JP3560576B2 - Polyester fiber board and method of manufacturing the same - Google Patents

Polyester fiber board and method of manufacturing the same Download PDF

Info

Publication number
JP3560576B2
JP3560576B2 JP2001287288A JP2001287288A JP3560576B2 JP 3560576 B2 JP3560576 B2 JP 3560576B2 JP 2001287288 A JP2001287288 A JP 2001287288A JP 2001287288 A JP2001287288 A JP 2001287288A JP 3560576 B2 JP3560576 B2 JP 3560576B2
Authority
JP
Japan
Prior art keywords
polyester fiber
thickness
temperature
rigidity
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001287288A
Other languages
Japanese (ja)
Other versions
JP2003089959A (en
Inventor
善孝 保科
Original Assignee
四国繊維販売株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四国繊維販売株式会社 filed Critical 四国繊維販売株式会社
Priority to JP2001287288A priority Critical patent/JP3560576B2/en
Publication of JP2003089959A publication Critical patent/JP2003089959A/en
Application granted granted Critical
Publication of JP3560576B2 publication Critical patent/JP3560576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業の属する技術分野】
本発明は、ポリエステル繊維製ボード及びその製造方法に関する。
【0002】
【従来の技術】
環境ホルモンが問題視される中で、ポリエステルは地球に易しい高分子材料として多くの分野で使用されている。ポリエステル繊維で構成される不織布は、安価で気孔率が90%以上の多孔質材料であり、また、廃ペットボトルからの再生繊維により製造することも可能である。ポリエステル繊維製不織布は2〜40デニールの太さのポリエステル製繊維50〜90%、に対してバインダーと称する低融点繊維を絡めたポリエステル繊維を50〜10%配合し、混合した後、ほぐし工程、すき工程を経て、積層成形されることにより製造されている。不織布は、先に述べたように気孔率が90%以上の多孔質材料であるが故に、軽量で、断熱性に富み、また弾性に富むことから、これまで敷き布団の芯材として活用されてきた。このようにポリエステル繊維製不織布は、極めて気孔率の高い多孔質材料である故に、軽量で、断熱性に富み、また弾性に富むことから、これまで敷き布団の芯材として広く利用されてきたものの、他の分野での用途開発は全く実現されなかった。
【0003】
【発明が解決しようとする課題】
しかしながら、廃ペットボトルのリサイクルについての社会的要求の高揚、また環境ホルモンとしていろいろな高分子を含む材料が問題視される中、ポリエステルが安全であることなどを考えると、ポリエステル繊維製不織布の建築材料等への用途開発を図るために、これら不織布の加工技術を構築し、新しい形態の材料とする必要がある。
【0004】
本発明は、安価で気孔率が90%以上の多孔質材料であり、また、廃ペットボトルからの再生繊維により製造することも可能であるポリエステル繊維で構成される不織布を原材料として、所望の範囲で任意の厚さおよび剛性をもち、表面平滑性と平行度を有する応用性の高いポリエステル繊維製ボードを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、廃ペットボトルからの太さ17デニールの再生繊維であるポリエステル製繊維50〜90%に対して、低融点繊維を絡めた太さ4デニールのポリエステル繊維50〜10%を配合し、混合した後、ほぐし工程、すき工程を経て、積層成形して、多孔質材料であるポリエステル繊維製不織布を製造し、これを135〜200℃の温度で、3〜30MPaの圧力で、10秒〜5分間熱間プレス成形した後、0〜40℃の温度で、3〜30MPaの圧力で、熱間プレスと同時間冷間プレス成形することにより製造した、両面表面層を硬化させ全体として剛性を有し、かつ、表面平滑性及び平行度を有するボードに仕上げるポリエステル繊維製ボードを要旨としている。
【0006】
また、本発明は、廃ペットボトルからの太さ17デニールの再生繊維であるポリエステル製繊維50〜90%に対して、低融点繊維を絡めた太さ4デニールのポリエステル繊維50〜10%を配合し、混合した後、ほぐし工程、すき工程を経て、積層成形して、多孔質材料であるポリエステル繊維製不織布を製造し、これを135〜200℃の温度で、3〜30MPaの圧力で、10秒〜5分間熱間プレス成形した後、0〜40℃の温度で、3〜30MPaの圧力で、熱間プレスと同時間冷間プレス成形することにより、両面表面層を硬化させ、全体として剛性を有し、かつ、表面平滑性及び平行度を有するボードに仕上げるポリエステル繊維製ボードの製造方法を要旨としている。
【0007】
熱間及び冷間プレス成形時に、上下加圧面間に所望の厚さの金属製スペーサーを挿入することにより、作製するポリエステル繊維製ボードの厚みを自由に制御しており、その場合、本発明は、多孔質材料であるポリエステル繊維製不織布を、熱間プレス成形した後、冷間プレス成形することにより、両面表面層を硬化させ、全体として剛性を有し、かつ、表面平滑性及び平行度を有するボードに仕上げること、ならびに、熱間及び冷間プレス成形時に、上下加圧面間に所望の厚さの金属製スペーサーを挿入することにより、作製するポリエステル繊維製ボードの厚みを自由に制御することを特徴とするポリエステル繊維製ボードの製造方法である。
【0008】
熱間プレス成形時の温度、時間および圧力を制御することにより、表面硬化部分の厚さと剛性を調整しており、その場合、本発明は、多孔質材料であるポリエステル繊維製不織布を、熱間プレス成形した後、冷間プレス成形することにより、両面表面層を硬化させ、全体として剛性を有し、かつ、表面平滑性及び平行度を有するボードに仕上げること、ならびに、熱間プレス成形時の温度、時間および圧力を制御することにより、表面硬化部分の厚さと剛性を調整すること、好ましくは熱間及び冷間プレス成形時に、上下加圧面間に所望の厚さの金属製スペーサーを挿入することにより、作製するポリエステル繊維製ボードの厚みを自由に制御することを特徴とするポリエステル繊維製ボードの製造方法である。
【0009】
加圧温度および加圧時間を制御することにより、加圧面から厚み方向に向けてのポリエステル繊維の接触部の融着現象が生じる深さを調整し、その結果として剛性を調整しており、その場合、本発明は、多孔質材料であるポリエステル繊維製不織布を、熱間プレス成形した後、冷間プレス成形することにより、両面表面層を硬化させ、全体として剛性を有し、かつ、表面平滑性及び平行度を有するボードに仕上げること、熱間プレス成形時の温度、時間および圧力を制御することにより、表面硬化部分の厚さと剛性を調整するとともに、加圧温度および加圧時間を制御することにより、加圧面から厚み方向に対するポリエステル繊維の接触部の融着現象が生じる深さを調整し、その結果として剛性を調整すること、好ましくはさらに熱間及び冷間プレス成形時に、上下加圧面間に所望の厚さの金属製スペーサーを挿入することにより、作製するポリエステル繊維製ボードの厚みを自由に制御することを特徴とするポリエステル繊維製ボードの製造方法である。
【0010】
【発明の実施の形態】
本発明のポリエステル繊維製ボードの原料としてポリエステル繊維製不織布を用いる。ポリエステル繊維で構成される不織布は、安価で気孔率が90%以上の多孔質材料であり、また、廃ペットボトルからの再生繊維により製造することも可能である。不織布は、軽量で、断熱性に富み、また弾性に富むことから、これまで敷き布団の芯材として活用されてきた。ポリエステル繊維製不織布は2〜40デニールの太さのポリエステル製繊維50〜90%に対してバインダーと称する低融点繊維を絡めたポリエステル繊維を50〜10%配合し、混合した後、ほぐし工程、すき工程を経て、積層成形されることにより製造される。
【0011】
本発明のポリエステル繊維製ボードの製造方法は、まず、ポリエステル繊維50〜90%に対して低融点繊維を絡めたポリエステル繊維を50〜10%配合し、混合した後、ほぐし工程、すき工程を経て、積層成形することによりポリエステル繊維製不織布は製造される。
このポリエステル繊維製不織布を135〜200℃の温度で、3〜30MPaの圧力で、10秒〜5分間熱間プレス成形する。熱間プレス成形した後、0〜40℃の温度で、3〜30MPaの圧力で、熱間プレスと同時間、冷間プレス成形をする。熱間プレス成形と冷間プレス成形により、両面表面層を硬化させ、全体として剛性を有し、かつ、表面平滑性及び平行度を有するポリエステル繊維製ボードを製造し得る。
【0012】
【作用】
熱間及び冷間プレス成形時に、上下加圧面間に所望の厚さの金属製スペーサーを挿入することにより、作製するポリエステル繊維製ボードの厚みを自由に制御することが可能である。
【0013】
ポリエステル繊維の溶融開始温度と同程度の温度である135℃以上の温度で熱間プレス成形により、プレス両面近傍のポリエステル繊維は接触部分で融着し、これを冷間プレス工程で冷却・固定することにより、プレスされた両面表面を硬化させ、全体として剛性を有し、かつ表面平滑性及び平行度を有するポリエステル繊維製ボードとなる。
【0014】
表面硬化部分の厚さと剛性は、熱間プレス成形時の温度が高いほど、時間が長いほど、圧力が高いほど高くなる。加圧温度が高く、かつ加圧時間が長くなるほど、加圧面から厚み方向に対して深い部分までポリエステル繊維の接触部の融着現象が生じ、その結果として剛性が高くなるものと考えられる。
【0015】
【実施例】
本願発明の詳細を実施例で説明する。本願発明はこれら実施例によって何ら限定されるものではない。
【0016】
実施例1
太さ17デニールのポリエステル繊維70%に対して低融点繊維を絡めた太さ4デニールのポリエステル繊維を30%配合し、混合した後、ほぐし工程、すき工程を経て、積層成形することにより厚さ30mmのポリエステル繊維製不織布を製造した。
このポリエステル繊維製不織布を180℃の温度、10MPaの圧力でプレス面間に12mmの厚さのスペーサーを挿入し、2分間熱間プレス成形した後、35℃の温度、10MPaの圧力で、熱間プレスと同様に同時間冷間プレス成形することにより900×900×12mmのポリエステル繊維製ボードを作製した。ボードの厚みは12mmで、熱間及び冷間加圧面は900×900mmの両面である。
【0017】
試作したボードの周辺部における一片を四等分した計16点、及び長て方向の二等分線上を四等分した3点、合計19点の厚みを測定した。測定した厚みは、12.10〜12.22の間にあり、平均厚みは12.18mmであった。すなわち、厚みのばらつきは、平均厚みの1%以内にあり、本発明による方法で作製したポリエステル繊維ボードは十分なる平行度を有するといえる。
【0018】
また、加圧面近傍のポリエステル繊維製ボードの微構造を観察した走査型電子顕微鏡写真を図1に、厚み方向における中心部、すなわち加圧面から最も遠い部分のポリエステル繊維製ボードの微構造を観察した走査型電子顕微鏡写真を図2に示す。
【0019】
加圧面近傍の微構造を示す図1において、ポリエステル繊維は、その接触部において融着している。一方、厚み方向における中心部の微構造を示す図2では、ポリエステル繊維の接触部における融着現象は認められない。
【0020】
これらのことから、加圧温度が高く、かつ加圧時間が長くなるほど、加圧面から厚み方向に対して深い部分までポリエステル繊維の接触部の融着現象が生じ、その結果として剛性が高くなるものと考えられる。
【0021】
実施例2
太さ17デニールのポリエステル繊維70%に対して低融点繊維を絡めた太さ4デニールのポリエステル繊維を30%配合し、混合した後、ほぐし工程、すき工程を経て、積層成形することによりポリエステル繊維製不織布を製造した。このポリエステル繊維製不織布を10MPaの圧力で、140、170、200℃の三種類温度、1、2、3分間の三種類の時間、計9種類の条件で熱間プレス成形した後、室温、約28℃の温度で、10MPaの圧力で、熱間プレスと同時間冷間プレス成形することにより200×100×9mmのポリエステル繊維製ボードを作製した。なお、熱間及び冷間ブレス成形時のプレス面間に挿入するスペーサーは厚み9mmとした。この様にして作製した9種類のポリエステル繊維製ボードのかさ比重、曲げ強さ、曲げヤング率を測定した結果を表1に示す。なお、曲げ試験のスパンは150mm、また、表1の結果はいずれも5試料の測定値の平均値である。
【0022】
【表1】

Figure 0003560576
【0023】
表1において、プレス温度が140℃のかさ比重は、他の温度条件に比較して、若干小さい値を示しているが、大きい差異はなく、ポリエステル繊維製ボードを熱間及び冷間プレス成形するときに、ブレス面間に9mmのスペーサーを挿入したことにより、プレス温度や時間が異なっても、作製したボードの厚みはほぼ同程度の厚みになったことが、かさ比重がプレス条件に左右されなかった原因である。一方、曲げ強さや曲げヤング率は、プレス温度が高くなるに従って、またプレス時間が長くなるに従って高い値を示している。これは、熱間プレス成形することによりプレス面近傍のポリエステル繊維の接触部が融着し、プレス温度が高くかつプレス時間が長くなるほど、ポリエステル繊維製ボード全体に占めるポリエステル繊維接触部の融着部分の割合が増加することによる。以上の結果から、剛性の全くないポリエステル繊維製不織布を、所定の温度、時間で、熱間及び冷間プレスすることにより、剛性を有し、かつ平滑で平行度を有するポリエステル繊維製ボードを作製することが可能である。また、本ボードの剛性はプレス時間、プレス温度及びプレス時の圧縮率により、ある程度自由に制御し得る。
【0024】
【発明の効果】
安価で気孔率が90%以上の多孔質材料であり、また、廃ペットボトルからの再生繊維により製造することも可能であるポリエステル繊維で構成される不織布から、所望の範囲で任意の厚さおよび剛性をもち、表面平滑性と平行度を有するポリエステル繊維製ボードを提供することができる。
【図面の簡単な説明】
【図1】加圧面近傍のポリエステル繊維製ボードの微構造を観察した走査型電子顕微鏡写真である。
【図2】加圧面から最も遠い部分のポリエステル繊維製ボードの微構造を観察した走査型電子顕微鏡写真である。[0001]
[Technical field to which industry belongs]
The present invention relates to a polyester fiber board and a method for producing the same.
[0002]
[Prior art]
While environmental hormones are regarded as a problem, polyester is used in many fields as a polymer material that is easy on the earth. The nonwoven fabric composed of polyester fiber is a porous material that is inexpensive and has a porosity of 90% or more, and can also be manufactured using recycled fibers from waste PET bottles. The polyester fiber non-woven fabric is composed of 50 to 90% of a polyester fiber having a thickness of 2 to 40 deniers, 50 to 10% of a polyester fiber entangled with a low-melting fiber called a binder, and mixing, followed by a loosening step. It is manufactured by laminating through a plowing process. Since the nonwoven fabric is a porous material having a porosity of 90% or more as described above, it has been used as a core material of a mattress because it is lightweight, rich in heat insulation, and rich in elasticity. . As described above, since the nonwoven fabric made of polyester fiber is a porous material having a very high porosity, it is lightweight, rich in heat insulation, and rich in elasticity.Thus, it has been widely used as a core material for mattresses. Application development in other fields has never been realized.
[0003]
[Problems to be solved by the invention]
However, considering the rising social demand for recycling of waste PET bottles and the fact that materials containing various polymers as environmental hormones are problematic, considering the safety of polyester, the construction of polyester fiber nonwoven fabrics In order to develop applications for materials and the like, it is necessary to construct a processing technology for these nonwoven fabrics and use them in new forms of materials.
[0004]
The present invention uses a non-woven fabric composed of polyester fiber, which is inexpensive and has a porosity of 90% or more and can be produced from recycled fibers from waste PET bottles, as a raw material, and has a desired range. It is an object of the present invention to provide a highly applicable polyester fiber board having an arbitrary thickness and rigidity and having surface smoothness and parallelism.
[0005]
[Means for Solving the Problems]
The present invention blends 50 to 90% of polyester fibers, which are regenerated fibers of 17 denier in thickness from waste PET bottles, with 50 to 10% of 4 denier polyester fibers entangled with low-melting fibers, After mixing, through a loosening step and a squeezing step, lamination molding is performed to produce a nonwoven fabric made of a polyester fiber as a porous material, which is produced at a temperature of 135 to 200 ° C and a pressure of 3 to 30 MPa for 10 seconds to after press-molding for 5 minutes heat at a temperature of 0 to 40 ° C., at a pressure of 3~30MPa, it was prepared by the same time cold press forming and hot pressing to cure the two-sided surface layer, the rigidity as a whole And a polyester fiber board to be finished into a board having surface smoothness and parallelism.
[0006]
Further, the present invention blends 50 to 90% of a polyester fiber which is a regenerated fiber having a thickness of 17 denier from a waste PET bottle and 50 to 10% of a 4 denier polyester fiber entangled with a low melting point fiber. After mixing, after a loosening step and a squeezing step, lamination molding is performed to produce a nonwoven fabric made of a polyester fiber which is a porous material, which is produced at a temperature of 135 to 200 ° C and a pressure of 3 to 30 MPa at a pressure of 10 After hot press forming for 5 seconds , the surface layer on both sides is hardened by cold press forming at a temperature of 0 to 40 ° C. and a pressure of 3 to 30 MPa for the same time as the hot press. The gist of the present invention is a method for producing a polyester fiber board for finishing a board having surface smoothness and parallelism.
[0007]
At the time of hot and cold press forming, by inserting a metal spacer of a desired thickness between the upper and lower pressing surfaces, the thickness of the polyester fiber board to be produced is freely controlled, in which case, the present invention After hot-press-molding a nonwoven fabric made of a polyester fiber which is a porous material, the two-sided surface layer is cured by cold-pressing, and has rigidity as a whole, and has a surface smoothness and parallelism. Finishing into a board having, and freely controlling the thickness of the polyester fiber board to be produced by inserting a metal spacer of a desired thickness between the upper and lower pressing surfaces during hot and cold press forming. This is a method for producing a polyester fiber board.
[0008]
By controlling the temperature, time and pressure during hot press forming, the thickness and rigidity of the surface hardened portion are adjusted. After press forming, by cold press forming, the surface layers on both sides are hardened, having rigidity as a whole, and finishing into a board with surface smoothness and parallelism, and during hot press forming Adjusting the thickness and rigidity of the hardened part by controlling the temperature, time and pressure, preferably inserting a metal spacer of the desired thickness between the upper and lower pressing surfaces during hot and cold press forming This is a method for producing a polyester fiber board, characterized by freely controlling the thickness of the polyester fiber board to be produced.
[0009]
By controlling the pressing temperature and pressing time, the depth at which the fusion phenomenon of the polyester fiber contact portion from the pressing surface toward the thickness direction occurs is adjusted, and as a result, the rigidity is adjusted. In this case, the present invention provides a nonwoven fabric made of a polyester fiber which is a porous material, after hot press molding, and then cold press molding, thereby curing the surface layers on both sides, and has rigidity as a whole, and has a smooth surface. By controlling the temperature, time and pressure during hot press forming to adjust the thickness and rigidity of the surface hardened part, and control the pressing temperature and pressing time by finishing the board with properties and parallelism By adjusting the depth at which the fusion phenomenon of the contact portion of the polyester fiber to the thickness direction from the pressing surface occurs, to adjust the rigidity as a result, preferably further hot and During the press forming, a method of manufacturing a polyester fiber board characterized by freely controlling the thickness of a polyester fiber board to be produced by inserting a metal spacer having a desired thickness between upper and lower pressing surfaces. is there.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
A polyester fiber nonwoven fabric is used as a raw material of the polyester fiber board of the present invention. The nonwoven fabric composed of polyester fiber is a porous material that is inexpensive and has a porosity of 90% or more, and can also be manufactured using recycled fibers from waste PET bottles. Nonwoven fabrics have been utilized as core materials for mattresses because of their light weight, excellent heat insulation, and high elasticity. The nonwoven fabric made of polyester fiber is blended with 50 to 90% of polyester fiber having a thickness of 2 to 40 denier and 50 to 10% of polyester fiber entangled with a low melting point fiber called a binder. Through a process, it is manufactured by being laminated and molded.
[0011]
In the method for producing a polyester fiber board according to the present invention, first, 50 to 90% of polyester fibers are blended with 50 to 10% of polyester fibers entangled with low-melting fibers, mixed and then passed through a loosening step and a plowing step. Then, a polyester fiber non-woven fabric is manufactured by lamination molding.
This polyester fiber non-woven fabric is hot-pressed at a temperature of 135 to 200 ° C. and a pressure of 3 to 30 MPa for 10 seconds to 5 minutes. After hot press forming, cold press forming is performed at a temperature of 0 to 40 ° C. and a pressure of 3 to 30 MPa for the same time as the hot press. By hot press forming and cold press forming, the surface layers on both sides are hardened, and a polyester fiber board having rigidity as a whole and having surface smoothness and parallelism can be manufactured.
[0012]
[Action]
By inserting a metal spacer having a desired thickness between the upper and lower pressing surfaces during hot and cold press molding, the thickness of the polyester fiber board to be produced can be freely controlled.
[0013]
By hot press molding at a temperature of 135 ° C. or higher, which is the same temperature as the melting start temperature of the polyester fiber, the polyester fibers near both sides of the press are fused at the contact portion and cooled and fixed in a cold pressing process. Thereby, the pressed both surfaces are hardened, and a polyester fiber board having rigidity as a whole and having surface smoothness and parallelism is obtained.
[0014]
The thickness and rigidity of the surface hardened portion increase as the temperature during hot press forming increases, as the time increases, and as the pressure increases. It is considered that the higher the pressing temperature and the longer the pressing time, the more the fusion phenomenon of the contact portion of the polyester fiber occurs from the pressing surface to a portion deeper in the thickness direction, and as a result, the rigidity increases.
[0015]
【Example】
Examples of the present invention will be described in detail. The present invention is not limited by these examples.
[0016]
Example 1
30% of a 17-denier polyester fiber and 30% of a 4-denier polyester fiber entangled with a low-melting fiber are blended, mixed and then laminated and formed through a loosening step and a plowing step. A 30 mm polyester fiber non-woven fabric was manufactured.
This polyester fiber non-woven fabric is inserted at a temperature of 180 ° C. at a pressure of 10 MPa, a spacer having a thickness of 12 mm is inserted between press faces, and is hot-pressed for 2 minutes. A 900 × 900 × 12 mm polyester fiber board was prepared by cold press forming for the same time as in the press. The thickness of the board is 12 mm, and the hot and cold pressing surfaces are both 900 × 900 mm.
[0017]
A total of 19 points were measured, including a total of 16 points obtained by dividing one piece into four at the periphery of the prototype board, and three points obtained by dividing the lengthwise bisector into four parts. The measured thickness was between 12.10 and 12.22, and the average thickness was 12.18 mm. That is, the thickness variation is within 1% of the average thickness, and it can be said that the polyester fiber board produced by the method of the present invention has a sufficient parallelism.
[0018]
FIG. 1 is a scanning electron micrograph showing the microstructure of the polyester fiber board in the vicinity of the pressing surface. FIG. 1 shows the central portion in the thickness direction, that is, the microstructure of the polyester fiber board farthest from the pressing surface. The scanning electron micrograph is shown in FIG.
[0019]
In FIG. 1 showing the microstructure near the pressing surface, the polyester fiber is fused at the contact portion. On the other hand, in FIG. 2 showing the microstructure of the central portion in the thickness direction, no fusion phenomenon is observed at the contact portion between the polyester fibers.
[0020]
From these facts, as the pressing temperature is higher and the pressing time is longer, the phenomenon of fusion of the polyester fiber contact portion from the pressing surface to the portion deeper in the thickness direction occurs, resulting in higher rigidity. it is conceivable that.
[0021]
Example 2
30% of 17 denier polyester fiber and 30% of 4 denier polyester fiber entangled with low-melting fiber are mixed and mixed, and then subjected to a loosening step and a squeezing step to form a polyester fiber. A nonwoven fabric was manufactured. This nonwoven fabric made of polyester fiber was hot-press-molded under a pressure of 10 MPa under three conditions of 140, 170, and 200 ° C., three times of 1, 2, and 3 minutes, and a total of nine conditions. A 200 × 100 × 9 mm polyester fiber board was produced by cold press molding at a temperature of 28 ° C. and a pressure of 10 MPa for the same time as the hot press. In addition, the spacer inserted between the press surfaces at the time of hot and cold breath forming was 9 mm in thickness. Table 1 shows the results of measurement of the bulk specific gravity, bending strength, and bending Young's modulus of the nine types of polyester fiber boards produced in this manner. The span of the bending test was 150 mm, and the results in Table 1 are the average values of the measured values of five samples.
[0022]
[Table 1]
Figure 0003560576
[0023]
In Table 1, the bulk specific gravity at a press temperature of 140 ° C. shows a slightly smaller value than other temperature conditions, but there is no large difference, and hot and cold press-molding of a polyester fiber board is performed. Sometimes, even though the pressing temperature and time are different due to the insertion of the 9 mm spacer between the breath surfaces, the thickness of the manufactured board is almost the same, and the bulk specific gravity depends on the pressing conditions. The reason was not. On the other hand, the bending strength and the bending Young's modulus show higher values as the pressing temperature increases and the pressing time increases. This is because the hot press forming causes the contact portion of the polyester fiber in the vicinity of the pressed surface to be fused, and the higher the pressing temperature and the longer the pressing time, the longer the fused portion of the polyester fiber contact portion in the entire polyester fiber board. Due to an increase in the ratio of From the above results, a polyester fiber board having rigidity, smoothness, and parallelism was produced by hot and cold pressing a non-rigid polyester fiber non-woven fabric at a predetermined temperature and time. It is possible to do. The rigidity of the board can be controlled to some extent freely by the press time, the press temperature, and the compression ratio during the press.
[0024]
【The invention's effect】
From a non-woven fabric composed of polyester fiber, which is inexpensive and has a porosity of 90% or more, and can also be produced using recycled fibers from waste PET bottles, any thickness and any desired thickness can be obtained. A polyester fiber board having rigidity, surface smoothness and parallelism can be provided.
[Brief description of the drawings]
FIG. 1 is a scanning electron micrograph showing the microstructure of a polyester fiber board near a pressing surface.
FIG. 2 is a scanning electron micrograph showing a microstructure of a polyester fiber board farthest from a pressing surface.

Claims (5)

廃ペットボトルからの太さ17デニールの再生繊維であるポリエステル製繊維50〜90%に対して、低融点繊維を絡めた太さ4デニールのポリエステル繊維50〜10%を配合し、混合した後、ほぐし工程、すき工程を経て、積層成形して、多孔質材料であるポリエステル繊維製不織布を製造し、これを135〜200℃の温度で、3〜30MPaの圧力で、10秒〜5分間熱間プレス成形した後、0〜40℃の温度で、3〜30MPaの圧力で、熱間プレスと同時間冷間プレス成形することにより、両面表面層を硬化させ、全体として剛性を有し、かつ、表面平滑性及び平行度を有するボードに仕上げるポリエステル繊維製ボードの製造方法。After mixing and mixing 50 to 90% of a polyester fiber which is a regenerated fiber having a thickness of 17 denier from a waste PET bottle and having a thickness of 4 denier entangled with a low melting point fiber, Through a loosening step and a plowing step, lamination molding is performed to produce a nonwoven fabric made of a polyester fiber as a porous material, which is hot-pressed at a temperature of 135 to 200 ° C and a pressure of 3 to 30 MPa for 10 seconds to 5 minutes. After press molding, at a temperature of 0 to 40 ° C., at a pressure of 3 to 30 MPa, by cold press molding for the same time as a hot press, the surface layers on both surfaces are cured, and have rigidity as a whole, and A method for producing a polyester fiber board for finishing a board having surface smoothness and parallelism. 熱間及び冷間プレス成形時に、上下加圧面間に所望の厚さの金属製スペーサーを挿入することにより、作製するポリエステル繊維製ボーの厚みを自由に制御する請求項1のポリエステル繊維製ボードの製造方法。 2. The polyester fiber board according to claim 1, wherein the thickness of the polyester fiber bow is freely controlled by inserting a metal spacer having a desired thickness between the upper and lower pressing surfaces during hot and cold press forming . Production method. 熱間プレス成形時の温度、時間および圧力を制御することにより、表面硬化部分の厚さと剛性を調整する請求項1または2のポリエステル繊維製ボードの製造方法。 The method for producing a polyester fiber board according to claim 1 or 2, wherein the thickness and rigidity of the surface hardened portion are adjusted by controlling the temperature, time and pressure during hot press molding . 加圧温度および加圧時間を制御することにより、加圧面から厚み方向に向けてのポリエステル繊維の接触部の融着現象が生じる深さを調整し、その結果として剛性を調整する請求項3のポリエステル繊維製ボードの製造方法。 4. The method according to claim 3, wherein by controlling the pressing temperature and the pressing time, the depth at which a fusion phenomenon of the contact portion of the polyester fiber from the pressing surface to the thickness direction occurs is adjusted, and as a result, the rigidity is adjusted. Method for producing polyester fiber board. 請求項1ないし4のいずれかの方法で製造された、多孔質材料であるポリエステル繊維製不織布を、熱間プレス成形した後、冷間プレス成形することにより、両面表面層を硬化させた、全体として剛性を有し、かつ、表面平滑性及び平行度を有するポリエステル繊維製ボード。5. A nonwoven fabric made of a polyester fiber, which is a porous material, produced by the method according to any one of claims 1 to 4, after hot press molding, and then cold press molding, thereby curing both surface layers. A polyester fiber board having rigidity as well as having surface smoothness and parallelism.
JP2001287288A 2001-09-20 2001-09-20 Polyester fiber board and method of manufacturing the same Expired - Lifetime JP3560576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001287288A JP3560576B2 (en) 2001-09-20 2001-09-20 Polyester fiber board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001287288A JP3560576B2 (en) 2001-09-20 2001-09-20 Polyester fiber board and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2003089959A JP2003089959A (en) 2003-03-28
JP3560576B2 true JP3560576B2 (en) 2004-09-02

Family

ID=19110127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001287288A Expired - Lifetime JP3560576B2 (en) 2001-09-20 2001-09-20 Polyester fiber board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3560576B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920868B2 (en) * 2003-12-10 2012-04-18 株式会社モス山形 Moss greening mat and panel
US7641962B2 (en) 2004-11-12 2010-01-05 Woven Image Pty Ltd. Fibre privacy or room-divider panel
CN103161029B (en) * 2013-04-02 2016-01-20 大连华纶化纤工程有限公司 The preparation method of compound nonwoven cloth tunica fibrosa
JP6287641B2 (en) * 2014-07-01 2018-03-07 トヨタ紡織株式会社 Non-woven fabric making method and non-woven fabric making device
CN106868709B (en) * 2017-02-22 2018-10-23 广东宝泓新材料股份有限公司 A method of preparing film support using the waste silk in terylene short fiber production process

Also Published As

Publication number Publication date
JP2003089959A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
KR102015339B1 (en) Rigid laminated sheets, parts molded therefrom and method of fabrication and method of fabrication
CN102294830B (en) Method for manufacturing thermoplastic fibre reinforced building template
KR20080015439A (en) Flexurally rigid composite sheet
JP5737870B2 (en) Non-woven materials for fiber reinforced composites
US20200061952A1 (en) Integrally molded body and method of producing same
CN109023721B (en) Preparation method of density gradient fiber mat and fiber mat
JP3560576B2 (en) Polyester fiber board and method of manufacturing the same
JP2018043412A (en) Laminated base material for rib formation
JP5725741B2 (en) Fiber reinforced composite
TWI684521B (en) Composite laminated article and method for manufacturing the same
TWM622947U (en) Thermoplastic carbon fiber composite material structure
KR20120094890A (en) Moulded product for automotive panels
JP6788340B2 (en) Prepreg sheet
JPH05508591A (en) Composite product manufacturing method and composite product
CN105619905A (en) Composite laminate including interlayers with through-plane regions fused to fiber beds
CN108342834A (en) A kind of flexible interpenetrating networks porous material and preparation method can be used for molding
KR102184470B1 (en) Composite material
KR20160128499A (en) Composite material preform board and method for preparing the same
KR102280425B1 (en) Porous fiber reinforced composite material and method of preparing the same
JPS6021952A (en) Production of high density fiber molded body
JPH05138790A (en) Manufacture of friction material
CN107214990A (en) A kind of daggers and swords formula method for winding of carbon fiber and the carbon fiber bar processing technology based on this method
JPH03193959A (en) Heat-resistant fiber aggregate
KR102200957B1 (en) Porous fiber reinforced composite material
JP3128368B2 (en) Fiber composite

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3560576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term