JP3560686B2 - Method for manufacturing silicon optical device - Google Patents
Method for manufacturing silicon optical device Download PDFInfo
- Publication number
- JP3560686B2 JP3560686B2 JP13833995A JP13833995A JP3560686B2 JP 3560686 B2 JP3560686 B2 JP 3560686B2 JP 13833995 A JP13833995 A JP 13833995A JP 13833995 A JP13833995 A JP 13833995A JP 3560686 B2 JP3560686 B2 JP 3560686B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon
- magnetic field
- porous silicon
- anodic oxidation
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
- Formation Of Insulating Films (AREA)
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
Description
【0001】
【産業上の利用分野】
この発明は、多孔質シリコン光素子の製造方法に関するものである。さらに詳しくは、この発明は、可視域のシリコンLED、シリコンLD、可視域のシリコン光導電素子、シリコン光導波路、シリコン光共振器、さらにはそれらを一体化した光電子集積素子にまでおよぶ、シリコンを基本としたオプトエレクトロニクスの技術的基盤の確立として重要な、シリコンを基本材料とした発光・受光素子の量子効率の向上、発光スペクトル幅の狭帯化および発光の高速化に有効な、新しいシリコン光素子の製造方法に関するものである。
【0002】
【従来の技術とその課題】
室温で可視域の発光を示すシリコン材料としては、多孔質シリコン、シリコンクラスター、シリコンポリマーなどが知られている。これらの材料を、発光効率、試料作成におけるプロセスパラメータの制御性、大面積化・集積化などの素子化技術の適用性、光素子への発展性、試料の安定性などの点から比較した場合、総合的に最も優れているのは多孔質シリコンである。
【0003】
この多孔質シリコンの作成は、通常、単結晶シリコン基板の表面をHF水溶液中で電気化学的にエッチングする陽極酸化法によって行われる。しかし、この方法で作成された多孔質シリコンおよびその発光特性は、
▲1▼構造的・光学的・機械的性質の均一性を保ちつつ高い発光効率を得ることが困難である、
▲2▼光学的性質の均一な試料を得ることが困難なため、一般に発光スペクトルのピーク波長が励起光の波長によって大きく変化する、
▲3▼発光ピーク波長にかかわらず発光スペクトルの幅が広く(半値幅:300〜400meV)色純度が不十分、
▲4▼発光の減衰過程が非指数関数的であり、寿命にはナノ秒からマイクロ秒までのいくつかの成分を含む、
などの問題があり、素子としての実用化を図る上で、また光素子としての応用範囲の面で、大きな制約と限界があった。
【0004】
これらの問題は、陽極酸化という手法に付随した、多孔質シリコン層自身および多孔質シリコン内部の発光要素の構造的・光学的不均一性によるものである。したがって、陽極酸化の条件を変化するだけで多孔質シリコンの発光特性を飛躍的に向上することは困難であり、多孔質シリコンの形成過程および多孔質シリコンの性質に好影響を与える何らかの外部効果を導入し、陽極酸化法の制御性を質的に高めることが必要と思われる。
【0005】
このような観点から研究開発の現状を見た場合、これまでのところ、上記課題を克服しようとする提案は、本出願の検討以外にはほとんどなされていないのが現状である。
この発明は、以上の通りの事情に鑑みてなされたものであり、従来の欠点を解消し、可視発光性多孔質シリコンを用いたシリコン光素子の本格的展開を可能とするとともに、シリコンの応用分野を拡大することのできる、新しい多孔質シリコン光素子の製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
この発明は、上記の課題を解決するものとして、シリコン基板の表面をHF溶液中で陽極酸化する多孔質シリコン素子の製造において、陽極酸化処理の過程でシリコン基板に対して磁界を印加することを特徴とする多孔質シリコン光素子の製造方法を提供する。
【0007】
【作用】
この発明は、多孔質の形成がシリコン基板からのキャリア(正孔)の供給によって律せられていることを考慮してなされたものである。すなわち、シリコン−HF溶液界面でのシリコン溶出反応は基板中の正孔が消費される過程であること、多孔質の形成過程においてはそのシリコン溶出反応が細孔の先端部のみで局部的かつ自律的に進行していくこと、の2点に着目し、この発明では、上記の通りの「外部磁界を利用した陽極酸化」と「微弱な電流レベルでの静的な陽極酸化」および「それら二つの組み合わせ」によって、多孔質シリコン光素子の発光特性の質的向上を実現している。
【0008】
<磁界印加による陽極酸化>
この発明の基本技術の一つは、シリコン基板表面をHF溶液で陽極酸化するさいに、一様な外部磁界を基板に印加することである。これにより、細孔先端でのシリコン溶出反応に供給される正孔の方向が限定される。
多孔質シリコンの形成においては細孔が[100]方向に優先的に進むことから、たとえば面方位(100)のシリコン基板の面に垂直方向に磁界を印加して陽極酸化を行うと、基板内部から表面に向かう正孔の中で磁界方向と異なる方向に運動する正孔は磁界によって偏向を受けて細孔先端部には到達しにくくなる。十分に強い磁界を印加した場合には、磁界と平行に進む正孔のみが優先的に細孔先端部に供給される。そのため細孔は常に基板に垂直方向に進展していき、構造の均一なPSが形成される。同時に細孔表面のシリコン原子結合の水素終端も確実に行われるようになる。
【0009】
結果として、発光要素であるシリコン微結晶を高い空間密度で含み、構造が均一で、かつダングリングボンド(末結合手)の密度が低い、高品質の多孔質シリコンが形成される。これにより、多孔質シリコンの発光効率が著しく向上する。また、励起光の波長によって発光スペクトルが変化するという通常の多孔質シリコンでみられる好ましくない現象もなくなる。
【0010】
正孔の供給を選択的に行わせるという意味で、磁界の印加方向は必ずしも基板面に垂直でなくてもよく、基板面に水平でも同様な効果を生み出すことができる。細孔が[100]方向に優先的に進むことを考慮し、一般的には、基板の面方位に応じて磁界の印加方向を最適な条件に設定することになる。
<静的な陽極酸化>
この発明におけるもう一つの基本技術は、静的な陽極酸化である。ここでいう静的な陽極酸化とは、抵抗率の高いシリコン基板を、暗状態で、かつできるだけ低い電流密度で陽極酸化することをいう。すなわち、基板からHF溶液界面に熱的励起により供給される正孔密度がもともと低い基板を、低電流密度で電気化学的にエッチングする。この方法によれば、低い試料電位の下で陽極酸化が進み、多孔質シリコン形成過程における構造の乱れを最小限に抑えることができる。
【0011】
この方法の発光特性に対する主な効果は、発光スペクトル幅の狭帯化および発光寿命の低減と単一成分化である。そこで、発光効率を向上するため、陽極酸化の直後にHF水溶液中で試料に光照射(光源にはタングステンランプ、ハロゲンランプなどを用い、場合によって試料前面にフィルタをおき、照射光の波長を抑制する)を行う。これにより、狭い発光スペクトル幅と単一成分の短い発光寿命を保ったまま、高い発光効率を得ることができる。
【0012】
<二つの基本技術の結合>
上記の二つの基本技術は容易に結合でき、それぞれの効果をさらに高めることが可能である。すなわち、磁界印加の下で静的な陽極酸化を行うことにより、また光照射法を適宜取り入れることにより、多孔質シリコンの光素子材料としての特性が大幅に改善される。
【0013】
以上の手段により、陽極酸化法の特長を生かしつつ、
▲1▼構造的に均一で、高い発光効率をもつ、
▲2▼発光スペクトルのピーク波長が励起光の波長に依存しない、
▲3▼発光スペクトルの幅が狭く、発光の色純度が高い、
▲4▼発光の減衰過程が単一の寿命成分をもつ指数関数で表される、
などの特性を示す多孔質シリコンを得ることができる。
【0014】
なお、陽極酸化法の一般的試料は、以下の通りである。
【0015】
【実施例】
実施例1
実施例の一つとしての磁界印加陽極酸化法を概念として示したものが図1である。すなわち、裏面にオーミック電極(2)をとった面方位(100)のp形シリコンウエハー(比抵抗:0.4〜0.6Ωcm、厚さ:200μm)(1)の表面に、50wt% HF水溶液とエタノールとの混合液(混合比1:1)(3)中で定電流陽極酸化処理(電流密度:30mA/cm2 、時間は10min)を施し、多孔質シリコン層(4)を形成する。そのさい、陽極酸化セル(5)を図1のように磁極ピース(6)の間に配置し、シリコン基板面に垂直な方向に磁界を印加しながら陽極酸化を行う。
【0016】
このようにして作成した多孔質シリコン試料を室温で光励起し(励起源にはArまたはHe−Cdレーザを使用)、フォトルミネセンス(PL)の強度およびスペクトルを測定した。主な測定項目はPL発光強度の磁界強度依存性である。
図2はこのPLスペクトルの測定例である。PL発光スペクトルのピーク波長は磁界に依存しないが、PL強度は印加磁界強度の増大とともに急激に向上していく。磁界が8kGでは、磁界を印加しない通常の陽極酸化による試料に比べて約1桁PL強度が高くなる。
【0017】
また、磁界を印加しない通常の陽極酸化による試料では、PLスペクトルのピーク波長が励起光の波長によって大きく変化する。これに対して、磁界を印加した場合には、励起光がArレーザ(波長:488nm)でもHe−Cdレーザ(波長:325nm)でも、PLピーク波長は不変であった。このことは、多孔質シリコン内の発光要素(シリコン微結晶)のサイズのばらつきが低減され、かつ深さ方向のサイズ分布も均一であることを実証している。
【0018】
走査形電子顕微鏡の観察によれば、多孔質シリコン層の厚さは磁界の有無によらず一定であるが、多孔質シリコンの構造は表面および断面ともに磁界印加の下で作成した試料の方がより均一であった。
このように、磁界の印加が、多孔質シリコンの構造の変化を通じてPL強度の向上および光学的性質の均一化をもたらすことが確認された。
【0019】
実施例2
裏面にオーミック電極をとった面方位(111)のp形シリコンウエハー(比抵抗が90〜100Ωcm、厚さ200μm)の表面に、暗状態で低電流陽極酸化処理を施す。用いたHF水溶液は、HF:エタノール:水=2:1:2の混合比のもので、陽極酸化の電流密度は1mA/cm2 、時間は60sである。陽極酸化後、光を石英窓を通して陽極酸化セルへ導入し、試料面に照射する(光源:500Wのタングステンランプ、光照射時間:3min)。
【0020】
作成した多孔質シリコン試料を室温で光励起し(励起源にはArまたはHe−Cdレーザを使用)、PLの強度およびスペクトルを測定した。また、パルス励起光源としてN2 レーザを用い(波長:337nm)、発光寿命の測定も行った。
比較のため、同一の基板を通常の条件(中電流密度)で陽極酸化した試料も作成し、上と同様の測定を行った。具体的な陽極酸化条件は、陽極酸化電流密度:20mA/cm2 、陽極酸化時間:10minで、陽極酸化後の光照射時間は10minとした。
【0021】
静的陽極酸化により作成した試料の室温でのPLスペクトルは、図3の実線で示したものとなった。この図3中には通常の陽極酸化法による試料のPLスペクトルも点線で示してある。両者とも、励起光には同一強度(50μW)のHe−Cdレーザを用いた。この結果からわかるように、静的陽極酸化による試料では、PL発光効率が高く、またPLスペクトルの広がりは半値幅で170meVと、通常の試料に比べて約半分にまで狭帯化されている。
【0022】
さらに、PL発光寿命の測定からは、PLスペクトルの狭帯化は発光寿命の減少と単一成分化をもたらすことが確認できた。
発光素子に一般に実用されているヒ化ガリウム(GaAs)などの直接遷移形化合物半導体でも、PLスペクトルは半値幅で60meV程度の広がりをもつ。図3の結果は、静的陽極酸化法と磁界印加の効果を組み合わせれば直接遷移形化合物半導体に匹敵するシャープなPLスペクトルと高速応答を得ることが多孔質シリコンにおいても可能であることを示している。
【0023】
【発明の効果】
以上、詳しく述べたように、陽極酸化法に磁界印加、静的プロセスおよび光照射の効果を付与することによって、多孔質シリコンの素子化を図る上で最大の課題(発光効率の向上、PLスペクトルの狭帯化、発光応答の高速化と単一成分化)を克服する道が開かれる。
【0024】
多孔質シリコンの特性を質的に高め、直接遷移形半導体と同様の発光特性をもった可視域シリコン発光材料を実現するものとして、可視域の受光、発光、導波、光共振、光増幅機能を備えたシリコン光集積素子を可能にする意味で、この発明の応用範囲は非常に広く、発展性や波及力もきわめて大きい。
【図面の簡単な説明】
【図1】磁界印加陽極酸化法の概念を示した図である。
【図2】陽極酸化時の印加磁界がPL発光スペクトルに及ぼす効果を示した図である。
【図3】静的陽極酸化法によって作成した多孔質シリコンのPLスペクトル(実線)と通常の陽極酸化法によって作成した多孔質シリコンのPLスペクトル(点線)の比較を示した図である。
【符号の説明】
1 シリコンウエハー
2 Alオーミック電極
3 混合液
4 多孔質シリコン層
5 陽極酸化セル
6 磁極ピース[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a porous silicon optical device. More specifically, the present invention relates to a silicon LED in the visible region, a silicon LD, a silicon photoconductive device in the visible region, a silicon optical waveguide, a silicon optical resonator, and even an optoelectronic integrated device integrating them. New silicon light that is effective for improving the quantum efficiency of light-emitting and light-receiving devices using silicon as a basic material, narrowing the emission spectrum width, and increasing the speed of light emission, which is important for establishing the technical basis of optoelectronics. The present invention relates to a method for manufacturing an element.
[0002]
[Prior art and its problems]
As a silicon material that emits light in the visible region at room temperature, porous silicon, silicon clusters, silicon polymers, and the like are known. When comparing these materials in terms of luminous efficiency, controllability of process parameters in sample preparation, applicability of device technology such as enlargement and integration, development into optical devices, sample stability, etc. The best overall is porous silicon.
[0003]
This porous silicon is usually formed by an anodic oxidation method in which the surface of a single crystal silicon substrate is electrochemically etched in an HF aqueous solution. However, the porous silicon produced by this method and its luminescent properties are:
(1) It is difficult to obtain high luminous efficiency while maintaining uniformity of structural, optical, and mechanical properties.
(2) Since it is difficult to obtain a sample having a uniform optical property, the peak wavelength of the emission spectrum generally varies greatly depending on the wavelength of the excitation light.
(3) The width of the emission spectrum is wide (half width: 300 to 400 meV) regardless of the emission peak wavelength, and the color purity is insufficient.
(4) The decay process of light emission is non-exponential, and its lifetime includes several components from nanosecond to microsecond.
However, there are large restrictions and limitations in practical application as an element and in terms of an application range as an optical element.
[0004]
These problems are due to the structural and optical inhomogeneity of the porous silicon layer itself and the light emitting elements inside the porous silicon, which are associated with the technique of anodization. Therefore, it is difficult to dramatically improve the light-emitting characteristics of porous silicon only by changing the conditions of anodic oxidation, and some external effects that favorably affect the process of forming porous silicon and the properties of porous silicon. It is considered necessary to improve the controllability of the anodic oxidation method qualitatively.
[0005]
Looking at the current state of research and development from such a viewpoint, so far, almost no proposals for overcoming the above problems have been made except for the examination of the present application.
The present invention has been made in view of the above circumstances, and solves the conventional disadvantages, enables full-scale development of a silicon optical device using visible light-emitting porous silicon, and applies silicon. It is an object of the present invention to provide a method for manufacturing a new porous silicon optical device that can expand the field.
[0006]
[Means for Solving the Problems]
The present invention, as to solve the above problems, in the production of porous silicon devices anodizing the surface of the silicon substrate in an HF solution, apply a magnetic field to the silicon substrate in the course of the positive electrode oxidation process to provide a method of manufacturing a porous silicon optoelectronic device, wherein the this.
[0007]
[Action]
The present invention has been made in consideration of the fact that the formation of the porosity is controlled by the supply of carriers (holes) from a silicon substrate. That is, the silicon elution reaction at the silicon-HF solution interface is a process in which holes in the substrate are consumed. In the process of forming a porous body, the silicon elution reaction is locally and autonomously performed only at the tip of the pore. The present invention focuses on the following two points: “anodic oxidation using an external magnetic field”, “static anodization at a weak current level”, and With the combination of the two, the qualitative improvement of the light emission characteristics of the porous silicon optical device is realized.
[0008]
<Anodic oxidation by applying magnetic field>
One of the basic techniques of the present invention is to apply a uniform external magnetic field to a silicon substrate surface when anodizing the surface with a HF solution. This limits the direction of holes supplied to the silicon elution reaction at the tip of the pore.
In the formation of porous silicon, the pores preferentially advance in the [100] direction. For example, when anodic oxidation is performed by applying a magnetic field in a direction perpendicular to the surface of the silicon substrate having a plane orientation of (100), The holes moving in a direction different from the direction of the magnetic field among the holes from the hole toward the surface are deflected by the magnetic field, and are difficult to reach the tip of the pore. When a sufficiently strong magnetic field is applied, only holes traveling parallel to the magnetic field are preferentially supplied to the tip of the pore. Therefore, the pores always evolve in the direction perpendicular to the substrate, and a PS having a uniform structure is formed. At the same time, the hydrogen termination of the silicon atom bond on the pore surface is surely performed.
[0009]
As a result, high-quality porous silicon containing silicon microcrystals as light-emitting elements at a high spatial density, having a uniform structure, and having a low dangling bond density is formed. Thereby, the luminous efficiency of the porous silicon is significantly improved. In addition, the undesirable phenomenon that the emission spectrum changes depending on the wavelength of the excitation light, which is observed in ordinary porous silicon, is also eliminated.
[0010]
In the sense that holes are selectively supplied, the direction in which the magnetic field is applied does not necessarily have to be perpendicular to the substrate surface, and the same effect can be produced even when the magnetic field is horizontal to the substrate surface. Considering that the pores preferentially advance in the [100] direction, generally, the application direction of the magnetic field is set to an optimum condition according to the plane orientation of the substrate.
<Static anodization>
Another basic technique in the present invention is static anodization. Here, the static anodic oxidation refers to anodic oxidation of a silicon substrate having a high resistivity in a dark state at a current density as low as possible. That is, a substrate originally having a low hole density supplied by thermal excitation from the substrate to the interface of the HF solution is electrochemically etched at a low current density. According to this method, anodic oxidation proceeds under a low sample potential, and the disorder of the structure during the process of forming porous silicon can be minimized.
[0011]
The main effects of this method on the emission characteristics are narrowing of the emission spectrum width, reduction of the emission lifetime, and integration into a single component. Therefore, in order to improve the luminous efficiency, the sample is irradiated with light in an aqueous HF solution immediately after anodic oxidation (a tungsten lamp, a halogen lamp, or the like is used as a light source, and a filter is placed in front of the sample in some cases to suppress the wavelength of the irradiation light). Do). Thereby, high luminous efficiency can be obtained while maintaining a narrow luminous spectrum width and a short luminous life of a single component.
[0012]
<Combination of two basic technologies>
The above two basic technologies can be easily combined, and the effect of each can be further enhanced. That is, by performing static anodic oxidation under the application of a magnetic field, and by appropriately incorporating a light irradiation method, the characteristics of porous silicon as an optical element material are significantly improved.
[0013]
By the above means, while taking advantage of the features of the anodic oxidation method,
(1) It is structurally uniform and has high luminous efficiency.
(2) the peak wavelength of the emission spectrum does not depend on the wavelength of the excitation light,
(3) The emission spectrum is narrow and the color purity of the emission is high.
(4) The emission decay process is represented by an exponential function having a single lifetime component.
It is possible to obtain porous silicon exhibiting such characteristics.
[0014]
In addition, the general sample of the anodic oxidation method is as follows.
[0015]
【Example】
Example 1
FIG. 1 conceptually illustrates a magnetic field application anodic oxidation method as one of the embodiments. That is, a 50 wt% HF aqueous solution is applied to the surface of a p-type silicon wafer (specific resistance: 0.4 to 0.6 Ωcm, thickness: 200 μm) having a plane orientation (100) with an ohmic electrode (2) on the back. A constant current anodic oxidation treatment (current density: 30 mA / cm 2 , time: 10 min) is performed in a mixed solution (mixing ratio: 1: 1) (3) of water and ethanol to form a porous silicon layer (4). At this time, the anodizing cell (5) is arranged between the magnetic pole pieces (6) as shown in FIG. 1, and anodizing is performed while applying a magnetic field in a direction perpendicular to the silicon substrate surface.
[0016]
The porous silicon sample thus produced was optically excited at room temperature (Ar or He-Cd laser was used as an excitation source), and the intensity and spectrum of photoluminescence (PL) were measured. The main measurement item is the dependence of the PL emission intensity on the magnetic field intensity.
FIG. 2 shows a measurement example of the PL spectrum. Although the peak wavelength of the PL emission spectrum does not depend on the magnetic field, the PL intensity sharply increases as the applied magnetic field intensity increases. When the magnetic field is 8 kG, the PL intensity is increased by about one digit as compared with a normal anodic oxidation sample to which no magnetic field is applied.
[0017]
Further, in a sample obtained by ordinary anodic oxidation in which no magnetic field is applied, the peak wavelength of the PL spectrum greatly changes depending on the wavelength of the excitation light. On the other hand, when a magnetic field was applied, the PL peak wavelength was unchanged whether the excitation light was an Ar laser (wavelength: 488 nm) or a He-Cd laser (wavelength: 325 nm). This demonstrates that the variation in the size of the light-emitting elements (silicon microcrystals) in the porous silicon is reduced, and that the size distribution in the depth direction is also uniform.
[0018]
According to the observation with a scanning electron microscope, the thickness of the porous silicon layer is constant regardless of the presence or absence of a magnetic field. It was more uniform.
Thus, it was confirmed that the application of a magnetic field resulted in an improvement in PL intensity and a uniform optical property through a change in the structure of porous silicon.
[0019]
Example 2
A low-current anodizing treatment is performed in a dark state on the surface of a p-type silicon wafer (specific resistance: 90 to 100 Ωcm, thickness: 200 μm) having a plane orientation (111) and an ohmic electrode on the back surface. The HF aqueous solution used had a mixture ratio of HF: ethanol: water = 2: 1: 2, the current density of the anodic oxidation was 1 mA / cm 2 , and the time was 60 s. After anodic oxidation, light is introduced into the anodic oxidation cell through the quartz window, and irradiated onto the sample surface (light source: tungsten lamp of 500 W, light irradiation time: 3 min).
[0020]
The produced porous silicon sample was optically excited at room temperature (Ar or He-Cd laser was used as an excitation source), and the intensity and spectrum of PL were measured. Further, the N 2 laser used as a pulse excitation light source (wavelength: 337 nm), was also measured emission lifetime.
For comparison, a sample was prepared by anodizing the same substrate under normal conditions (medium current density), and the same measurement as above was performed. Specific anodizing conditions were as follows: anodizing current density: 20 mA / cm 2 , anodizing time: 10 minutes, and light irradiation time after anodizing was 10 minutes.
[0021]
The PL spectrum at room temperature of the sample prepared by static anodic oxidation was as shown by the solid line in FIG. In FIG. 3, the PL spectrum of the sample obtained by the ordinary anodic oxidation method is also indicated by a dotted line. In both cases, a He-Cd laser having the same intensity (50 μW) was used as the excitation light. As can be seen from the results, in the sample obtained by the static anodic oxidation, the PL emission efficiency is high, and the spread of the PL spectrum is 170 meV in half-value width, which is narrowed to about half that of the normal sample.
[0022]
Further, from the measurement of the PL emission lifetime, it was confirmed that the narrowing of the PL spectrum resulted in a decrease in the emission lifetime and a single component.
Even with a direct transition compound semiconductor such as gallium arsenide (GaAs) generally used in a light emitting device, the PL spectrum has a half value width of about 60 meV. The results in FIG. 3 show that if the effects of the static anodization method and the application of a magnetic field are combined, a sharp PL spectrum and a high-speed response comparable to a direct transition type compound semiconductor can be obtained even in porous silicon. ing.
[0023]
【The invention's effect】
As described in detail above, by applying the effects of a magnetic field application, a static process, and light irradiation to the anodic oxidation method, the greatest problems in achieving an element of porous silicon (improvement of luminous efficiency, PL spectrum Narrowing the band, speeding up the luminous response and making it a single component).
[0024]
To improve the characteristics of porous silicon qualitatively and to realize a visible-range silicon light-emitting material with the same light-emitting characteristics as a direct-transition semiconductor, it has functions of light reception, light emission, waveguide, optical resonance, and optical amplification in the visible region. In order to enable a silicon optical integrated device having the above-mentioned structure, the application range of the present invention is very wide, and the development and ripple power are extremely large.
[Brief description of the drawings]
FIG. 1 is a view showing the concept of a magnetic field application anodic oxidation method.
FIG. 2 is a diagram showing the effect of an applied magnetic field during anodization on a PL emission spectrum.
FIG. 3 is a diagram showing a comparison between a PL spectrum (solid line) of porous silicon prepared by a static anodic oxidation method and a PL spectrum (dotted line) of porous silicon prepared by a normal anodic oxidation method.
[Explanation of symbols]
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13833995A JP3560686B2 (en) | 1995-06-05 | 1995-06-05 | Method for manufacturing silicon optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13833995A JP3560686B2 (en) | 1995-06-05 | 1995-06-05 | Method for manufacturing silicon optical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08335578A JPH08335578A (en) | 1996-12-17 |
JP3560686B2 true JP3560686B2 (en) | 2004-09-02 |
Family
ID=15219610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13833995A Expired - Fee Related JP3560686B2 (en) | 1995-06-05 | 1995-06-05 | Method for manufacturing silicon optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3560686B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4750447B2 (en) * | 2004-03-31 | 2011-08-17 | 株式会社 資生堂 | Ultraviolet absorber and luminescent agent containing silicon cluster or germanium cluster, and external preparation for skin using the cluster |
US7833428B2 (en) * | 2006-06-16 | 2010-11-16 | Packer Engineering, Inc. | Processes and apparatuses for producing porous materials |
-
1995
- 1995-06-05 JP JP13833995A patent/JP3560686B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08335578A (en) | 1996-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Richter et al. | Current-induced light emission from a porous silicon device | |
US6585947B1 (en) | Method for producing silicon nanoparticles | |
JP3560686B2 (en) | Method for manufacturing silicon optical device | |
Holonyak et al. | Stimulated Emission in an Indirect Semiconductor: N Isoelectronic Trap‐Assisted Recombination in GaAs1− xPx (x> 0.44) | |
Holonyak Jr et al. | Stimulated Emission Involving the Nitrogen Isoelectronic Trap in GaAs1− x P x | |
US20030207147A1 (en) | Enhancement, stabilization and metallization of porous silicon | |
JP5774900B2 (en) | Light emitting diode element and method for manufacturing the same | |
JPH04356977A (en) | Porous silicon | |
JP5330880B2 (en) | Light emitting diode element and method for manufacturing the same | |
JP3537624B2 (en) | Electron-emitting device | |
Campbell et al. | Luminescence, laser, and carrier‐lifetime behavior of constant‐temperature LPE In1− x Gax P (x= 0.52) grown on (100) GaAs | |
US3750046A (en) | Silver-doped cadmium tin phosphide laser | |
Fortin et al. | Luminescence, level saturation, and optical gain in a single InGaAs/GaAs quantum well | |
JP3395810B2 (en) | Method for manufacturing porous silicon light emitting device | |
JPH0555627A (en) | Injection light emitting element | |
Scifres et al. | Stimulated Emission and Laser Operation (cw, 77° K) of Direct and Indirect GaAs1− x P x on Nitrogen Isoelectronic Trap Transitions | |
Garcia et al. | Gold plasmonic enhanced luminescence of silica encapsulated semiconductor hetero-nanoplatelets | |
EP0181265B1 (en) | Optical semiconductor device and method of light emission | |
JPS5966184A (en) | Method of producing semiconductor laser | |
JPH0799342A (en) | Manufacture of porous silicon | |
Billat et al. | Electroluminescence of heavily doped p-type porous silicon under electrochemical oxidation in the potentiostatic regime | |
Gole et al. | Contrasting photovoltaic response and photoluminescence for distinct porous silicon pore structures | |
JP2012039016A (en) | Manufacturing method of porous silicon optical element | |
Kelly et al. | Porous‐etched Semiconductors: Formation and Characterization | |
JPH05275743A (en) | Increasing method for luminous efficiency od porous silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040427 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040526 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090604 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |