JP3557677B2 - Method for removing catalyst from fats and oils - Google Patents

Method for removing catalyst from fats and oils Download PDF

Info

Publication number
JP3557677B2
JP3557677B2 JP31622294A JP31622294A JP3557677B2 JP 3557677 B2 JP3557677 B2 JP 3557677B2 JP 31622294 A JP31622294 A JP 31622294A JP 31622294 A JP31622294 A JP 31622294A JP 3557677 B2 JP3557677 B2 JP 3557677B2
Authority
JP
Japan
Prior art keywords
catalyst
oil
fats
oils
fat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31622294A
Other languages
Japanese (ja)
Other versions
JPH08170092A (en
Inventor
敏 中岡
利之 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP31622294A priority Critical patent/JP3557677B2/en
Publication of JPH08170092A publication Critical patent/JPH08170092A/en
Application granted granted Critical
Publication of JP3557677B2 publication Critical patent/JP3557677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fats And Perfumes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、硬化油等の油脂の作製において、触媒の存在下において水素化反応を終了した油脂に対して、その油脂に含まれる触媒を除去する方法に関する。
【0002】
【従来の技術】
現在、マーガリンやショーニングに利用できる品質の安定した固形油脂は、極めて微細な粒子で高活性の触媒を用いて油脂中のトリグリセライドに含まれる脂肪酸に依存する二重結合に水素添加による水素化反応を行うことで、油脂の融点を上昇させて、且つ不飽和脂肪酸を減少させることによって製造されている。
以下その従来の触媒の除去方法を図1を用いて説明する。図1の反応槽1にて水素化反応を終了して微細な粒子の触媒を含む油脂は、100℃前後まで冷却された直後に、図中3と示される濾過機等を用いて濾過したり、図示していないが遠心分離等の重力分離によって触媒を除去していた。その濾過による触媒の除去は、プレコート槽2にてケイソウ土等の濾過助剤を添加し、さらに濾布を用いたフィルタープレスや目止め剤により処理したメッシュスチールを用いたリーフフィルター等の触媒濾過機3に移して濾過層を形成させながら行っていた。また、遠心分離等の重力分離による方法では、前記触媒を含んで冷却された油脂を未処理状態で遠心分離機に入れて、比重の差を利用して分離していた。このように触媒を除去された油脂は、脱色工程(ポストブリーチ)を行う脱色反応槽4に移され、白土等の脱色剤を添加した後に脱色を行い、白土を除去する白土濾過機5を通過させて様々な工程を経て油脂を製造していた。
【0003】
【発明が解決しようとする課題】
そのため以下のような様々な問題があった。
即ち、従来の冷却後の油脂を用いて濾過による触媒の除去方法では、濾布またはメッシュスチールの連続使用ができないためにバッチ式を取らざるを得ず、その都度濾過層を除去しては、新たに水素化反応を終えて冷却した油脂に濾過助剤を添加しなければならなかった。この濾過では、目止め剤を添加しても除去率は99%未満で、決して99%以上の値にはならなかった。その除去された触媒を再利用する場合も、濾過助剤、目止め剤を含み、また触媒が空気に接触するために酸化反応による活性低下が起こり、その活性度を表す値である触媒の残存活性が40〜70となり、再利用ができないものも有り処理コスト及び人手がかかった。
また遠心分離でも、分離機、ポンプ、スラッジハンドリング等の設備を設置して、遠心分離を行うと除去率が94%前後と濾過に比べて劣っており現実には利用することができなかった。
いずれにしても、水素化反応を終了した油脂に濾過助剤による従来の濾過や遠心分離等の重力分離による油脂中の触媒の除去方法では、99%以上の除去率が得られず、その除去された触媒の残存活性は70未満と低く、再利用には高コストを強いられた。また濾過では連続処理ができず、また遠心分離では連続処理が可能だが、除去率が低い等の一長一短があり、さらにこの除去率が低いと残存する触媒を油脂より除去するために脱色しなければならず常に脱色工程が必要となっているので、製造コストが上昇していた。
【0004】
そこで、このような水素化反応を終えた油脂から触媒を除去するときに、その除去率が99%以上で、且つ除去された触媒の残存活性が70以上と高く、さらに連続処理が出来て、触媒を除去した後に行う脱色工程を簡略化または行わずに油脂を製造することができる油脂中の触媒の除去方法を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明は、鋭意研究の結果、水素化反応を終了して冷却した油脂に水蒸気を加え、遠心分離することによって触媒の除去率99%以上で且つ除去された触媒の残存活性が70以上と高く、さらに連続処理が出来て、触媒を除去した後に行う脱色工程を簡略化または経ずに油脂を製造できるに至った。
即ち、触媒の存在下で水素化反応を終了させて油温が30〜95℃の油脂に対して、0.5〜10重量%の水蒸気を前記油脂に対して0.5〜4.0kgf/cm 2 の圧力差で一定の圧力で加えて油脂と触媒と水との混合物を得る工程と、前記混合物を一定時間静置または攪拌を行う工程と、前記混合物から遠心分離により水と前記触媒を分離する工程と、とからなる油脂中の触媒の除去方法によるものである。
【0006】
さらに、触媒にニッケル担体触媒を用いる油脂中の触媒の除去方法、前記一定時間静置または攪拌を行う工程において、静置または攪拌時間が10〜600秒間とする油脂中の触媒の除去方法によっても前記課題は解決される。また、遠心分離に3層分離を用いることもできる。
【0007】
そして、本発明の対象となる油脂または脂肪酸としては、魚油、大豆油、ナタネ油、パーム油、パーム核油、ヤシ油、コーン油、ひまわり油、豚脂、牛脂等から選ばれた少なくとも1つ以上のものを原料としたものであり、それらに含まれるジグリセライド、トリグリセライド、脂肪酸等も用いることができる。さらに脂肪酸には、パルミチン酸、ステアリン酸、アラキドン酸、オレイン酸、バクセン酸、ネルボン酸、リノール酸、リノレイン酸、イワシ酸等の飽和脂肪酸または不飽和脂肪酸を用いることができる。
また、本発明における水素化反応に用いられる触媒とは、化学反応においてそのものが変化せずに、反応を促進させるものであり、油脂の水素化反応を行い固形油脂を製造するものであり、好ましくはケイソウ土のような多孔質の担体にニッケルの微粒子を担持したニッケル担体触媒が用いられる。そのニッケル担体触媒としては、還元ニッケル触媒、ギ酸ニッケル触媒等が例示されるが、特に市販されている種類も多く、低価格な還元ニッケル触媒を用いることが望ましい。そして、その触媒の形態としては、水素化反応を行い易くするためにも、フレーク状、粒状のものを用いることができる。
また、水素化反応を終了して油温が30〜95℃とし、好ましくは油温が30〜80℃の油脂を用いるのが望ましい。即ち、油脂の温度である油温が30℃未満であると油脂が固化している場合が多く、水蒸気を添加することができず、また95℃より高いと水蒸気を加える量との関係で100℃より油温が高くなり易く、加えた水蒸気が油脂から蒸発し易い状態となるので、前記範囲にするのが望ましい。
さらに本発明における水素化反応とは、一般的に液状にした油脂中に水素を添加して、油脂中のトリグリセライドに含まれる不飽和脂肪酸の二重結合や三重結合を減らして、飽和脂肪酸にする反応を意味するもので、硬化反応とも言う。
【0008】
油脂中に水蒸気を一定の圧力で加える工程においては、その加える量としては、油脂に対して0.5〜10重量%を、好ましくは1〜5重量%を加えることができる。即ち、0.5重量%未満であると、加える量が少なく、油脂から触媒を除去した時の除去率の値が99%以上にはならなず、また10重量%より多い場合には、油温が上昇して100℃以上となり、油脂中に水蒸気を保持することができなくなって、触媒の除去率が落ちてしまうので前記範囲にするのが望ましい。油脂中に水蒸気を加えた場合には、油脂によって冷却されて水となり、油脂と触媒と水の混合物ができる。また、水蒸気を一定の圧力で加えることにより、常に均一に油脂中に水蒸気を分散することができる。特に水蒸気を加えて油脂と触媒と水との混合物を得る工程においては、油脂に対して水蒸気を一定の圧力差で加えることができ、具体的には油脂に対して0.5〜4.0kgf/cm2(4.903325×104〜39.2266×104Pa)の圧力差が望ましい。即ち、その圧力差が0.5kgf/cm2未満であると、加温水もしくは水蒸気が油脂中に均一に分散せず、また圧力差が4.0kgf/cm2より高いと、設備のコストも高くなるので、前記範囲にするのが望ましい。このような水素化反応を終えて油温が30〜95℃の油脂に加える好ましい水蒸気の温度は110〜155℃である
【0009】
さらに前記混合物を一定時間攪拌または静置を行う工程における一定時間とは、その混合物において、触媒に付着している油脂が水と置換するまで時間を意味している。即ち油脂と触媒と水との混合物を静置または攪拌することで、上記置換を行うことができるからである。静置とは、攪拌等を行わずに放置する状態を意味する。また攪拌の場合には、特に泡立てたり、渦を形成するような攪拌を行わずに、ゆるやかに攪拌することであり、流速が10〜100cm/秒にするのが望ましい。そこで攪拌する方法としては、油脂中にプロペラ等の攪拌手段を投入して行う攪拌、マグネチックスターラー等のように磁石を包み込んだ回転子を投入して行う攪拌、洗濯機のように回転盤を用いた攪拌等によって行うことができる。そして、攪拌または静置を行う工程は、好ましくは10〜600秒間とするのが良い。10秒間未満であると触媒と水の結合がうまくいかず、600秒間より長いと、処理能力が落ちてしまうので前記範囲にするのが望ましい。
【0010】
前記混合物から水と触媒を分離する工程においては、油脂から不要な水と触媒を除去することにある。特に除去率が99%以上の値を得ることができる分離方法によって行うことができる。このためには、連続処理が可能で、且つ油脂、水、触媒の3種類に分離して触媒を再利用及び再生し易い、重力分離の1種である遠心分離を用いることができる。その遠心分離にはバッチ式の遠心分離や連続に処理することができる三層分離を用いることができ、好ましくは三層分離を用いることが望ましい。このような遠心分離によって分離するときには、2000〜10000Gの遠心力を与えるのが望ましい。
【0011】
【作用】
本発明の触媒の存在下で水素化反応を終了させて油温が30〜95℃の油脂に対して、0.5〜10重量%の水蒸気を前記油脂に対して0.5〜4.0kgf/cm 2 の圧力差で一定の圧力で加えて油脂と触媒と水との混合物を得る工程と、前記混合物を一定時間静置または攪拌を行う工程と、前記混合物から遠心分離により水と前記触媒を分離する工程と、とからなる油脂中の触媒の除去方法によれば、油脂中の触媒の表面に付着している油脂が水蒸気を添加することによってできた水と置換する。そして、この水が付着した触媒は、水の凝集作用により凝集して比重が油脂に対して大きくなり、より沈降し易い状態となる。また、油脂に添加した水が油脂中に含まれる多くの水溶性成分を溶かして不純物が少なくなり、その後の脱色を軽減もしくは省くことができる。
【0012】
さらに前記油脂中の触媒の除去方法において、触媒にニッケル担体触媒を用いる油脂中の触媒の除去方法、前記一定時間静置または攪拌を行う工程において、静置または攪拌時間を10〜600秒間とする油脂中の触媒の除去方法においても、油脂中の触媒の表面に付着している油脂が、加温水もしくは水蒸気を添加することによってできた水と置換する。そして、この水が付着した触媒は、水の凝集作用により凝集して比重が油脂に対して大きくなり沈降し易い状態となる。また、油脂に添加した水が油脂中に含まれる水溶性成分を溶かして不純物が少なくなり、その後の脱色を軽減もしくは省くことができる。さらに前記遠心分離3層分離を用いると、より効率よく油脂と触媒と水とを分離することができる。
【0013】
【実施例】
本発明の詳細を実施例及び図例に基づいて説明する。
(実施例1)
還元ニッケル触媒(ニッケル:20重量%、担体分20重量%、油脂:60重量%を含む)を添加して水素化反応を終了し、500ppmのニッケルを含んで70℃に冷却されたナタネ油に2.0重量%に成るように濃度を調整しながら油脂に対して3.0kgf/cmの圧力差により水蒸気を添加して、30秒間静置した。そして汎用のディスクタイプの遠心分離機(三層分離機)によって2000Gの遠心重力を与えながら分離を行い、実施例1としてのナタネ油を得た。
【0014】
(比較例1)
図1に示す反応槽1にて、実施例1と同様のニッケル担体触媒を用いて水素化反応を終了して90℃に冷却したナタネ油をプレコート槽2に移し、前記ナタネ油に対しケイソウ土からなる濾過助剤を0.33重量%を添加して攪拌を行い、濾過助剤をナタネ油に分散させた。その濾過助剤を含む油脂をメッシュが220の触媒濾過機3(商品名:フンダー・フィルター、石川島播磨重工株式会社製)にてニッケル担体触媒を除去して比較例1としてのナタネ油を得た。
【0015】
(比較例2)
比較例2としては、実施例1と同様の水素化反応を終了して90℃に冷却したナタネ油を用いて、汎用のディスクタイプの遠心分離機(三層分離機)によって8000Gの遠心重力を与えながら分離を行い、比較例2としてのナタネ油を得た。
【0016】
そこで、実施例1、比較例1、比較例2について、油脂中に含まれるニッケルの残存率と、その取り出したニッケル担体触媒の残存活性を測定した。
【0017】
(触媒の除去率の測定)
油脂中のニッケル担体触媒中の含有量は、(財)日本油化学検査協会編集の昭和47年発行「基準油脂分析試験法」の2.2.9−4−77頁に準じて行った。即ち、ニッケルをN,N−ジエチルジチオカルバミド酸ナトリウム錯塩として抽出して、原子吸光光度計(商品名:Z−6100、日立製作所株式会社製)を用いて232nmの測定波長により実施例1、比較例1、比較例2に残存するニッケルの量を測定し、その残存するニッケルの量を添加量である500ppmから差し引いて除去量を算出した。そして除去量を前述の添加量で割ったものに対して100を乗じて触媒の除去率とした。
【0018】
(触媒の残存活性の測定)
残存活性の測定は、未使用のフレッシュ触媒と水素化反応を終了して油脂中から回収されて触媒を含むスラッジについて、夫々をパームオレイン油のヨウ素価(IV)が56になるまでに水添させて水素化反応を終了させる所要時間を求め、そのフレッシュ触媒の所要時間を、スラッジの所要時間で割って100を乗じた値を残存活性とした。その条件を表1に示した。
【0019】
【表1】

Figure 0003557677
【0020】
そして、実施例1、比較例1、比較例2の3種類について、上記の触媒の除去率及び触媒の残存活性を測定して、その結果を表2に示した。
【0021】
【表2】
Figure 0003557677
【0022】
表2から、実施例1はニッケルの除去率が99.9%であるのに対して、比較例1は98.8%、比較例2は94.0%であった。また残存活性は実施例1の80以上に対して、比較例1及び比較例2は残存活性が70未満であり、実施例のほうが優れていることが判明した。
【0023】
【発明の効果】
本発明の油脂中の触媒の除去方法によれば、油脂中の触媒の表面に付着している油脂が、水蒸気を添加することによってできた水と置換する。そして、この水が付着した触媒は、水の凝集作用により凝集して比重が油脂に対して大きくなり重力による沈降が起き油脂中の触媒の除去がし易くなる結果、その除去率が99%以上となり、且つ除去された触媒の残存活性が常に80以上と高くなり、再利用することができる。また、添加した水が油脂中に含まれる水溶性成分を溶かして不純物が少なくなり脱色負荷を軽減できるために、脱色剤の低減または脱色工程を省略することができるので、製造コストを安価にすることができる。

【図面の簡単な説明】
【図1】従来の濾過機を用いた油脂中の触媒の除去方法の説明図
【符号の説明】
1.反応槽
2.プレコート槽
3.触媒濾過機
4.脱色反応槽
5.白土濾過機[0001]
[Industrial applications]
The present invention relates to a method for removing a catalyst contained in a fat or oil which has been subjected to a hydrogenation reaction in the presence of a catalyst in the production of a fat or oil such as a hardened oil.
[0002]
[Prior art]
At present, stable solid fats and oils that can be used for margarine and shaving are produced by hydrogenation by hydrogenation of double bonds dependent on fatty acids contained in triglycerides in fats and oils using highly active catalysts with extremely fine particles. By increasing the melting point of fats and oils and reducing unsaturated fatty acids.
Hereinafter, the conventional method for removing the catalyst will be described with reference to FIG. After the hydrogenation reaction is completed in the reaction tank 1 of FIG. 1 and the fat or oil containing the catalyst of fine particles is cooled to about 100 ° C., it is filtered using a filter or the like indicated by 3 in the figure. Although not shown, the catalyst was removed by gravity separation such as centrifugation. Removal of the catalyst by filtration is performed by adding a filter aid such as diatomaceous earth in the precoat tank 2 and filtering the catalyst using a filter press using a filter cloth or a leaf filter using a mesh steel treated with a filler. The process was carried out while transferring to machine 3 to form a filtration layer. In a method by gravity separation such as centrifugation, the fat or oil containing the catalyst and cooled is put into a centrifuge in an untreated state, and separated by utilizing a difference in specific gravity. The oil and fat from which the catalyst has been removed in this manner is transferred to a decolorization reaction tank 4 for performing a decolorization step (post-bleaching), and after passing through a decolorizing agent such as clay for decolorizing and passing through a clay filter 5 for removing clay. The oils and fats were manufactured through various processes.
[0003]
[Problems to be solved by the invention]
Therefore, there were various problems as follows.
In other words, in the conventional method of removing the catalyst by filtration using oils and fats after cooling, the filter cloth or mesh steel cannot be used continuously, so that the batch method has to be used. A filter aid had to be added to the cooled oil after the completion of the new hydrogenation reaction. In this filtration, the removal rate was less than 99% even when the filler was added, and never exceeded 99%. Even when the removed catalyst is reused, the catalyst contains a filter aid and a filler, and the catalyst comes into contact with air. The activity became 40 to 70, and some of them could not be reused.
Also, in centrifugation, if a separator, a pump, sludge handling and other equipment were installed and centrifugation was performed, the removal rate was about 94%, which was inferior to filtration and could not be used in practice.
In any case, the removal method of the catalyst in the fat or oil by the conventional filtration with a filter aid or the gravity separation such as centrifugation or the like cannot remove 99% or more of the fat or oil after the hydrogenation reaction. The remaining activity of the catalyst thus obtained was as low as less than 70, and high cost was required for its reuse. In addition, continuous processing cannot be performed by filtration, and continuous processing can be performed by centrifugation.However, there are advantages and disadvantages such as a low removal rate, and if this removal rate is low, the remaining catalyst must be decolorized in order to remove the remaining catalyst from oils and fats. In addition, since the decoloring process is always required, the manufacturing cost is increased.
[0004]
Therefore, when removing the catalyst from the fats and oils that have completed such a hydrogenation reaction, the removal rate is 99% or more, and the residual activity of the removed catalyst is as high as 70 or more. An object of the present invention is to provide a method for removing a catalyst in fats and oils, which can produce fats and oils without simplifying or performing a decolorizing step performed after removing the catalyst.
[0005]
[Means for Solving the Problems]
As a result of intensive research, the present invention has found that the removal rate of the catalyst is 99% or more and the residual activity of the removed catalyst is as high as 70 or more by adding steam to the cooled oil and fat after completion of the hydrogenation reaction and centrifuging. Further, a continuous treatment was able to be performed, so that fats and oils could be produced without simplifying or performing the decoloring step performed after removing the catalyst.
That is, the hydrogenation reaction is terminated in the presence of a catalyst, and 0.5 to 10% by weight of water vapor is added to the fat or oil having an oil temperature of 30 to 95 ° C. to 0.5 to 4.0 kgf / a step of obtaining a mixture of fats and oils, a catalyst, and water by applying a constant pressure with a pressure difference of 2 cm , a step of allowing the mixture to stand or stirring for a fixed time, and separating water and the catalyst from the mixture by centrifugation. And a step of separating the catalyst from the fat or oil comprising the steps of:
[0006]
Furthermore, the method for removing the catalyst in oil using a catalyst of nickel supported catalyst, pre-SL in the step of performing a predetermined time standing or stirring, removing how the catalyst in fat standing or stirring time is to 10 to 600 seconds the object is solved by the. Also, three-layer separation can be used for centrifugation.
[0007]
And the fats or oils or fatty acids targeted by the present invention are at least one selected from fish oil, soybean oil, rapeseed oil, palm oil, palm kernel oil, coconut oil, corn oil, sunflower oil, lard, tallow, etc. The above are used as raw materials, and diglycerides, triglycerides, fatty acids and the like contained therein can also be used. Further, as the fatty acid, a saturated or unsaturated fatty acid such as palmitic acid, stearic acid, arachidonic acid, oleic acid, vaccenic acid, nervonic acid, linoleic acid, linoleic acid, and succinic acid can be used.
In addition, the catalyst used in the hydrogenation reaction in the present invention is one that promotes the reaction without changing itself in the chemical reaction, and is one that performs a hydrogenation reaction of fats and oils to produce solid fats and oils, preferably A nickel carrier catalyst in which nickel fine particles are supported on a porous carrier such as diatomaceous earth is used. Examples of the nickel carrier catalyst include a reduced nickel catalyst and a nickel formate catalyst. Among them, there are many commercially available types, and it is desirable to use a low-cost reduced nickel catalyst. The catalyst may be in the form of flakes or particles to facilitate the hydrogenation reaction.
Further, it is desirable to use an oil having an oil temperature of 30 to 95 ° C., preferably 30 to 80 ° C. after the completion of the hydrogenation reaction. That is, if the oil temperature, which is the temperature of the fat or oil, is less than 30 ° C., the fat or oil is often solidified, and steam cannot be added. The oil temperature tends to be higher than ℃, and the added steam tends to evaporate from the fat or oil.
Furthermore, the hydrogenation reaction in the present invention is generally a method of adding hydrogen to a liquid fat or oil to reduce the double bond or triple bond of unsaturated fatty acid contained in triglyceride in the fat or oil to a saturated fatty acid. It means a reaction and is also called a curing reaction.
[0008]
In the step of adding steam to the fat or oil at a constant pressure, the amount to be added may be 0.5 to 10% by weight, preferably 1 to 5% by weight based on the fat or oil. That is, if the amount is less than 0.5% by weight, the amount to be added is small, and the value of the removal rate when the catalyst is removed from the fat or oil does not become 99% or more. Since the temperature rises to 100 ° C. or higher, water vapor cannot be retained in the fat or oil, and the catalyst removal rate decreases, so that the above range is desirable. When steam is added to fats and oils, it is cooled by the fats and oils to become water, and a mixture of fats and oils, a catalyst and water is formed. Further, by adding steam at a constant pressure, it is always possible to distribute the steam evenly in oil. In particular, in the step of obtaining a mixture of fats and oils, a catalyst and water by adding steam, steam can be added to the fats and oils at a constant pressure difference, and specifically 0.5 to 4.0 kgf to the fats and oils. / Cm 2 (4.903325 × 10 4 to 39.2266 × 10 4 Pa) is desirable. That is, higher the difference between the pressures is less than 0.5 kgf / cm 2, pressurized hot water or steam not uniformly dispersed in the oil, also when the pressure difference is higher than 4.0 kgf / cm 2, the cost of equipment Therefore, it is desirable to set the above range. After such a hydrogenation reaction is completed, the preferred temperature of steam added to the fat or oil having an oil temperature of 30 to 95 ° C is 110 to 155 ° C.
[0009]
Further, the certain time in the step of stirring or standing the mixture for a certain time means a time until the fat or oil adhering to the catalyst is replaced with water in the mixture. That is, the substitution can be performed by allowing the mixture of the oil and fat, the catalyst, and water to stand or stir. Stationary means a state where the apparatus is left without stirring or the like. In the case of agitation, gentle agitation is performed without particularly performing agitation such as bubbling or vortex formation, and a flow rate of 10 to 100 cm / sec is desirable. Therefore, as a method of stirring, stirring is carried out by putting stirring means such as a propeller into fats and oils, stirring is carried out by putting in a rotor wrapped with magnets such as a magnetic stirrer, and a rotating disk is provided as in a washing machine. It can be performed by the used stirring or the like. The step of stirring or standing is preferably performed for 10 to 600 seconds. If the time is less than 10 seconds, the catalyst and water will not bond well, and if the time is longer than 600 seconds, the processing capacity will be reduced.
[0010]
In the step of separating the water and the catalyst from the mixture, the object is to remove unnecessary water and the catalyst from the fat or oil. In particular, it can be carried out by a separation method capable of obtaining a value with a removal rate of 99% or more. For this purpose, it is possible to use centrifugal separation, which is one type of gravity separation, which is capable of continuous treatment and is easy to reuse and regenerate the catalyst by separating into three kinds of oils and fats, water and catalyst. For the centrifugation, batch-type centrifugation or three-layer separation capable of continuously processing can be used, and it is preferable to use three-layer separation. When separating by such centrifugation, it is desirable to apply a centrifugal force of 2,000 to 10,000 G.
[0011]
[Action]
The hydrogenation reaction is terminated in the presence of the catalyst of the present invention, and 0.5 to 10% by weight of water vapor is added to the fat and oil having an oil temperature of 30 to 95 ° C to 0.5 to 4.0 kgf to the fat and oil. A step of obtaining a mixture of oil and fat, a catalyst and water by applying a constant pressure with a pressure difference of / cm 2 , a step of allowing the mixture to stand or stirring for a certain time, and a step of centrifuging the mixture to remove water and the catalyst. And the method of removing the catalyst in the fat or oil comprising the steps of: separating the fat and oil adhering to the surface of the catalyst in the fat and oil with water generated by adding steam . Then, the catalyst to which the water has adhered is agglomerated by the aggregating action of water, and has a specific gravity larger than that of the fats and oils. Further, water added to the fat or oil dissolves many water-soluble components contained in the fat or oil, thereby reducing impurities and reducing or eliminating subsequent decolorization.
[0012]
In addition the method for removing the catalyst in said oil, the method of removing the catalyst in oil using a catalyst of nickel supported catalyst, before Symbol certain time stand or step of performing stirring, and allowed to stand or stirring time 10 to 600 seconds also in the removal how the catalyst in fats and oils, fats adhering to the surface of the catalyst in fat, replaced with possible water by the addition of pressurized hot water or steam. Then, the catalyst to which the water has adhered is agglomerated by the aggregating action of water, and has a specific gravity greater than that of the fats and oils, so that the catalyst easily sediments. Further, the water added to the fat or oil dissolves the water-soluble component contained in the fat or oil, thereby reducing impurities and reducing or eliminating subsequent decolorization. Further, when three-layer separation is used for the centrifugation, oils and fats, a catalyst, and water can be more efficiently separated.
[0013]
【Example】
The details of the present invention will be described with reference to examples and drawings.
(Example 1)
A hydrogenation reaction was terminated by adding a reduced nickel catalyst (containing 20% by weight of nickel, 20% by weight of a carrier, and 60% by weight of fats and oils) to a rapeseed oil containing 500 ppm of nickel and cooled to 70 ° C. While adjusting the concentration to 2.0% by weight, steam was added to the fat or oil with a pressure difference of 3.0 kgf / cm 2 , and the mixture was allowed to stand for 30 seconds. Separation was performed by a general-purpose disk-type centrifugal separator (three-layer separator) while applying a centrifugal gravity of 2000 G to obtain rapeseed oil as Example 1.
[0014]
(Comparative Example 1)
In the reaction tank 1 shown in FIG. 1, the hydrogenation reaction was completed using the same nickel carrier catalyst as in Example 1, and the rapeseed oil cooled to 90 ° C. was transferred to the precoat tank 2, and the rapeseed oil was added to the rapeseed oil. Was added and stirred, and the filter aid was dispersed in rapeseed oil. The oil containing the filter aid was removed by a catalyst filter 3 having a mesh of 220 (trade name: Hunder filter, manufactured by Ishikawajima-Harima Heavy Industries, Ltd.) to remove the nickel carrier catalyst to obtain rapeseed oil as Comparative Example 1. .
[0015]
(Comparative Example 2)
As Comparative Example 2, centrifugal gravity of 8000 G was applied by a general-purpose disk-type centrifuge (three-layer separator) using rapeseed oil cooled to 90 ° C. after completing the same hydrogenation reaction as in Example 1. Separation was performed while giving the rapeseed oil as Comparative Example 2.
[0016]
Therefore, for Example 1, Comparative Example 1, and Comparative Example 2, the residual ratio of nickel contained in fats and oils and the residual activity of the extracted nickel carrier catalyst were measured.
[0017]
(Measurement of catalyst removal rate)
The content of the nickel-supported catalyst in the fats and oils was measured in accordance with “Standard fat and oil analysis test method”, pages 2.2.9-4-77, published in 1972, edited by Japan Oil Chemistry Inspection Association. That is, nickel was extracted as a sodium N, N-diethyldithiocarbamate complex salt, and the atomic absorption spectrophotometer (trade name: Z-6100, manufactured by Hitachi, Ltd.) was used at a measurement wavelength of 232 nm to compare Example 1 with Comparative Example 1. The amount of nickel remaining in Example 1 and Comparative Example 2 was measured, and the amount of nickel removed was calculated by subtracting the amount of remaining nickel from the added amount of 500 ppm. Then, the removal amount was divided by the above-mentioned addition amount and multiplied by 100 to obtain a catalyst removal rate.
[0018]
(Measurement of residual activity of catalyst)
The residual activity was measured by hydrogenating the unused fresh catalyst and the sludge recovered from the fat and oil containing the catalyst after the hydrogenation reaction until the iodine value (IV) of the palm olein oil reached 56. Then, the required time to complete the hydrogenation reaction was determined, and the required time of the fresh catalyst was divided by the required time of the sludge and multiplied by 100 to obtain a value representing the residual activity. The conditions are shown in Table 1.
[0019]
[Table 1]
Figure 0003557677
[0020]
The removal rate of the above-mentioned catalyst and the remaining activity of the catalyst were measured for the three types of Example 1, Comparative Example 1, and Comparative Example 2, and the results are shown in Table 2.
[0021]
[Table 2]
Figure 0003557677
[0022]
From Table 2, it was found that Example 1 had a nickel removal rate of 99.9%, whereas Comparative Example 1 had 98.8% and Comparative Example 2 had 94.0%. In addition, the residual activity was 80 or more of Example 1, while the residual activities of Comparative Examples 1 and 2 were less than 70, and it was found that the Examples were superior.
[0023]
【The invention's effect】
According to the method for removing a catalyst in fats and oils of the present invention, the fats and oils adhering to the surface of the catalyst in fats and oils are replaced with water generated by adding steam . Then, the catalyst to which the water adheres is aggregated by the agglomeration of water, and the specific gravity is increased with respect to the fat and oil, sedimentation occurs due to gravity, and the catalyst in the fat and oil is easily removed. And the remaining activity of the removed catalyst is always as high as 80 or more, and can be reused . Further, since the added water dissolves the water-soluble component contained in the fat and oil to reduce impurities and reduce the decolorization load, the decolorizing agent can be reduced or the decolorization step can be omitted, so that the production cost is reduced. be able to.

[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a method for removing a catalyst from fats and oils using a conventional filter.
1. Reaction tank 2. Precoat tank 3. Catalyst filter 4. 4. Decolorization reaction tank Clay filter

Claims (6)

触媒の存在下で水素化反応を終了させて油温が30〜95℃の油脂に対して、0.5〜10重量%の水蒸気を前記油脂に対して0.5〜4.0kgf/cm 2 の圧力差で一定の圧力で加えて油脂と触媒と水との混合物を得る工程と、
前記混合物を一定時間静置または攪拌を行う工程と、
前記混合物から遠心分離により水と前記触媒を分離する工程と、
とからなる油脂中の触媒の除去方法。
The hydrogenation reaction is terminated in the presence of a catalyst, and 0.5 to 10% by weight of steam is added to the fat or oil having an oil temperature of 30 to 95 ° C. to 0.5 to 4.0 kgf / cm 2 for the fat or oil. A step of obtaining a mixture of fats and oils, a catalyst and water by applying at a constant pressure with a pressure difference of
Allowing the mixture to stand or stir for a certain period of time,
Separating water and the catalyst from the mixture by centrifugation ,
A method for removing a catalyst from fats and oils comprising:
前記触媒がニッケル担体触媒である請求項1記載の油脂中の触媒の除去方法。The method according to claim 1, wherein the catalyst is a nickel carrier catalyst. 前記一定時間静置または攪拌を行う工程において、静置または攪拌時間を10〜600秒間とする請求項1または2記載の油脂中の触媒の除去方法。 The method for removing a catalyst from fats and oils according to claim 1 or 2, wherein in the step of standing or stirring for a predetermined time, the standing or stirring time is set to 10 to 600 seconds . 前記遠心分離が3層分離である請求項1、2または3記載の油脂中の触媒の除去方法。 4. The method for removing a catalyst from fats and oils according to claim 1 , wherein the centrifugation is three-layer separation . 除去された触媒の残存活性が70以上である請求項1〜4のいずれかに記載の油脂中の触媒の除去方法。 The method for removing a catalyst from fats and oils according to any one of claims 1 to 4, wherein the remaining activity of the removed catalyst is 70 or more . 除去された触媒の残存活性が80以上である請求項1〜4のいずれかに記載の油脂中の触媒の除去方法。 The method for removing a catalyst from fats and oils according to any one of claims 1 to 4, wherein the remaining activity of the removed catalyst is 80 or more .
JP31622294A 1994-12-20 1994-12-20 Method for removing catalyst from fats and oils Expired - Lifetime JP3557677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31622294A JP3557677B2 (en) 1994-12-20 1994-12-20 Method for removing catalyst from fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31622294A JP3557677B2 (en) 1994-12-20 1994-12-20 Method for removing catalyst from fats and oils

Publications (2)

Publication Number Publication Date
JPH08170092A JPH08170092A (en) 1996-07-02
JP3557677B2 true JP3557677B2 (en) 2004-08-25

Family

ID=18074669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31622294A Expired - Lifetime JP3557677B2 (en) 1994-12-20 1994-12-20 Method for removing catalyst from fats and oils

Country Status (1)

Country Link
JP (1) JP3557677B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101343040B1 (en) * 2010-12-28 2013-12-18 주식회사 삼양바이오팜 Highly pure poloxamers and purification method thereof

Also Published As

Publication number Publication date
JPH08170092A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
JP2921684B2 (en) Glyceride oil purification method
US20110288320A1 (en) Purification treatment of fatty materials
EP3424346B1 (en) Reduction of the content of glycidyl esters in edible oils
EP2361257A1 (en) Triacylglycerol purification by a continuous regenerable adsorbent process
RU2556718C2 (en) Vegetable oil processing
JP3557677B2 (en) Method for removing catalyst from fats and oils
US6448423B1 (en) Refining of glyceride oils by treatment with silicate solutions and filtration
JP2535551B2 (en) Method for producing refined oil
US2738278A (en) Catalytic interesterification
JPH0625692A (en) Improved refining method by using amorphous adsorbent
US2579946A (en) Process for filtering glyceride oils
JP2003119486A (en) Method for separating and recovering used clay
WO2012144599A1 (en) Method for producing directly transesterified oil or fat
CN110980724B (en) Magnetic graphite oxide and preparation method and application thereof
RU2008331C1 (en) Method of distillation refinement of hydrogenated fat
JPS62179598A (en) Extraction of oils and fats
JPS60238395A (en) Purification of vegetable oil
JPWO2016139921A1 (en) Method for producing edible fats and oils
WO2023067069A1 (en) Adsorptive purification of a renewable feedstock
RU2245902C2 (en) Method for adsorption refining of vegetable oil and fat matters
JPH0662990B2 (en) Purification method of waste oil of cold forging type lubricating oil
JPS60197794A (en) Treatment of rice bran
KR20060040007A (en) Method of used cooking oil reprocessing
TEASDALE et al. Processing of Low and High Erucic Acid Rapeseed Oils
JPH01104696A (en) Purification of waste oil of mold lubricating oil used in cold forging process

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term