JP3558251B2 - Filtration tower and method of operating the same - Google Patents

Filtration tower and method of operating the same Download PDF

Info

Publication number
JP3558251B2
JP3558251B2 JP21589297A JP21589297A JP3558251B2 JP 3558251 B2 JP3558251 B2 JP 3558251B2 JP 21589297 A JP21589297 A JP 21589297A JP 21589297 A JP21589297 A JP 21589297A JP 3558251 B2 JP3558251 B2 JP 3558251B2
Authority
JP
Japan
Prior art keywords
water
filtration
lower chamber
tower
membrane filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21589297A
Other languages
Japanese (ja)
Other versions
JPH1142424A (en
Inventor
悟 津田
利夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP21589297A priority Critical patent/JP3558251B2/en
Publication of JPH1142424A publication Critical patent/JPH1142424A/en
Application granted granted Critical
Publication of JP3558251B2 publication Critical patent/JP3558251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発電プラントにおけるヒータドレン水等のように大気圧下では蒸気に変化してしまう、水温が100℃以上の高温水中から懸濁物質を除去する場合に好適に用いられる濾過塔及びその運転方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば、加圧水型原子力発電所や火力発電所のヒータドレン水は少なくとも100℃以上の高温水であるため、この高温水は主として復水系統へ回収され、蒸気発生用水として繰り返し使用され、復水系の熱損失を極力防止するようにしている。このような高温水は繰り返し使用する間に酸化鉄微粒子等の懸濁物質を含むようになるが、現状では高温水の濾過処理に適した濾過塔がないため、高温水は何等処理されることなく蒸気発生器あるいはボイラへ供給されている。しかしながら、高温水に含まれる酸化鉄微粒子等の懸濁物質を処理しないまま繰り返し蒸気発生用水として使用すると、蒸気発生器あるいはボイラの伝熱管の外表面にこれらの懸濁物質が付着し、それぞれの熱伝達効率を低下させる等の課題があった。
【0003】
そこで、従来から高温水用の濾過塔として金属フィルタやセラミックフィルタ等の無機フィルタを用いたものが検討されている。これらの無機フィルタは耐熱性があるためヒータドレン水のような高温水に対しても使用することができるが、懸濁物質の主成分である酸化鉄等の鉄成分は極めて微細な粒子で、フィルタの除鉄性能が不安定で、差圧が上昇し易い、あるいはフィルタ自体から不純物が溶出し易い等の問題があり、本格的に導入されるまでには至っていないのが現状である。
【0004】
本発明は、上記課題を解決するためになされたもので、例えばヒータドレン水等の高温水中の懸濁物質を除去することができる濾過塔を提供することを目的としている。また、本発明は、例えばヒータドレン水等の高温水を濾過する場合に、高分子膜フィルタエレメントの濾過機能を損なうことなく円滑に通水し、高温水中の懸濁物質を効率良く除去することができる濾過塔及びその運転方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明者等は、高分子膜フィルタは、ポアサイズの微細化が可能であること、酸化鉄微粒子等の懸濁物質の除去性能が安定していること、及び膜自体からの不純物の溶出がないこと等の特性を有することに着目し、高分子膜フィルタを具備した濾過塔を高温水用として用いるためにその構造について種々検討した。例えば濾過塔を用いてヒータドレン水等の高温水を濾過する場合には、濾過を開始するに当たって塔本体51内で満杯となっている環境温度と略等しい水温(10〜30℃)の保有水を高温水で置換しながら濾過するが、従来の高分子膜フィルタの場合には高分子膜フィルタが高温水により熱的に劣化して本来の濾過性能を維持できない。そこで、本発明者等は、高分子膜フィルタの高分子材料を種々変更してそれぞれの加工性及び濾過性能について種々検討した結果、特定の耐熱性高分子材料が高温水用の高分子膜フィルタとして使用可能なことを知見した。
【0006】
更に、特定の高分子膜フィルタを具備した図4に示す濾過塔の濾過性能について更に検討した結果、濾過塔の構造に特別の工夫を施し、特定の運転形態を採用することによりヒータドレン水等のような高温水であっても酸化鉄微粒子等の懸濁物質を効率良くしかも安定的に除去できることを知見した。
【0007】
本発明は上記知見に基づいてなされたもので、請求項1に記載の濾過塔は、塔本体内を下室と上室に区画する仕切板と、この仕切板に端部が固定され且つ上記塔本体の軸心に沿って上記下室内に配設された複数の高分子膜フィルタエレメントとを備え、流入管により上記下室内に流入した原水を上記各高分子膜フィルタエレメントによって濾過し、上記上室で集水した濾過水を流出管より流出させる濾過塔において、上記下室と上記上室とのみを連通管により連結すると共にこの連通管に仕切弁を設けたことを特徴とするものである。
【0009】
また、本発明の請求項2に記載の濾過塔の運転方法は、塔本体内を下室と上室に区画する仕切板と、この仕切板に端部が固定され且つ上記塔本体の軸心に沿って上記下室内に配設された複数の高分子膜フィルタエレメントと、上記下室と上記上室とを連結する連通管と、この連通管に設けられた仕切弁とを備えた濾過塔の運転方法であって、上記濾過塔を用いて原水の濾過を開始するに先立って、上記仕切弁を開放して上記連通管により上記下室と上記上室を連通した後、上記原水を上記下室及び上記連通管を順次経由させて上記上室に供給し、上記下室内と上記上室内の圧力を均一化することを特徴とするものである。
【0010】
また、本発明の請求項3に記載の濾過塔の運転方法は、請求項2に記載の発明において、上記原水として100℃以上の高温水を用いることを特徴とするものである。
【0011】
また、本発明の請求項4に記載の濾過塔の運転方法は、請求項2または請求項3に記載の発明において、上記仕切弁を全開状態から全閉状態まで徐々に閉じることを特徴とするものである。
【0012】
また、本発明の請求項5に記載の濾過塔の運転方法は、請求項4に記載の発明において、上記仕切弁を全開状態から全閉状態まで徐々に閉じるまでの弁操作時間を、少なくとも上記塔本体内の保有水を上記原水で置換するまでに要する時間よりも長くすることを特徴とするものである。
【0013】
また、本発明の請求項6に記載の濾過塔の運転方法は、請求項2請求項5のいずれか1項に記載の発明において、上記原水の濾過を停止するに先立って、上記連通管の仕切弁を開放することを特徴とするものである。
【0014】
【発明の実施の形態】
以下、図1〜図4に示す実施形態に基づいて本発明を説明する。尚、各図中、図1は本発明の濾過塔が適用された発電プラントを示すフロー図、図2は図1に示す発電プラントに適用された本発明の濾過塔の一実施形態を示す構成図、図3は図2に示す濾過塔の高分子膜フィルタエレメントとして用いられた中空糸膜モジュールを示す断面図、図4は本発明の濾過塔の運転方法に好適に用いることができる濾過塔を示す構成図である。尚、図1において実線は水の配管ラインであり、破線は蒸気の配管ラインである。
【0015】
まず、本実施形態の濾過塔を適用した発電プラントについて図1を参照しながら概説する。発電プラントは図1に示すように高温高圧蒸気を用いてタービンを回転させ発電するシステムである。即ち、蒸気発生器1において高温高圧蒸気が発生すると、この高温高圧蒸気は高圧タービン2に供給され、高圧タービン2を介して発電機を駆動する。高圧タービン2においてエネルギー消費された蒸気は主として湿分分離器3において水分が分離される。水分が分離された蒸気は蒸気発生器1で発生した蒸気の一部を利用してリヒータ4において再加熱される。再加熱された蒸気は低圧タービン5に供給され、低圧タービン5を介して発電機を駆動する。低圧タービン5においてエネルギー消費された蒸気は主として復水器6に供給され、復水器6において冷却されて復水になる。この復水はポンプ7によって復水脱塩装置8へ供給され、復水中に混入した金属イオン等の不純物イオンが復水脱塩装置8において除去される。尚、図示してないが復水脱塩装置8の前段には濾過塔が設置されている場合があり、その場合には濾過塔において酸化鉄微粒子等の懸濁物質を除去するようにしてある。
【0016】
復水脱塩装置8において不純物イオンが除去された復水はポンプ9によって低圧ヒータ10に供給される。この低圧ヒータ10では低圧タービン5から蒸気の一部を受給し、復水脱塩装置8から供給された復水を加熱する。そして、低圧ヒータ10において生成したヒータドレン水は低圧ヒータ10で加熱された復水と合流し、脱気器11へ供給される。脱気器11において復水中に溶解している酸素等が脱気された復水はポンプ12によって高圧ヒータ13に供給される。この高圧ヒータ13では高圧タービン2から蒸気の一部を受給し、脱気器11から受給した復水を加熱し、高温になった復水は再び蒸気発生器1へ供給され、循環使用される。尚、脱気器11では復水脱塩装置8からの復水以外にリヒータ4及び高圧ヒータ13のヒータドレン水及び湿分分離器3において生成したドレン水をそれぞれ受給し、蒸気発生用として使用するようにしてある。
【0017】
さて、上記脱気器11に供給される復水のうち、湿分分離器3において分離された湿分分離器ドレン水及び高圧ヒータ13のヒータドレン水はいずれも高圧タービン2から流出したもので、それぞれの水中には酸化鉄微粒子等の懸濁物質が含まれているため、そのまま蒸気発生器1へ供給することは好ましくなく、濾過塔を用いて事前に各ドレン水中の懸濁物質を除去しておく必要がある。これらのドレン水はいずれも100℃以上の高温水であるため、本実施形態では湿分分離器3及び高圧ヒータ13と脱気器11を連結する配管14、15の途中に図2に示す本実施形態の濾過塔20を用いた。配管14に配置された濾過塔20は湿分分離器3からのドレン水(以下、「湿分分離器ドレン水」と称す。)を濾過し、配管15に配置された濾過塔20は高圧ヒータ13からのドレン水(以下、「高圧ヒータドレン水」と称す。)を濾過するものであり、これら両者は基本的には同一構成を有している。これらのドレン水はいずれも100℃以上に達し、更に150℃以上、200℃以上に達することが通常である。従って、本実施形態の濾過塔20は、100℃以上の高温水下で好ましく用いられ、150℃以上、更に200℃以上の上述の各ドレン水下においても好ましく用いられる。
【0018】
そこで、高圧ヒータドレン水用の濾過塔20を例に挙げて説明する。この濾過塔20は、図2に示すように、塔本体21と、この塔本体21内を下室22と上室23に区画する仕切板24と、この仕切板24に上端が固定され且つ下端が下室22側へ垂下する複数の高分子膜フィルタエレメント25とを備え、高圧ヒータドレン水が配管15及び流入管26を介して下室22内に導かれ、下室22内の高分子膜フィルタエレメント25によって濾過され、酸化鉄微粒子等の懸濁物質を高圧ヒータドレン水から除去した後、濾過水が流出管27及び配管15を介して脱気器11へ供給される。
【0019】
上記下室22内の底部近傍の中央にはバッフルプレート28が高圧ヒータドレン水の流入口に対向させて配設され、このバッフルプレート28によって下室22内へ流入したヒータドレン水を分散するようにしてある。また、このバッフルプレート28と中空糸膜モジュール25下端との間には分配機構29が配設され、この分配機構29によってバッフルプレート28からの高圧ヒータドレン水を一旦受け、引き続き各中空糸膜モジュール25へ高圧ヒータドレン水を分配するようにしてある。
【0020】
更に、本実施形態の濾過塔20には下室22の上端部と上室23とを連通する連通管30が設けられ、この連通管30には仕切弁31が設けられている。そして、仕切弁31を開閉することにより下室22と上室23を連通し、あるいは遮断するようにしてある。この連通管30は濾過開始時に本発明の運転方法を実施する際に使用するものである。濾過塔20が一旦定常運転に入ると、仕切弁31を閉じて連通管30を使用しないようにしてある。また、連通管30の一端を下室22の上端部に接続することにより下室22内の保有水を高温水に優先して上室23へ確実に押し出すことができる。
【0021】
そして、高分子膜フィルタエレメント25としては、例えば、中空糸膜型、プリーツ型、スパイラル型の高分子膜フィルタを用いることができる。そこで、本実施形態では高分子膜フィルタエレメント25として例えば中空糸膜モジュールを用いた場合について説明する。従って、以下では高分子膜フィルタエレメント25を図3に示す中空糸膜モジュール25として説明する。尚、図2において、15Aは配管15のバイパス管、15Bはバイパス管15Aのバルブである。
【0022】
次に、上記中空糸膜モジュール25について図3を参照しながら説明する。この中空糸膜モジュール25は、同図に示すように、100〜50000本前後の中空糸膜フィルタ251と、これらの中空糸膜フィルタ251を束ねて収納する保護筒252とを備えて構成されている。各中空糸膜フィルタ251は、例えば0.01〜0.3μの微細孔を有する樹脂薄膜により外径0.3〜5mm、内径0.2〜4mmの中空糸として形成されている。また、保護筒252の上端部にはフランジ部252Aが形成され、このフランジ部252Aで上記仕切板24に垂下するようにしてある。
【0023】
また、保護筒252の下端部にはスカート部252Bが形成され、このスカート部252Bで洗浄時に流入した気体を捕集するようにしてある。そして、保護筒252の上端部で各中空糸膜フィルタ251の上端部を接着剤等により束ねて接合固定した上部接合部253が形成され、その下端部で各中空糸膜フィルタ251の下端部を上端部と同様に接合固定した下部接合部254が形成されている。上部接合部253では各中空糸膜フィルタ251は開口し、下部接合部254では各中空糸膜フィルタ251は閉塞し、濾過水が中空糸膜フィルタ251の開口から流出して上室23内で集水するようにしてある。各中空糸膜フィルタ251の両端から集水する場合には、下端部も上端部と同様に開口した状態にし下部集水室(図示せず)を設けておく。また、下部接合部254には逆洗用空気が流入する流通孔254Aが形成され、流通孔254Aを介してスカート部252Bに捕集した逆洗用空気が中空糸膜モジュール25内へ流入するようにしてある。更に、上記保護筒252の上部接合部253のやや下方と、下部接合部254のやや上方にはそれぞれ流通孔252C、252Dが形成され、これらの流通孔252C、252Dを介して高圧ヒータドレン水が中空糸膜モジュール25内へ流入するようにしてある。
【0024】
ところで、上述した湿分分離器ドレン系や高圧給水加熱器ドレン系はいずれも100〜300℃の高温に達するため、上記中空糸膜フィルタ251に用いられる高分子材料はこのような高温水に対する耐熱性が要求される。耐熱性高分子材料として代表的なものとして高温水中で実質的に加水分解しない耐熱性高分子樹脂により成形されているもので、例えば、ポリエーテルケトン系、ポリテトラフルオロエチレン系、ポリフェニレンスルフィド系、ポリスルホン系等の重合化合物や、ポリアミド系、ポリイミド系、ポリアミドイミド系、ポリエーテルイミド系等の脱水重縮合化合物が挙げられるが、本実施形態では熱劣化、特に高温水による加水分解を考慮しなくてはならない。この点を考慮すると、耐熱性高分子樹脂としては前者のポリエーテルケトン系、ポリテトラフルオロエチレン系、ポリフェニレンスルフィド系、ポリスルホン系等の重合化合物が特に高温水中の耐熱性に優れているので好ましく、更にフィルムへの加工性を考慮するとポリエーテルケトン系、ポリテトラフルオロエチレン系がより好ましい。本発明において、高温水中で実質的に加水分解しないとは、高温水中で全く加水分解しないというのではなく、高温水中で長時間(例えば5年程度)使用した場合に僅かではあるが加水分解するが、濾過性能に影響がでない程度の加水分解は含まれることを意味する。
【0025】
次に、本発明の濾過塔の運転方法の一実施形態について説明する。例えば高圧ヒータドレン水を受給する直前には濾過塔20の塔本体21内は環境温度と略等しい水温の保有水で満水になっている。この濾過塔20で高圧ヒータドレン水を濾過する場合には、バイパス管15Aのバルブ15Bを閉じた状態で以下の操作を行う。まず、連通管30の仕切弁31を全開にした後、流入管26のバルブ26A、流出管27のバルブ27Aを順次開き、高圧ヒータ13において生成した高圧ヒータドレン水を下室22内へ導く。すると、下室22内の保有水は高圧ヒータドレン水によって下室22から徐々に押し出される。この時、中空糸膜モジュール25の流通抵抗が大きいため、下室22内の保有水は中空糸膜モジュール25を殆ど通ることなく、流通抵抗が小さい連通管30を介して徐々に上室23へ押し出され、脱気器11へ供給される。
【0026】
上述の操作により下室22と上室23を連通管30を介して連通するため、下室22内の圧力と上室23内の圧力が略等しくなって両室22、23内の圧力が均一化されると共に下室22内に流入する高圧ヒータドレン水によって下室22及び上室23内の保有水の水温が徐々に上昇する。このように両室22、23内の圧力が略均一になったら連通管30の仕切弁31を例えば20%閉じて80%開いた状態にすると、連通管30の流通抵抗が大きくなった分だけ下室22内の水は部分的に中空糸膜モジュール25によって濾過され、濾過水が上室23に流出する。この時、下室22と上室23との間には殆ど差圧がないため、中空糸膜モジュール25が損傷することはなく、しかも、下室22と上室23における水圧は高圧ヒータドレン水の飽和蒸気圧より高い状態であるため、中空糸膜モジュール25内の中空糸膜フィルタ251の膜面に蒸気が付着することがなく中空糸膜モジュール25が正常に機能し、下室22内の水が円滑に濾過される。
【0027】
その後、下室22内の水が高圧ヒータドレン水で全量置換されるのを待ち、全量置換された時点で連通管30の仕切弁31を徐々に閉じて行くと、中空糸膜モジュール25の負荷が漸増し、最終的に仕切弁31を全閉すると、高圧ヒータドレン水が中空糸膜モジュール25によって完全に濾過される。仕切弁31を閉じた後には濾過塔20は定常運転状態になる。また、濾過塔20の運転を停止する時には、停止に先立って連通管30の仕切弁31を開く。この操作により下室22と上室23間の圧力を均一化して上述した膜面等における蒸気の発生を防止することができ、次の濾過処理を円滑に実施することができる。
【0028】
尚、連通管30のバルブ操作は手動操作でも、コントローラによる自動制御操作でも良い。また、高圧ヒータドレン水を濾過塔20に導入する際に、流入管26のバルブ26Aの開弁速度を制御して連通管30の通水量を徐々に増加させるようにしても良い。
【0029】
以上説明したように本実施形態によれば、塔本体21内の下室22と上室23を連通する連通管30を設けると共にこの連通管30に仕切弁31を設けたため、高圧ヒータドレン水の濾過を開始するに先立って、仕切弁31を開放して連通管30により下室22と上室23を連通した後、高圧ヒータドレン水を下室22及び連通管30を順次経由させて上室23に供給し、下室22と上室23内の圧力を均一化することができるため、高圧ヒータドレン水の導入時に中空糸膜モジュール25に対して過大な圧力が掛かる虞がなく、中空糸膜モジュール25の損傷を防止することができ、しかも中空糸膜モジュール25の膜面あるいは膜内の微細孔において蒸気が発生することがなく、中空糸膜モジュール25の濾過機能を損なうことなく高圧ヒータドレン水を円滑に濾過して懸濁物質を確実に除去することができ、しかも中空糸膜モジュール25が乾燥する虞もない。
【0030】
また、本実施形態によれば、仕切弁31を全開状態から全閉状態まで徐々に閉じるようにしたため、中空糸膜モジュール25の負荷を漸増させながら最終的に本来の濾過機能を確実に発揮させることができる。この際、仕切弁31を全開状態から全閉状態まで徐々に閉じるまでの弁操作時間を、塔本体21内の保有水を高圧ヒータドレン水で置換するまでに要する時間よりも長くすると、下室22内の水温が一気に上昇することがなく、中空糸膜モジュール25の膜面あるいは膜内の微細孔における蒸気の発生を確実に防止することができ、中空糸膜モジュール25本来の濾過機能を完全に確保することができる。また、高圧ヒータドレン水の濾過の停止するに先立って、連通管30の仕切弁31を開放することにより、下室22と上室23間の圧力を均一化し、次の濾過を円滑に実施することができる。
【0031】
次に、図3に示す中空糸膜モジュール25と同一の耐熱性高分子材料で構成された高分子膜フィルタを図4に示す構造の濾過塔50に適用した場合について説明する。この濾過塔50は、例えば同図に示すように、塔本体51内を下室52と上室53に区画する仕切板54と、この仕切板54に上端部が固定され且つ塔本体51の軸心に沿って垂下するように下室52内に配設された複数の高分子膜フィルタエレメント55と、下室52に接続された流入管56と、上室53に接続された流出管57とを備え、高分子膜フィルタエレメント55の膜フィルタの高分子材料を除き、従来の濾過塔に準じて構成されている。尚、56Aは流入管56のバルブ、57Aは流出管57のバルブ、58は原水の母管、59は濾過水の母管、60はバイパス管、60Aはバイパス管60のバルブである。
【0032】
本実施形態の濾過塔50に用いられる高分子膜フィルタエレメント55は、上記実施形態と同様の耐熱性高分子材料によって形成された高分子膜フィルタを有し、高分子膜フィルタが例えば中空糸膜型、プリーツ型、スパイラル型に形成されている。このような高分子膜フィルタエレメント55を用いることで、高温水による膜フィルタの加水分解をうけることなく、高温水中で本来の濾過性能を維持することができる。
【0033】
そして、本実施形態の濾過塔を用いて例えば100℃以上のヒータドレン水等の高温水を濾過して懸濁物質を除去する場合には、バイパス管60のバルブ60Aを閉じた状態でまず流入管56のバルブ56A及び流出管57のバルブ57Aを徐々に開き、流入管56から下室52内へ高温水を徐々に供給して下室22内の水圧を漸増させながら保有水と置換した後、定常運転にはいる。ここで、保有水を高温水と一気に置換しようとすると、高分子膜フィルタエレメント55に対して一気に過大な差圧が掛かり、高分子膜フィルタエレメント55が損傷する虞があり、好ましくない。
【0034】
仮に、高温水を一気に下室52内に導入すると、高分子膜フィルタエレメント55に対して一気に過大な差圧が掛かり、高分子膜フィルタエレメント55を損傷する虞がある。更に、高温水を下室52内へ導入した時点で下室52及び上室53の内圧が高温水の飽和蒸気圧よりも低いと、下室52内で蒸気が発生して高分子膜フィルタエレメント55に付着し、その結果、高分子膜フィルタエレメント55の微細孔が蒸気で塞がれて有効濾過面積が低下し、下室52と上室53間の差圧が益々過大になって高分子膜フィルタエレメント55の損傷を助長する虞がある。また、高分子膜フィルタエレメント55は一旦乾燥すると、濾過機能が著しく損なわれるという性質を有している。従って、例えば上述したように通水初期に膜差圧、システム差圧、あるいは水温等の関係で濾過水側の飽和蒸気圧が高温水である原水側の飽和蒸気圧より低くなった場合には、高温水は高分子膜フィルタの膜面あるいは膜厚部内の微細孔において蒸気を発生し、微細孔を塞ぎ、蒸気の熱で高分子膜フィルタが乾燥して高分子膜フィルタの濾過機能を喪失する虞がある。そこで、保有水を高温水で徐々に置換しながら下室52及び上室53の内圧が高温水の飽和蒸気圧よりも高く設定し、濾過塔50を運転すれば良い。
【0035】
尚、上記実施形態では原水として発電所プラントの高圧ヒータドレン水及び湿分分離器ドレン水等の復水の高温水系を例に挙げて説明したが、本発明は復水系に限らず、これら以外の高温水を濾過する場合にも好ましく適用することができ、更に、高温水以外についても広く適用することができる。濾過塔に連通管を設けた場合には、濾過塔への通水初期に高分子膜フィルタへの過負荷を軽減し、高分子膜フィルタの損傷を防止することができる。また、高分子膜フィルタエレメントとして中空糸膜モジュール25を用いた場合について説明したが、高分子膜フィルタエレメントとしてプリーツ型高分子膜フィルタ、スパイラル型高分子膜フィルタ等を用いても良いことは云うまでもない。また、濾過塔20の運転方法も上記実施形態に何等制限されるものではない。
【0036】
【発明の効果】
本発明の請求項1に記載の発明によれば、例えばヒータドレン水等の高温水を濾過する場合であっても、濾過運転開始時に高分子膜フィルタエレメントの損傷を防止することができると共に、高分子膜フィルタエレメントの濾過機能を損なうことなく円滑に通水し、高温水中の懸濁物質を効率的に除去することができる濾過塔を提供することができる。
【0037】
また、本発明の請求項2〜請求項6に記載の発明によれば、例えばヒータドレン水等の高温水を濾過する場合であっても、運転開始時に高分子膜フィルタエレメントの損傷を防止することができると共に、高分子膜フィルタエレメントの濾過機能を損なうことなく円滑に通水し、高温水中の懸濁物質を効率的に除去することができる濾過塔の運転方法を提供することができる
【図面の簡単な説明】
【図1】本発明の濾過塔が適用された発電プラントを示すフロー図である。
【図2】図1に示す発電プラントに適用された本発明の濾過塔の一実施形態を示す構成図である。
【図3】図2に示す濾過塔の高分子膜フィルタエレメントとして用いられた中空糸膜モジュールを示す断面図である。
【図4】本発明の濾過塔の運転方法に好適に用いることができる濾過塔を示す構成図である。
【符号の説明】
20、50 濾過塔
21、51 塔本体
22、52 下室
23、53 上室
24、54 仕切板
25、55 中空糸膜モジュール(高分子膜フィルタエレメント)
26、56 流入管
27、57 流出管
30 連通管
31 仕切弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a filtration tower which is preferably used when removing suspended substances from high-temperature water having a water temperature of 100 ° C. or higher, which changes into steam under atmospheric pressure, such as heater drain water in a power plant, and its operation. About the method.
[0002]
Problems to be solved by the prior art and the invention
For example, since the heater drain water of a pressurized water nuclear power plant or a thermal power plant is high temperature water of at least 100 ° C., this high temperature water is mainly recovered to a condensing system and repeatedly used as steam generation water, and the heat of the condensing system is We try to prevent loss as much as possible. Such high-temperature water contains suspended substances such as iron oxide fine particles during repeated use, but at present, there is no filtration tower suitable for high-temperature water filtration, so high-temperature water must be treated at all. Is supplied to the steam generator or boiler. However, if suspended materials such as iron oxide fine particles contained in high-temperature water are repeatedly used as water for steam generation without treatment, these suspended materials adhere to the outer surface of the steam generator or the heat transfer tube of the boiler, and the respective suspended materials adhere to each other. There were problems such as lowering the heat transfer efficiency.
[0003]
Therefore, conventionally, a filter using an inorganic filter such as a metal filter or a ceramic filter has been studied as a filtration tower for high-temperature water. Since these inorganic filters have heat resistance, they can be used for high-temperature water such as heater drain water, but the iron component such as iron oxide, which is the main component of the suspended substance, is extremely fine particles. However, there is a problem that the iron removal performance is unstable, the differential pressure easily rises, or impurities are easily eluted from the filter itself, so that it has not yet been fully introduced.
[0004]
The present invention has been made to solve the above problems, and has as its object to provide a filtration tower capable of removing suspended substances in high-temperature water such as, for example, heater drain water. Further, the present invention, for example, when filtering high-temperature water such as heater drain water, it is possible to smoothly pass water without impairing the filtration function of the polymer membrane filter element, and to efficiently remove suspended substances in the high-temperature water. It is an object of the present invention to provide a filter tower and a method of operating the same.
[0005]
[Means for Solving the Problems]
The present inventors have found that the polymer membrane filter is capable of reducing the pore size, has a stable performance of removing suspended substances such as iron oxide fine particles, and has no elution of impurities from the membrane itself. Focusing on having such characteristics, various studies were made on the structure of a filtration tower equipped with a polymer membrane filter for use in high-temperature water. For example, in the case of filtering high-temperature water such as heater drain water using a filtration tower, when starting filtration, water having a water temperature (10 to 30 ° C.) substantially equal to the ambient temperature that is full in the tower body 51 is used. Although filtration is performed while replacing with high-temperature water, in the case of a conventional polymer membrane filter, the polymer membrane filter is thermally degraded by high-temperature water and cannot maintain its original filtration performance. Accordingly, the present inventors have made various changes in the polymer material of the polymer membrane filter and have examined variously the processability and the filtration performance. As a result, the specific heat-resistant polymer material is a polymer membrane filter for high-temperature water. It was found that it can be used as.
[0006]
Furthermore, as a result of further study on the filtration performance of the filtration tower shown in FIG. 4 equipped with a specific polymer membrane filter, special contrivance was applied to the structure of the filtration tower, and by adopting a specific operation mode, the heater drain water and the like were removed. It has been found that even in such high-temperature water, suspended substances such as iron oxide fine particles can be efficiently and stably removed.
[0007]
The present invention has been made based on the above findings, and the filtration tower according to claim 1 has a partition plate for partitioning the inside of the tower body into a lower chamber and an upper chamber, and an end is fixed to the partition plate and A plurality of polymer membrane filter elements disposed in the lower chamber along the axis of the tower body, By inflow pipe The raw water flowing into the lower chamber is filtered by the respective polymer membrane filter elements, and the filtered water collected in the upper chamber is filtered. From the outflow pipe In the filtration tower to be discharged, Only the lower chamber and the upper chamber were connected by a communication pipe, and a gate valve was provided in this communication pipe. It is characterized by the following.
[0009]
In addition, the present invention Claim 2 The operation method of the filtration tower described in the above, is a partition plate for partitioning the inside of the tower body into a lower chamber and an upper chamber, an end fixed to the partition plate, and disposed in the lower chamber along the axis of the tower body. A plurality of polymer membrane filter elements provided, a communication pipe connecting the lower chamber and the upper chamber, and a method of operating a filtration tower including a gate valve provided in the communication pipe, Prior to starting filtration of raw water using a filtration tower, after opening the gate valve and communicating the lower chamber and the upper chamber by the communication pipe, the raw water is sequentially passed through the lower chamber and the communication pipe. The air is supplied to the upper chamber through the lower chamber and the pressure in the lower chamber and the pressure in the upper chamber are equalized.
[0010]
In addition, the present invention Claim 3 The operation method of the filtration tower described in Claim 2 In the invention described in (1), high-temperature water of 100 ° C. or more is used as the raw water.
[0011]
In addition, the present invention Claim 4 The operation method of the filtration tower described in Claim 2 Or Claim 3 In the invention described in (1), the gate valve is gradually closed from a fully open state to a fully closed state.
[0012]
In addition, the present invention Claim 5 The operation method of the filtration tower described in Claim 4 In the invention described in the above, the valve operation time for gradually closing the gate valve from the fully open state to the fully closed state is longer than at least the time required for replacing the water retained in the tower body with the raw water. It is characterized by the following.
[0013]
In addition, the present invention Claim 6 The operation method of the filtration tower described in Claim 2 ~ Claim 5 In the invention according to any one of the above, prior to stopping the filtration of the raw water, a gate valve of the communication pipe is opened.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIGS. In each of the drawings, FIG. 1 is a flowchart showing a power plant to which the filtration tower of the present invention is applied, and FIG. 2 is a configuration showing one embodiment of the filtration tower of the present invention applied to the power plant shown in FIG. FIG. 3 is a sectional view showing a hollow fiber membrane module used as a polymer membrane filter element of the filtration tower shown in FIG. 2, and FIG. Filtration tower that can be suitably used for the operation method FIG. In FIG. 1, the solid line is a water piping line, and the broken line is a steam piping line.
[0015]
First, a power plant to which the filtration tower of the present embodiment is applied will be outlined with reference to FIG. The power plant is a system that generates power by rotating a turbine using high-temperature and high-pressure steam as shown in FIG. That is, when high-temperature and high-pressure steam is generated in the steam generator 1, the high-temperature and high-pressure steam is supplied to the high-pressure turbine 2, and drives a generator via the high-pressure turbine 2. The steam whose energy has been consumed in the high-pressure turbine 2 is mainly subjected to moisture separation in the moisture separator 3. The steam from which the water has been separated is reheated in the reheater 4 using a part of the steam generated in the steam generator 1. The reheated steam is supplied to the low-pressure turbine 5 and drives a generator via the low-pressure turbine 5. The steam whose energy has been consumed in the low-pressure turbine 5 is mainly supplied to the condenser 6 and is cooled in the condenser 6 to be condensed. This condensate is supplied to the condensate demineralizer 8 by the pump 7, and impurity ions such as metal ions mixed in the condensate are removed in the condensate demineralizer 8. Although not shown, a filtration tower may be provided in front of the condensate desalination apparatus 8, and in such a case, suspended substances such as iron oxide fine particles are removed in the filtration tower. .
[0016]
The condensate from which the impurity ions have been removed in the condensate desalination device 8 is supplied to a low-pressure heater 10 by a pump 9. The low-pressure heater 10 receives a part of the steam from the low-pressure turbine 5 and heats the condensate supplied from the condensate desalination device 8. Then, the heater drain water generated in the low-pressure heater 10 merges with the condensate heated by the low-pressure heater 10 and is supplied to the deaerator 11. The condensate from which oxygen and the like dissolved in the condensate have been deaerated in the deaerator 11 is supplied to a high-pressure heater 13 by a pump 12. The high-pressure heater 13 receives a part of the steam from the high-pressure turbine 2 and heats the condensate received from the deaerator 11, and the condensate having a high temperature is supplied to the steam generator 1 again and used for circulation. . In addition, the deaerator 11 receives the heater drain water of the reheater 4 and the high-pressure heater 13 and the drain water generated in the moisture separator 3 in addition to the condensate from the condensate desalination device 8 and uses them for generating steam. It is like that.
[0017]
Now, of the condensate supplied to the deaerator 11, the moisture separator drain water separated in the moisture separator 3 and the heater drain water of the high-pressure heater 13 all flow out of the high-pressure turbine 2, Since each water contains suspended substances such as iron oxide fine particles, it is not preferable to supply the water to the steam generator 1 as it is, and the suspended substances in each drain water are removed in advance using a filtration tower. Need to be kept. Since all of these drain waters are high-temperature waters of 100 ° C. or more, in the present embodiment, the water separator shown in FIG. The filtration tower 20 of the embodiment was used. The filtration tower 20 disposed in the pipe 14 filters drain water from the moisture separator 3 (hereinafter, referred to as “moisture separator drain water”), and the filtration tower 20 disposed in the pipe 15 is a high-pressure heater. Drain water (hereinafter, referred to as “high-pressure heater drain water”) from the filter 13, which has basically the same configuration. Each of these drain waters reaches 100 ° C. or higher, and usually reaches 150 ° C. or higher and 200 ° C. or higher. Therefore, the filtration tower 20 of the present embodiment is preferably used under high-temperature water of 100 ° C. or higher, and is also preferably used under the above-mentioned drain water of 150 ° C. or higher, and more preferably 200 ° C. or higher.
[0018]
Therefore, the filtration tower 20 for high-pressure heater drain water will be described as an example. As shown in FIG. 2, the filtration tower 20 has a tower body 21, a partition plate 24 for dividing the inside of the tower body 21 into a lower chamber 22 and an upper chamber 23, and an upper end fixed to the partition plate 24 and a lower end. And a plurality of polymer membrane filter elements 25 hanging down to the lower chamber 22 side. High-pressure heater drain water is guided into the lower chamber 22 through the pipe 15 and the inflow pipe 26, and the polymer membrane filter in the lower chamber 22 is provided. After being filtered by the element 25 and removing suspended substances such as iron oxide fine particles from the high-pressure heater drain water, the filtered water is supplied to the deaerator 11 through the outflow pipe 27 and the pipe 15.
[0019]
A baffle plate 28 is disposed at the center near the bottom in the lower chamber 22 so as to face the inlet of the high-pressure heater drain water, and the baffle plate 28 disperses the heater drain water flowing into the lower chamber 22. is there. A distribution mechanism 29 is provided between the baffle plate 28 and the lower end of the hollow fiber membrane module 25. The distribution mechanism 29 temporarily receives the high-pressure heater drain water from the baffle plate 28, and continuously receives the hollow fiber membrane module 25. The high-pressure heater drain water is distributed to the heater.
[0020]
Further, the filtration tower 20 of the present embodiment is provided with a communication pipe 30 that communicates the upper end of the lower chamber 22 with the upper chamber 23, and a gate valve 31 is provided in the communication pipe 30. By opening and closing the gate valve 31, the lower chamber 22 and the upper chamber 23 are communicated or shut off. This communication pipe 30 is used when the operation method of the present invention is performed at the start of filtration. Once the filtration tower 20 enters a steady operation, the gate valve 31 is closed so that the communication pipe 30 is not used. Further, by connecting one end of the communication pipe 30 to the upper end of the lower chamber 22, the water retained in the lower chamber 22 can be reliably pushed out to the upper chamber 23 in preference to the high-temperature water.
[0021]
As the polymer membrane filter element 25, for example, a hollow fiber membrane type, pleated type, or spiral type polymer membrane filter can be used. Thus, in the present embodiment, a case will be described in which, for example, a hollow fiber membrane module is used as the polymer membrane filter element 25. Accordingly, hereinafter, the polymer membrane filter element 25 will be described as the hollow fiber membrane module 25 shown in FIG. In FIG. 2, 15A is a bypass pipe of the pipe 15, and 15B is a valve of the bypass pipe 15A.
[0022]
Next, the hollow fiber membrane module 25 will be described with reference to FIG. As shown in the figure, the hollow fiber membrane module 25 includes about 100 to 50,000 hollow fiber membrane filters 251 and a protection cylinder 252 that bundles and stores the hollow fiber membrane filters 251. I have. Each hollow fiber membrane filter 251 is formed as a hollow fiber having an outer diameter of 0.3 to 5 mm and an inner diameter of 0.2 to 4 mm by a resin thin film having fine pores of, for example, 0.01 to 0.3 μm. A flange 252A is formed at the upper end of the protective cylinder 252, and the flange 252A hangs down from the partition plate 24.
[0023]
Further, a skirt portion 252B is formed at a lower end portion of the protective cylinder 252, and the skirt portion 252B collects gas flowing in at the time of cleaning. An upper joint 253 is formed by binding the upper end of each hollow fiber membrane filter 251 with an adhesive or the like at the upper end of the protective cylinder 252 and joining the lower end thereof to the lower end of each hollow fiber membrane filter 251. A lower joining portion 254 joined and fixed similarly to the upper end portion is formed. At the upper joint 253, each hollow fiber membrane filter 251 is open, and at the lower joint 254, each hollow fiber membrane filter 251 is closed, and filtered water flows out of the opening of the hollow fiber membrane filter 251 and collects in the upper chamber 23. It is watered. When collecting water from both ends of each hollow fiber membrane filter 251, a lower water collecting chamber (not shown) is provided in a state where the lower end is also opened like the upper end. A flow hole 254A through which the backwash air flows is formed in the lower joint portion 254, and the backwash air collected in the skirt portion 252B flows into the hollow fiber membrane module 25 through the flow hole 254A. It is. Further, flow holes 252C and 252D are formed slightly below the upper joint 253 and slightly above the lower joint 254 of the protective cylinder 252, respectively, and the high-pressure heater drain water is hollowed through these flow holes 252C and 252D. It flows into the yarn membrane module 25.
[0024]
By the way, since the above-mentioned moisture separator drain system and high-pressure feed water heater drain system both reach a high temperature of 100 to 300 ° C., the polymer material used for the hollow fiber membrane filter 251 has heat resistance to such high-temperature water. Is required. As a typical heat-resistant polymer material is formed of a heat-resistant polymer resin that does not substantially hydrolyze in high-temperature water, for example, polyether ketone, polytetrafluoroethylene, polyphenylene sulfide, Polymer compounds such as polysulfone, polyamide-based, polyimide-based, polyamideimide-based, dehydration polycondensation compounds such as polyetherimide-based, etc., but in the present embodiment, without considering thermal degradation, especially hydrolysis by high-temperature water must not. In consideration of this point, as the heat-resistant polymer resin, the former polyetherketone-based, polytetrafluoroethylene-based, polyphenylene sulfide-based, and polysulfone-based polymer compounds are preferable because they are particularly excellent in heat resistance in high-temperature water, Further, in consideration of workability into a film, polyetherketone and polytetrafluoroethylene are more preferable. In the present invention, being substantially not hydrolyzed in high-temperature water means not hydrolyzing at all in high-temperature water but slightly hydrolyzing when used in high-temperature water for a long time (for example, about 5 years). However, it means that a degree of hydrolysis that does not affect the filtration performance is included.
[0025]
Next, an embodiment of the method for operating the filtration tower of the present invention will be described. For example, immediately before receiving high-pressure heater drain water, the inside of the tower main body 21 of the filtration tower 20 is filled with water having a water temperature substantially equal to the ambient temperature. When filtering the high-pressure heater drain water in the filtration tower 20, the following operation is performed with the valve 15B of the bypass pipe 15A closed. First, after the gate valve 31 of the communication pipe 30 is fully opened, the valve 26A of the inflow pipe 26 and the valve 27A of the outflow pipe 27 are sequentially opened to guide the high-pressure heater drain water generated in the high-pressure heater 13 into the lower chamber 22. Then, the water held in the lower chamber 22 is gradually pushed out of the lower chamber 22 by the high-pressure heater drain water. At this time, since the flow resistance of the hollow fiber membrane module 25 is large, the water retained in the lower chamber 22 hardly passes through the hollow fiber membrane module 25 and gradually flows to the upper chamber 23 through the communication pipe 30 having a low flow resistance. It is pushed out and supplied to the deaerator 11.
[0026]
Since the lower chamber 22 and the upper chamber 23 communicate with each other through the communication pipe 30 by the above-described operation, the pressure in the lower chamber 22 and the pressure in the upper chamber 23 are substantially equal, and the pressure in the two chambers 22 and 23 is uniform. The temperature of the retained water in the lower chamber 22 and the upper chamber 23 gradually rises due to the high-pressure heater drain water flowing into the lower chamber 22 as well. When the pressures in the two chambers 22 and 23 become substantially uniform as described above, the gate valve 31 of the communication pipe 30 is closed, for example, by 20% and opened by 80%. The water in the lower chamber 22 is partially filtered by the hollow fiber membrane module 25, and the filtered water flows out to the upper chamber 23. At this time, since there is almost no pressure difference between the lower chamber 22 and the upper chamber 23, the hollow fiber membrane module 25 is not damaged, and the water pressure in the lower chamber 22 and the upper chamber 23 is high-pressure heater drain water. Since the pressure is higher than the saturated vapor pressure, the vapor does not adhere to the membrane surface of the hollow fiber membrane filter 251 in the hollow fiber membrane module 25, and the hollow fiber membrane module 25 functions normally, and the water in the lower chamber 22 Are filtered smoothly.
[0027]
Thereafter, the system waits for the entire amount of water in the lower chamber 22 to be replaced with the high-pressure heater drain water. When the entire amount of the water has been replaced, the gate valve 31 of the communication pipe 30 is gradually closed. When the pressure gradually increases and finally the gate valve 31 is fully closed, the high-pressure heater drain water is completely filtered by the hollow fiber membrane module 25. After the gate valve 31 is closed, the filtration tower 20 enters a steady operation state. When the operation of the filtration tower 20 is stopped, the gate valve 31 of the communication pipe 30 is opened prior to the stop. By this operation, the pressure between the lower chamber 22 and the upper chamber 23 can be made uniform to prevent the above-described generation of steam on the membrane surface and the like, and the next filtration process can be smoothly performed.
[0028]
The valve operation of the communication pipe 30 may be a manual operation or an automatic control operation by a controller. Further, when the high-pressure heater drain water is introduced into the filtration tower 20, the valve opening speed of the valve 26A of the inflow pipe 26 may be controlled to gradually increase the flow rate of the communication pipe 30.
[0029]
As described above, according to the present embodiment, since the communication pipe 30 that connects the lower chamber 22 and the upper chamber 23 in the tower main body 21 is provided and the gate valve 31 is provided in the communication pipe 30, the filtration of the high-pressure heater drain water is performed. Prior to the start of the operation, the gate valve 31 is opened and the lower chamber 22 and the upper chamber 23 are communicated with each other by the communication pipe 30, and then the high-pressure heater drain water is sequentially passed through the lower chamber 22 and the communication pipe 30 to the upper chamber 23. The pressure in the lower chamber 22 and the upper chamber 23 can be made uniform, so that there is no fear that excessive pressure is applied to the hollow fiber membrane module 25 when the high-pressure heater drain water is introduced. Loss Scratch can be prevented, and vapor is not generated on the membrane surface of the hollow fiber membrane module 25 or in micropores in the membrane, and the high-pressure heater drain water can be smoothly supplied without impairing the filtration function of the hollow fiber membrane module 25. The suspended matter can be reliably removed by filtration, and there is no danger of the hollow fiber membrane module 25 being dried.
[0030]
In addition, according to the present embodiment, the gate valve 31 is gradually closed from the fully open state to the fully closed state, so that the original filtration function is surely exerted while the load on the hollow fiber membrane module 25 is gradually increased. be able to. At this time, if the valve operation time for gradually closing the gate valve 31 from the fully opened state to the fully closed state is longer than the time required for replacing the water retained in the tower body 21 with the high-pressure heater drain water, the lower chamber 22 The water temperature in the inside does not rise at a stretch, and the generation of steam on the membrane surface of the hollow fiber membrane module 25 or the micropores in the membrane can be reliably prevented, and the original filtration function of the hollow fiber membrane module 25 is completely completed. Can be secured. Further, before the filtration of the high-pressure heater drain water is stopped, the pressure between the lower chamber 22 and the upper chamber 23 is made uniform by opening the gate valve 31 of the communication pipe 30, and the next filtration is smoothly performed. Can be.
[0031]
Next, a case where a polymer membrane filter made of the same heat-resistant polymer material as the hollow fiber membrane module 25 shown in FIG. 3 is applied to the filtration tower 50 having the structure shown in FIG. 4 will be described. As shown in the figure, for example, the filtration tower 50 has a partition plate 54 for dividing the inside of the tower main body 51 into a lower chamber 52 and an upper chamber 53, an upper end fixed to the partition plate 54, and an axis of the tower main body 51. A plurality of polymer membrane filter elements 55 disposed in the lower chamber 52 so as to hang down along the heart, an inflow pipe 56 connected to the lower chamber 52, and an outflow pipe 57 connected to the upper chamber 53. , Except for the polymer material of the membrane filter of the polymer membrane filter element 55, in accordance with a conventional filtration tower. 56A is a valve of the inflow pipe 56, 57A is a valve of the outflow pipe 57, 58 is a mother pipe of raw water, 59 is a mother pipe of filtered water, 60 is a bypass pipe, and 60A is a valve of the bypass pipe 60.
[0032]
The polymer membrane filter element 55 used in the filtration tower 50 of the present embodiment has a polymer membrane filter formed of the same heat-resistant polymer material as in the above embodiment, and the polymer membrane filter is, for example, a hollow fiber membrane. Molded, pleated and spiral shaped. By using such a polymer membrane filter element 55, the original filtration performance can be maintained in high-temperature water without being subjected to hydrolysis of the membrane filter by high-temperature water.
[0033]
In the case where high-temperature water such as heater drain water having a temperature of 100 ° C. or more is filtered to remove suspended substances by using the filtration tower of the present embodiment, the inflow pipe is first opened with the valve 60A of the bypass pipe 60 closed. After gradually opening the valve 56A of 56 and the valve 57A of the outflow pipe 57 and gradually supplying high-temperature water from the inflow pipe 56 into the lower chamber 52 to gradually increase the water pressure in the lower chamber 22 and replace the retained water, Enter regular operation. Here, if it is attempted to replace the retained water with high-temperature water at once, an excessively large differential pressure is applied to the polymer membrane filter element 55 at a stretch, and the polymer membrane filter element 55 may be damaged, which is not preferable.
[0034]
If high-temperature water is introduced into the lower chamber 52 at once, an excessively large differential pressure is applied to the polymer membrane filter element 55 at a stretch, and the polymer membrane filter element 55 may be damaged. Further, when the internal pressure of the lower chamber 52 and the upper chamber 53 is lower than the saturated vapor pressure of the high-temperature water when the high-temperature water is introduced into the lower chamber 52, steam is generated in the lower chamber 52 and the polymer membrane filter element is formed. As a result, the fine pores of the polymer membrane filter element 55 are blocked by steam, the effective filtration area is reduced, and the pressure difference between the lower chamber 52 and the upper chamber 53 is further increased, and There is a concern that the membrane filter element 55 may be damaged. Further, once dried, the polymer membrane filter element 55 has a property that the filtration function is significantly impaired. Therefore, for example, as described above, when the saturated vapor pressure on the filtered water side is lower than the saturated vapor pressure on the raw water side which is high-temperature water due to the membrane differential pressure, the system differential pressure, or the water temperature in the initial stage of water passage as described above. , High-temperature water generates steam in the micropores on the membrane surface or in the film thickness part of the polymer membrane filter, closes the pores, and the heat of the steam dries the polymer membrane filter, losing the filtration function of the polymer membrane filter There is a risk of doing so. Therefore, the filtration tower 50 may be operated while the internal pressure of the lower chamber 52 and the upper chamber 53 is set higher than the saturated vapor pressure of the high-temperature water while gradually replacing the retained water with the high-temperature water.
[0035]
In the above embodiment, the high-temperature water system of the condensate such as the high-pressure heater drain water and the moisture separator drain water of the power plant as the raw water has been described as an example. The present invention can be preferably applied to a case where high-temperature water is filtered, and can be widely applied to other than high-temperature water. When a communication pipe is provided in the filtration tower, an overload on the polymer membrane filter can be reduced in the initial stage of water flow to the filtration tower, and damage to the polymer membrane filter can be prevented. Further, the case where the hollow fiber membrane module 25 is used as the polymer membrane filter element has been described, but it is also possible to use a pleated polymer membrane filter, a spiral polymer membrane filter, or the like as the polymer membrane filter element. Not even. Further, the operation method of the filtration tower 20 is not limited to the above embodiment.
[0036]
【The invention's effect】
According to the first aspect of the present invention, for example, high-temperature water such as heater drain water Even when filtration is performed, damage to the polymer membrane filter element can be prevented at the start of the filtration operation, water can flow smoothly without impairing the filtration function of the polymer membrane filter element, and suspension in high-temperature water can be performed. Efficient removal of suspended matter A filtration tower that can be provided.
[0037]
In addition, according to the invention described in claims 2 to 6 of the present invention, even when high-temperature water such as heater drain water is filtered, , Preventing damage to the polymer membrane filter element at the start of operation, Filtration that allows water to flow smoothly without impairing the filtration function of the polymer membrane filter element and efficiently removes suspended substances in high-temperature water Of the tower Providing driving methods Can .
[Brief description of the drawings]
FIG. 1 is a flowchart showing a power plant to which a filtration tower of the present invention is applied.
FIG. 2 is a configuration diagram showing one embodiment of a filtration tower of the present invention applied to the power plant shown in FIG.
FIG. 3 is a cross-sectional view showing a hollow fiber membrane module used as a polymer membrane filter element of the filtration tower shown in FIG.
FIG. 4 shows the filtration tower of the present invention. Filtration tower that can be suitably used for the operation method FIG.
[Explanation of symbols]
20, 50 filtration tower
21, 51 Tower body
22, 52 Lower chamber
23, 53 Upper room
24, 54 Partition plate
25, 55 Hollow fiber membrane module (polymer membrane filter element)
26, 56 Inflow pipe
27, 57 Outflow pipe
30 communicating pipe
31 Gate valve

Claims (6)

塔本体内を下室と上室に区画する仕切板と、この仕切板に端部が固定され且つ上記塔本体の軸心に沿って上記下室内に配設された複数の高分子膜フィルタエレメントとを備え、流入管により上記下室内に流入した原水を上記各高分子膜フィルタエレメントによって濾過し、上記上室で集水した濾過水を流出管より流出させる濾過塔において、上記下室と上記上室とのみを連通管により連結すると共にこの連通管に仕切弁を設けたことを特徴とする濾過塔。A partition plate for partitioning the inside of the tower body into a lower chamber and an upper chamber; and a plurality of polymer membrane filter elements having ends fixed to the partition plate and disposed in the lower chamber along the axis of the tower body. A filtration tower that filters the raw water flowing into the lower chamber by the inflow pipe through each of the polymer membrane filter elements, and allows the filtered water collected in the upper chamber to flow out of the outflow pipe. A filtration tower wherein only the upper chamber is connected by a communication pipe and a gate valve is provided in the communication pipe. 塔本体内を下室と上室に区画する仕切板と、この仕切板に端部が固定され且つ上記塔本体の軸心に沿って上記下室内に配設された複数の高分子膜フィルタエレメントと、上記下室と上記上室とを連結する連通管と、この連通管に設けられた仕切弁とを備えた濾過塔の運転方法であって、上記濾過塔を用いて原水の濾過を開始するに先立って、上記仕切弁を開放して上記連通管により上記下室と上記上室を連通した後、上記原水を上記下室及び上記連通管を順次経由させて上記上室に供給し、上記下室内と上記上室内の圧力を均一化することを特徴とする濾過塔の運転方法。A partition plate for partitioning the inside of the tower body into a lower chamber and an upper chamber; and a plurality of polymer membrane filter elements having ends fixed to the partition plate and disposed in the lower chamber along the axis of the tower body. And a communication pipe for connecting the lower chamber and the upper chamber, and a method of operating a filtration tower including a gate valve provided in the communication pipe, and starting filtration of raw water using the filtration tower. Prior to doing so, after opening the gate valve and communicating the lower chamber and the upper chamber by the communication pipe, the raw water is supplied to the upper chamber through the lower chamber and the communication pipe sequentially, A method for operating a filtration tower, wherein pressures in the lower chamber and the upper chamber are equalized. 上記原水として100℃以上の高温水を用いることを特徴とする請求項2に記載の濾過塔の運転方法。The method for operating a filtration tower according to claim 2 , wherein high-temperature water of 100C or more is used as the raw water. 上記仕切弁を全開状態から全閉状態まで徐々に閉じることを特徴とする請求項2または請求項3に記載の濾過塔の運転方法。The method according to claim 2 or 3 , wherein the gate valve is gradually closed from a fully opened state to a fully closed state. 上記仕切弁を全開状態から全閉状態まで徐々に閉じるまでの弁操作時間を、少なくとも上記塔本体内の保有水を上記原水で置換するまでに要する時間よりも長くすることを特徴とする請求項4に記載の濾過塔の運転方法。 Claims, characterized in that the valve operating time from the fully open state to gradually closed to the fully closed state gate valve, the holdings water of at least the tower body be longer than the time required for replacing the above raw water 5. The method for operating the filtration tower according to 4 . 上記原水の濾過を停止するに先立って、上記連通管の仕切弁を開放することを特徴とする請求項2請求項5のいずれか1項に記載の濾過塔の運転方法。The filtration of the raw water prior to the stop, the method of driving the filtration tower according to any one of claims 2 to 5 you, wherein opening the gate valve of the communicating pipe.
JP21589297A 1997-07-25 1997-07-25 Filtration tower and method of operating the same Expired - Fee Related JP3558251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21589297A JP3558251B2 (en) 1997-07-25 1997-07-25 Filtration tower and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21589297A JP3558251B2 (en) 1997-07-25 1997-07-25 Filtration tower and method of operating the same

Publications (2)

Publication Number Publication Date
JPH1142424A JPH1142424A (en) 1999-02-16
JP3558251B2 true JP3558251B2 (en) 2004-08-25

Family

ID=16679996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21589297A Expired - Fee Related JP3558251B2 (en) 1997-07-25 1997-07-25 Filtration tower and method of operating the same

Country Status (1)

Country Link
JP (1) JP3558251B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548907B2 (en) * 2000-06-29 2010-09-22 オルガノ株式会社 Operation method of high temperature filter
TW504400B (en) 2001-01-31 2002-10-01 Toshiba Corp Filtering apparatus, back wash method therefor, filtering device and power plant
WO2003028865A1 (en) * 2001-09-28 2003-04-10 Kubota Corporation Ceramic film module and method of operating the same

Also Published As

Publication number Publication date
JPH1142424A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
JPS62502452A (en) Variable volume filter or concentrator
JP7034897B2 (en) Wastewater treatment method
CN110160113A (en) A kind of nuclear power plant's heating system and its heating method
JP3558251B2 (en) Filtration tower and method of operating the same
CN101087641A (en) The separation of solid particles from the liquid in which they are dispersed
US4237691A (en) Process of removing water-soluble impurities from the working medium of a steam power plant
JP2004249174A (en) Filtration device and its operation method
JP5885551B2 (en) Seawater desalination equipment
CN210229648U (en) Reconstituted tobacco extraction liquid membrane separation, purification and concentration system
CN211854953U (en) Condensation waste heat recovery device of papermaking drying-machine
JPS6328626B2 (en)
JPH06300215A (en) Steam plant
CN110314548A (en) Reconstituted tobacco extracts liquid film separation purification concentration systems and its treatment process
JP4548907B2 (en) Operation method of high temperature filter
JP4890091B2 (en) Heat exchanger
KR20130010317A (en) A heating system of the raw water for the membrane process
CN214746777U (en) Microwave hot air drying device
JPH11165006A (en) Treatment of electric power plant heater drain water
JP2000176496A (en) Filter cloth regenerating method for sludge concentration/dehydration device
CN106215500A (en) A kind of freon purifier using distillation mode
CN106110750B (en) A kind of efficient blood recovery system
CN109911973A (en) The processing system and method for concentrated water after a kind of UF membrane
JP2597594B2 (en) Feed water heater drain injection device
CN206720944U (en) A kind of efficiently straight drink pure water device
CN205730595U (en) One prepares concentration extracts of Chinese herbal medicine early stage pretreatment unit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees