage generating circuit and connected to the coil among the two terminals of the capacitive element It is characterized by modulating the potential of one terminal that is not operated, and has the effect of improving the stability of high voltage.
[0016]
High pressure supply circuit of the fourth invention, in the high pressure supply circuit according to the first invention, the input and the cathode current detecting circuit for detecting a current flowing to the cathode of a CRT, or a signal detected by the cathode current detecting circuit And a delay circuit to which the output of the amplification circuit is input. The output of the delay circuit is input to the capacitance modulation circuit as an output fluctuation of the high-voltage generation circuit, and two terminals of the capacitance element are provided. And modulating the potential of one terminal not connected to the coil, and has an action of improving the stability of high voltage.
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0017]
(Embodiment 1)
Hereinafter, embodiments of the first and second aspects of the present invention will be described with reference to FIG.
In FIG. 1, reference numeral 1 denotes a high-voltage generating circuit, 2 denotes a CRT, 3 and 4 denote capacitive elements, and 5 denotes a coil. The operation of the high voltage supply circuit configured as described above will be described below.
[0018]
The high voltage generated by the high voltage generation circuit 1 is supplied to the anode electrode of the CRT 2 via the capacitive element 3, the coil 5, and the capacitive element 4. Here, the high-voltage ripple generated by the switching operation of the high-voltage generation circuit is reduced by the filter including the capacitance element 3 and the capacitance element 4 and the coil 5 having the capacitance value and the inductance value that cancel the high-voltage ripple. Furthermore, since the DC resistance value of the coil 5 is very small, a voltage drop caused by the current supplied from the high voltage generation circuit 1 flowing through the coil 5 hardly occurs. With the above operation, even when a very large current is supplied from the high voltage generation circuit 1 to the anode electrode of the CRT 2, the high voltage stability does not decrease.
[0019]
Also, since the coil 5 generates a high-voltage ripple at the same frequency as the switching frequency in the high-voltage generating circuit 1, an inductance value that can constitute a filter having a cutoff frequency capable of sufficiently attenuating the ripple at this frequency. In addition, the coil 5 needs to be sealed with an epoxy resin or the like in order to be able to sufficiently suppress high-voltage discharge in both the coil portion and the electrode portion in order to be used in a high voltage portion.
[0020]
(Embodiment 2)
Next, an embodiment described in the third and fourth inventions will be described with reference to FIGS. The same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0021]
In the first and second inventions, the capacitive element 3 and the capacitive element 4 are grounded, and a filter composed of the capacitive element 3, the coil 5, and the capacitive element 4 is used to further reduce high-voltage ripple. In the case of such a configuration, the voltage drop due to the current flowing from the high voltage generation circuit 1 to the coil 5 is very small, so that the high voltage stability is reduced and the image displayed on the display has a straight line. Degradation of image quality, such as the distorted display of expected images and the change in luminance on the screen resulting in uneven luminance on the display, making it impossible to faithfully reproduce the image signal source connected to the display. Cause.
[0022]
Therefore, in the present embodiment, by providing the capacitive element modulation circuit 6 that modulates the potential on the negative electrode side of the capacitive element 4 so that the high-voltage stability is optimized, the configuration of the first and second inventions can be improved. A high pressure with high high-pressure stability can be supplied to the anode electrode of the CRT 2.
[0023]
FIG. 3 shows the state of optimal modulation. In response to the fluctuation of the high voltage as shown in FIG. 3, the capacitance element modulation circuit 6 modulates the potential on the negative electrode side of the capacitance element 4 with a modulation signal as shown in FIG. An optimal high-stability high voltage can be supplied to the anode electrode of the CRT 2.
[0024]
(Embodiment 3)
Next, an embodiment described in the fifth and sixth inventions will be described with reference to FIG. The same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0025]
In the first and second inventions, the capacitive element 3 and the capacitive element 4 are grounded, and a filter composed of the capacitive element 3, the coil 5, and the capacitive element 4 is used to further reduce high-voltage ripple. In the case of such a configuration, the voltage drop due to the current flowing from the high voltage generation circuit 1 to the coil 5 is very small, so that the high voltage stability is reduced and the image displayed on the display has a straight line. Degradation of image quality, such as distorted display of supposed images and unevenness of luminance on the screen due to changes in luminance on the screen, makes it impossible to faithfully reproduce the image signal source connected to the display. Cause.
[0026]
Therefore, as shown in the third and fourth inventions, there is a method of modulating the potential on the negative electrode side of the capacitive element 4 with the capacitive element modulation circuit 6 so that the high-voltage stability is optimized. However, if a signal for modulating the potential on the negative electrode side of the capacitive element 4 by the capacitive element modulation circuit 6 so that the high-voltage stability is optimized is generated, the circuit becomes complicated and the circuit scale is increased. I was
[0027]
Therefore, in the present embodiment, the above-mentioned problem is solved by using the secondary side current detection circuit 8 and the amplification circuit 7 of the high voltage generation circuit 1 as shown in FIG. In FIG. 4, a voltage signal proportional to the current flowing to the secondary side of the high voltage generation circuit 1 detected by the secondary side current detection circuit 8 composed of a resistance element is used to convert the potential on the negative electrode side of the capacitance element 4 to the high voltage stability. Is modulated by the capacitance element modulation circuit 6 so as to optimize the voltage, the signal is amplified by the amplification circuit 7 to an optimum amplitude, and the voltage on the negative electrode side of the capacitance element 4 is adjusted by the voltage signal so that the high voltage stability is optimized. Modulation is performed by the capacitance element modulation circuit 6. Here, since the current on the secondary side of the high voltage generation circuit 1 changes in accordance with the fluctuation of the high voltage, the potential on the negative electrode side of the capacitance element 4 is adjusted by the capacitance element modulation circuit 6 so that the high voltage stability is optimized. It can be used as a signal to be modulated.
[0028]
As shown in FIG. 4, by using the current flowing on the secondary side of the high voltage generation circuit 1 as a signal for modulating the potential on the negative electrode side of the capacitance element 4 by the capacitance element modulation circuit 6 so that the high voltage stability is optimized. With a simple circuit, it is possible to improve the high-pressure stability with respect to the configurations of the first and second inventions.
[0029]
(Embodiment 4)
Next, an embodiment described in the seventh and eighth inventions will be described with reference to FIG. The same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0030]
In the first and second inventions, the capacitive element 3 and the capacitive element 4 are grounded, and a filter composed of the capacitive element 3, the coil 5, and the capacitive element 4 is used to further reduce high-voltage ripple. In the case of such a configuration, the voltage drop due to the current flowing from the high voltage generation circuit 1 to the coil 5 is very small, so that the high voltage stability is reduced and the image displayed on the display has a straight line. Degradation of image quality, such as the distorted display of expected images and the change in luminance on the screen resulting in uneven luminance on the display, making it impossible to faithfully reproduce the image signal source connected to the display. Cause.
[0031]
Therefore, in the fifth and sixth inventions, a method of modulating the potential on the negative electrode side of the capacitive element 4 by the capacitive element modulation circuit 6 based on the secondary side current of the high voltage generation circuit 1 has been used. However, when the high-voltage generation circuit 1 is controlled by feeding back the high-voltage fluctuation information, the secondary-side current information of the high-voltage generation circuit 1 has a phase delay due to the high-voltage fluctuation of the anode electrode position of the CRT 2. Therefore, even if the potential on the negative electrode side of the capacitance element 4 is modulated by the capacitance element modulation circuit 6 based on the secondary side current information of the high voltage generation circuit 1, it is difficult to obtain the optimum high voltage stability. Not only that, if the phase delay further increases, there is a problem that the high-pressure stability is impaired.
[0032]
Therefore, in the present embodiment, the above-described problem is solved by using a high-voltage fluctuation detection circuit 9 and an amplification circuit 7 as shown in FIG. In FIG. 5, a voltage signal proportional to the high voltage fluctuation detected by the high voltage fluctuation detection circuit 9 constituted by resistance division of the resistance element is converted into a capacitance such that the high voltage stability is optimized by the potential on the negative electrode side of the capacitance element 4. In order to modulate by the element modulation circuit 6, the amplification circuit 7 amplifies the signal to an optimum amplitude, and uses the amplified signal to change the potential on the negative electrode side of the capacitance element 4 so that the high voltage stability is optimized. Modulate by 6.
[0033]
As shown in FIG. 5, by using the high-voltage fluctuation information for the signal that modulates the potential on the negative electrode side of the capacitance element 4 by the capacitance element modulation circuit 6 so that the high-voltage stability is optimized, the actual high-voltage fluctuation can be reduced. The phase relationship with the signal to be modulated is the same, and it is possible to further improve the high voltage stability with respect to the first and second configurations. In addition, it is possible to prevent an increase in power consumption by using a resistor having a very large resistance value so as not to greatly affect the load current of the high voltage generation circuit 1 as a resistance element used in the high voltage fluctuation detection circuit 9. it can.
[0034]
(Embodiment 5)
Next, an embodiment described in the ninth and tenth aspects will be described with reference to FIG. The same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0035]
In the first and second inventions, the capacitive element 3 and the capacitive element 4 are grounded, and a filter composed of the capacitive element 3, the coil 5, and the capacitive element 4 is used to further reduce high-voltage ripple. In the case of such a configuration, the voltage drop due to the current flowing from the high voltage generation circuit 1 to the coil 5 is very small, so that the high voltage stability is reduced and the image displayed on the display has a straight line. Degradation of image quality, such as the distorted display of expected images and the change in luminance on the screen resulting in uneven luminance on the display, making it impossible to faithfully reproduce the image signal source connected to the display. Cause.
[0036]
Therefore, in the seventh and eighth inventions, the method of modulating the potential on the negative electrode side of the capacitive element 4 by the capacitive element modulation circuit 6 based on the fluctuation of the high voltage is used. However, when a method of modulating the potential on the negative electrode side of the capacitive element 4 by the capacitive element modulation circuit 6 based on the fluctuation of the high voltage is used, a phase delay occurs between the input of the amplification circuit 7 and the output of the capacitance element modulation circuit 6. The signal that modulates the potential of the negative electrode of the capacitive element 4 has a phase lag due to the fluctuation of the high voltage at the anode position of the CRT 2, and the potential of the negative electrode of the capacitive element 4 is based on the fluctuation of the high voltage. However, it is difficult to obtain an optimum high-pressure stability even when the modulation is performed by the capacitive element modulation circuit 6, and the high-pressure stability is impaired if the phase delay increases.
[0037]
Therefore, in the present embodiment, the above problem is solved by using a cathode current detection circuit 10, an amplification circuit 7, and a delay circuit 11 of a CRT as shown in FIG. In FIG. 6, a voltage signal proportional to the cathode current of the CRT detected by the cathode current detection circuit 10 of the CRT is modulated by the capacitive element modulation circuit 6 so that the potential on the negative electrode side of the capacitive element 4 is optimized for high voltage stability. In order to make the phase of the signal supplied from the capacitive element modulation circuit 6 the same as the actual high-voltage fluctuation phase, the signal is delayed by a delay circuit 11 and the signal is amplified by the capacitive element. 4 is modulated by the capacitive element modulation circuit 6 so that the high voltage stability is optimized.
[0038]
As shown in FIG. 6, a signal for modulating the potential on the negative electrode side of the capacitive element 4 by the capacitive element modulation circuit 6 so that the high-voltage stability is optimized uses information on current flowing through the cathode of the CRT whose phase has been controlled. Thus, the actual fluctuation of the high voltage and the phase delay of the signal to be modulated are eliminated, and the high voltage stability can be further improved compared to the conventional method.
[0039]
【The invention's effect】
As described above, according to the high-voltage supply circuit of the present invention, by configuring a filter circuit using a coil, a voltage drop caused by the resistance element in a conventional high-voltage supply circuit including a filter circuit using a resistance element is achieved. Accordingly, the high-pressure stability is reduced, the problem that the high-voltage ripple cannot be completely reduced is solved, and the increase in power consumption can be easily suppressed.
[0040]
In the high-voltage supply circuit of the present invention, a high-stability high-voltage supply can be realized by modulating the potential on the negative electrode side of the capacitive element based on the current flowing on the secondary side of the high-voltage generation circuit.
[0041]
Further, the potential of the negative electrode of the capacitor is modulated based on the fluctuation of the high voltage. This makes it possible to realize a high-pressure supply with higher stability.
[0042]
Further, by modulating the potential on the negative electrode side of the capacitive element based on the current flowing to the cathode of the CRT, it is possible to realize high-stability high-voltage supply.
[Brief description of the drawings]
1 is a block diagram of a high-voltage supply circuit according to a first embodiment of the present invention; FIG. 2 is a block diagram of a high-voltage supply circuit according to a second embodiment of the present invention; FIG. 4 is a block diagram of a high-voltage supply circuit according to a third embodiment of the present invention. FIG. 5 is a block diagram of a high-voltage supply circuit according to a fourth embodiment of the present invention. FIG. 7 is a block diagram of a high voltage supply circuit according to a fifth embodiment of the present invention. FIG. 7 is a block diagram of a conventional high voltage supply circuit.
1 High voltage generation circuit 2 CRT
3, 4 Capacitance element 5 Coil 6 Capacitive element modulation circuit 7 Amplification circuit 8 Secondary side current detection circuit 9 High voltage fluctuation detection circuit 10 Cathode current detection circuit 11 Delay circuit 12 Resistance element

Claims (4)

CRTのアノード電極に供給する高電圧(以下、高圧と称する)を生成する高圧発生回路と、
前記高圧発生回路の高電圧出力に接続され、該出力を入力としてコイルの一端に入力し他端に容量素子が接続されて構成され、前記他端を出力とするフィルタと、
前記容量素子の2端子のうち前記コイルと接続されていない一方の端子に接続された容量素子変調回路と、
を備え、
前記容量素子変調回路は、前記高圧発生回路の出力変動信号を検出し、該信号を反転した反転信号により前記容量素子の2端子のうち前記コイルと接続されていない一方の端子を変調することを特徴とした高圧供給回路。
A high voltage generation circuit for generating a high voltage (hereinafter, referred to as a high voltage) to be supplied to the anode electrode of the CRT ;
A filter connected to a high-voltage output of the high-voltage generation circuit, having the output as an input, being input to one end of a coil and being connected to a capacitive element at the other end, and having the other end as an output;
A capacitive element modulation circuit connected to one of the two terminals of the capacitive element that is not connected to the coil;
With
The capacitance element modulation circuit detects an output fluctuation signal of the high voltage generation circuit, and modulates one of the two terminals of the capacitance element that is not connected to the coil by an inverted signal obtained by inverting the signal. High-voltage supply circuit characterized.
高圧発生回路の二次側に流れる電流を検出する二次側電流検出回路と、
前記二次側電流検出回路で検出した電流を増幅する増幅回路と、
をさらに備え、
前記増幅回路の出力を前記高圧発生回路の出力変動として前記容量素子変調回路に入力し前記容量素子の2端子のうち前記コイルと接続されていない一方の端子の電位を変調することを特徴とする請求項1記載の高圧供給回路。
A secondary-side current detection circuit that detects a current flowing to the secondary side of the high-voltage generation circuit,
An amplifier circuit for amplifying the current detected by the secondary-side current detection circuit,
Further comprising
Characterized by modulating the potential of one terminal that is not connected to the coil of the second terminal of the capacitive element receiving the output of the amplifier circuit to the capacitive element modulation circuit as an output variation of said high voltage generating circuit The high-voltage supply circuit according to claim 1 .
前記高圧発生回路の高電圧出力の変動を検出するための高圧変動検出回路と、
前記高圧変動検出回路で検出した検出信号を入力とした増幅回路と、
をさらに備え、
前記増幅回路の出力を前記高圧発生回路の出力変動として前記容量素子変調回路に入力し前記容量素子の2端子のうち前記コイルと接続されていない一方の端子の電位を変調することを特徴とする請求項1記載の高圧供給回路。
A high-voltage fluctuation detection circuit for detecting fluctuations in the high-voltage output of the high-voltage generation circuit ,
An amplification circuit having a detection signal detected by the high-voltage fluctuation detection circuit as an input,
Further comprising
Characterized by modulating the potential of one terminal that is not connected to the coil of the second terminal of the capacitive element receiving the output of the amplifier circuit to the capacitive element modulation circuit as an output variation of said high voltage generating circuit The high-voltage supply circuit according to claim 1 .
CRTのカソードに流れる電流を検出するカソード電流検出回路と、
前記カソード電流検出回路で検出した信号を入力とした増幅回路と、
前記増幅回路の出力を入力とした遅延回路と、
をさらに備え、
前記遅延回路の出力を前記高圧発生回路の出力変動として前記容量素子変調回路に入力し前記容量素子の2端子のうち前記コイルと接続されていない一方の端子の電位を変調することを特徴とする請求項1記載の高圧供給回路。
A cathode current detection circuit for detecting a current flowing to the cathode of the CRT,
An amplifier circuit to which a signal detected by the cathode current detection circuit is input,
A delay circuit having an output of the amplification circuit as an input,
Further comprising
Characterized by modulating the potential of one terminal that is not connected to the coil of the second terminal of the capacitive element is input to the capacitance element modulation circuit the output of the delay circuit as the output variation of the high voltage generating circuit The high-voltage supply circuit according to claim 1 .
JP25315797A 1997-09-18 1997-09-18 High voltage supply circuit Expired - Fee Related JP3562257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25315797A JP3562257B2 (en) 1997-09-18 1997-09-18 High voltage supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25315797A JP3562257B2 (en) 1997-09-18 1997-09-18 High voltage supply circuit

Publications (2)

Publication Number Publication Date
JPH1198378A JPH1198378A (en) 1999-04-09
JP3562257B2 true JP3562257B2 (en) 2004-09-08

Family

ID=17247332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25315797A Expired - Fee Related JP3562257B2 (en) 1997-09-18 1997-09-18 High voltage supply circuit

Country Status (1)

Country Link
JP (1) JP3562257B2 (en)

Also Published As

Publication number Publication date
JPH1198378A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
US4263622A (en) Automatic kinescope biasing system
JPH0317273B2 (en)
JP3562257B2 (en) High voltage supply circuit
JPH09247490A (en) Delay compensating dynamic focus amplifier
JPH03184479A (en) Focus voltage generator
FI82577B (en) RASTERKORRIGERINGSKRETS.
JP3422801B2 (en) Video device for controlling landing of electron beam on cathode ray tube display surface
US6285142B1 (en) Display apparatus having a horizontal screen size adjusting circuit in step-up type
EP0998133A1 (en) Horizontal deflection circuit
JP3226880B2 (en) Power supply modulation deflection device
JP2650999B2 (en) Horizontal deflection circuit
KR910003652Y1 (en) High voltage stabilization and picture distortion protecting circuit
JP2599790B2 (en) Horizontal deflection circuit
JPH08139957A (en) Display device
JPH09233357A (en) Horizontal deflection circuit provided with distortion correction circuit
JP3231216B2 (en) Display device
JP2992288B2 (en) Display device
JP3557870B2 (en) Television receiver
KR830002172B1 (en) Auto kinescope bias device
JPH0741257Y2 (en) Luminance signal correction circuit for television receiver
JP3395251B2 (en) Flat type CRT display device
JPS5811094Y2 (en) television receiver
JPH0286371A (en) Horizontal deflection circuit
JPS59186470A (en) Horizontal output circuit
JPH0585163U (en) Left and right pincushion distortion correction circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

LAPS Cancellation because of no payment of annual fees