JP3556127B2 - Self-aligning roller bearing damage diagnosis method and self-aligning roller bearing damage diagnosis device - Google Patents

Self-aligning roller bearing damage diagnosis method and self-aligning roller bearing damage diagnosis device Download PDF

Info

Publication number
JP3556127B2
JP3556127B2 JP18662399A JP18662399A JP3556127B2 JP 3556127 B2 JP3556127 B2 JP 3556127B2 JP 18662399 A JP18662399 A JP 18662399A JP 18662399 A JP18662399 A JP 18662399A JP 3556127 B2 JP3556127 B2 JP 3556127B2
Authority
JP
Japan
Prior art keywords
bearing
signal
self
damage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18662399A
Other languages
Japanese (ja)
Other versions
JP2001013040A (en
Inventor
照展 大石
政輝 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Co Ltd filed Critical Hitachi Building Systems Co Ltd
Priority to JP18662399A priority Critical patent/JP3556127B2/en
Publication of JP2001013040A publication Critical patent/JP2001013040A/en
Application granted granted Critical
Publication of JP3556127B2 publication Critical patent/JP3556127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動調心ころ軸受損傷診断方法およびその診断装置に関する。
【0002】
【従来の技術】
従来の自動調心ころ軸受損傷診断装置は、低速で回転する軸受から発する信号を計測し、この計測結果から軸受の損傷程度を判断して、軸受が正常で使用可能な状態であるかどうかを判定していた。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の自動調心ころ軸受損傷診断装置では、軸受から受信した信号に、損傷信号以外にノイズとなるころ落ち信号が非常に多く含まれており、診断精度が悪く信頼性が低いものとなっていることが分かった。つまり、低速で回転する軸受のころが負荷圏から非負荷圏の境界面に移行するときに保持器に衝突する現象が発生し、このときの衝突音がころ落ち信号として発生して軸受から発する損傷信号に混入してしまう。このころ落ち信号の発生は、軸受の大きさや形式や軸受の回転速度によっても大きく異なるが、従来の自動調心ころ軸受損傷診断装置は、このノイズ信号であるころ落ち信号と軸受の損傷信号を一緒に信号処理してしまうため、正常な軸受であっても異常と判定してしまい、診断精度が悪く信頼性が低いものとなっていた。
【0004】
本発明の目的とするところは、精度良く、また高い信頼性で判定することができる自動調心ころ軸受損傷診断方法およびその診断装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明は上記目的を達成するために、軸受から発する信号を計測し、この計測結果から上記軸受が正常か否かを判定する自動調心ころ軸受損傷診断方法において、上記軸受から発生した損傷信号ところ落ち信号を波形処理回路部で抽出し、その抽出した信号からころ落ち信号と損傷信号の数を全て計測値として算出した後、対応する上記軸受のころ落ち信号演算数を算出し、上記計測値からこの算出したころ落ち信号演算数を差し引いて、これに基づいて上記軸受が正常か否かを判定するようにしたことを特徴とする。
【0006】
また本発明は上記目的を達成するために、軸受から発する信号を計測し、この計測結果から上記軸受が正常か否かを判定する自動調心ころ軸受損傷診断装置において、上記軸受から発生した損傷信号ところ落ち信号を受信するセンサ部と、その受信した信号からころ落ち信号と損傷信号のみを抽出する波形処理回路部と、その抽出した信号からころ落ち信号と損傷信号の数を全て計測値として算出するカウンタ部と、軸受に関する情報から算出したころ落ち信号演算数を上記計測値から差し引く減算器とを設けたことを特徴とする。
【0007】
上述したように本発明の自動調心ころ軸受損傷診断方法およびその診断装置は、軸受から発生した信号から波形処理回路部でノイズ信号を除去してころ落ち信号と損傷信号のみを計測値として取り出し、この軸受に対応するころ落ち信号演算数を計算し、計測値からころ落ち信号演算数を差し引くようにしたため、損傷した軸受から発生した損傷信号のみを得ることができるようになり、軸受の良否を精度良く、また高い信頼性で判定することができる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を図面によって説明する。
図1は、本発明の一実施の形態による自動調心ころ軸受損傷診断方法を採用した自動調心ころ軸受損傷診断装置の要部を示すブロック構成図である。
ころ落ち信号除去回路は、センサ部1と、波形処理回路部2と、パーソナルコンピュータなどの端末部3とから構成しており、このセンサ部1は、軸受から発生した損傷信号を含むころ落ち信号を受信する受信部4と、受信した信号を処理しやすくするために増幅する増幅回路5とで構成している。波形処理回路部2は、増幅された信号からノイズ信号を除去するためのバンドパスフィルタ6と、バンドパスフィルタ6を通過した信号を包短線検波処理する検波回路7と、検波回路7の通過後に検出した出力電圧が非常に小さな全ての信号を確実に計測するために増幅する非線形の特性をもった増幅回路8と、増幅された信号からころ落ち信号と損傷信号のみを通過させるために設けたしきい値設定回路9とで構成している。
【0009】
また端末部3は、波形処理回路部2を通過した信号をすべて計測するためのカウンタ部10と、軸受の形式、軸受の回転数および測定する時間を入力するための入力部12と、入力された条件から発生するころ落ち信号演算数を計算するための演算回路13と、カウンタ部10の計測値と演算回路13で演算した演算数を格納するためのメモリ11と、メモリ11に格納したカウンタ部10の計測値から演算回路13での演算数を差し引くための減算器14と、減算器14で得た結果を表示するための表示部15と、設定値変更回路部16とで構成しており、この設定値変更回路部16は、現在使われている軸受の中にころ落ち信号の発生状況が異なっていた場合にでも対応できるように、増幅回路5と、バンドパスフィルタ6と、増幅回路8と、しきい値設定回路9のそれぞれの設定を自由に変更するものである。
【0010】
図2は、上述した自動調心ころ軸受損傷診断装置を採用したエレベータの巻き上げ機を示す正面図である。
巻き上げ機21は、エレベータの運転中、乗客の指示に応じた指定階床に到達するまで回転し、指定階床に到達すると停止するという断続運転を繰り返す。この巻き上げ機21により駆動されるシーブ22と、シーブ22と連動して駆動されるビームプーリ23には、図示しない乗かごとカウンタウエートを両端に連結したロープが巻回されている。このビームプーリ23は、毎分30回から300回程度で回転し、その左右に設けた二個の自動調心ころ軸受で支持されており、この軸受部に受信部4を構成するAEセンサ4a,4bがそれぞれ一個ずつ取り付けられており、このAEセンサ4a,4bで各軸受から発生するころ落ち信号を含む信号を全て計測するようにしている。
【0011】
AEセンサ4a,4bで計測した信号は、図1に示した自動調心ころ軸受損傷診断装置のころ落ち信号除去回路で処理する。センサ部1で計測した信号は波形処理回路部2で処理され、ころ落ち信号を含む信号の発生数が整数値で計測値としてカウンタ部10に表示される。この計測値には、ころ落ち信号と損傷信号とが含まれており、次いで、正確な軸受の損傷を行うためにころ落ち信号を求めて除去するようにしている。
【0012】
次に、ころ落ち信号と損傷信号とを含む計測値から除去するころ落ち信号の算出方法について説明する。
先ず、入力部12から軸受の形式、軸受の回転数などの軸受に関する情報を入力すると共に、測定を行なう時間を入力する。例えば、軸受情報として転動体直径をDm[mm]、接触角をcosα[°]、転動体ピッチ円径をdm[mm]、外輪回転速度をne[rpm]、内輪回転速度をni[rpm]とすると、ころ落ち信号演算数nは、数式(1)から求めることができる。

Figure 0003556127
また、図2に示したエレベータの巻き上げ機におけるビームプーリ23の軸受は内輪固定であるため、ni=0となり、数式(1)は次の数式(2)のように表すことができる。
n=(1+Dmcosα/dm)×ne/2 (2)
従って、n≒X[rpm]で表され、また、求めるころ落ち音の周波数f[Hz]は、f=n×軸受ころ数=Yとなり、ころ落ち音の発生間隔である周期Tは、T=1÷Yとなり、計測時間中に発生するころ落ち信号演算数を求めることができる。
【0013】
演算回路13には、このような数式に基づく演算式が組み込まれており、算出したころ落ち信号演算数は、カウンタ部10の計測値と共にメモリ11に格納し、測定する時間に達すると、減算器14でカウンタ部10の計測値から演算回路13で求めたころ落ち信号演算数を差し引くことにより、損傷した軸受から発生した損傷信号のみを求めることができる。このとき端末部3は、軸受形状や軸受回転数などの軸受に関する情報と、測定時間を入力部12から入力できるようにし、入力された軸受に関する情報に基づいて演算回路13でころ落ち信号演算数を演算処理するため、自動で演算処理することができる。
【0014】
自動調心ころ軸受損傷診断装置は、このようにして算出した損傷信号のみを表示部15に表示し、基準となる設定値と比較して軸受の良否を精度良く、また高い信頼性で判定することができる。このとき、波形処理回路部2は、バンドパスフィルタ6と、検波回路7と、増幅回路8と、しきい値設定回路8を含み、非常に小さな信号を受信した場合でも確実な処理が可能にする非線形の特性をもった増幅回路を備えているため、演算回路13で計算したころ落ち信号演算数と、センサ部1から受信したころ落ち信号の数を確実に一致させることができる。また設定値変更回路部16は、現在使われている軸受の中にころ落ち信号の発生状況が異なっていた場合、増幅回路5と、バンドパスフィルタ6と、増幅回路8と、しきい値設定回路9のそれぞれに入力部12から指令を与えて設定を変更することができる。
【0015】
自動調心ころ軸受損傷診断方法としては、カウンタ部10の計測値と、演算回路13で求めたころ落ち信号演算数とを並記して表示部15に表示し、それらの表示の差から作業者が損傷信号のみを求めて、軸受の損傷程度を判定したり、端末部3とは別に演算回路13およびその結果の出力部を構成し、それらの表示および出力の差から作業者が損傷信号のみを求めて、軸受の損傷程度を判定したりすることができる。しかし、端末部3のように、減算器14によってカウンタ部10の計測値から演算回路13で求めたころ落ち信号演算数を差し引いて、その結果を表示部15に表示するなら、作業者の負担や計算ミスを排除して精度良く、また容易に軸受の良否判定を行なうことができる。
【0016】
尚、本実施の形態では、ビームプーリ23に使用された自動調心ころ軸受について説明したが、ケージプーリやカウンターウエートプーリに使用される自動調心軸受にも同様に適用することができる。また端末部3は、カウンタ部10の計測値から演算回路13で求めたころ落ち信号演算数を差し引いて、損傷した軸受から発生した損傷信号のみを表示部15へ表示するようにしたが、損傷信号において軸受の良否を判定する設定値を設定し、この設定値との比較結果を表示部15などの出力手段に出力するようにしても良い。
【0017】
【発明の効果】
以上説明したように本発明による自動調心ころ軸受損傷診断方法およびその診断装置は、センサ部で受信した後、波形処理回路部で処理してころ落ち信号と損傷信号のみを取り出し、その後、算出したころ落ち信号演算数を計測値から差し引くようにしたため、損傷した軸受から発生した損傷信号のみを得ることができ、精度が良く信頼性が高い判定を行なうことができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による自動調心ころ軸受損傷診断装置の要部を示すブロック構成図である。
【図2】図1に示した自動調心ころ軸受損傷診断装置を取り付けたエレベータの巻き上げ機の正面図である。
【符号の説明】
1 センサ部
2 波形処理回路部
3 端末部
6 バンドパスフィルタ
7 検波回路
8 増幅回路
9 しきい値設定回路
10 カウンタ部
12 入力部
13 演算回路
14 減算器
15 表示部
16 設定値変更回路部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a self-aligning roller bearing damage diagnosis method and a diagnosis device therefor.
[0002]
[Prior art]
The conventional self-aligning roller bearing damage diagnosis device measures the signal generated from the bearing rotating at low speed, judges the degree of damage to the bearing from this measurement result, and determines whether the bearing is normal and usable. Had been determined.
[0003]
[Problems to be solved by the invention]
However, in the conventional self-aligning roller bearing damage diagnosis device, the signal received from the bearing includes a very large number of rolling signals that become noise in addition to the damage signal, resulting in poor diagnostic accuracy and low reliability. It turned out to be. In other words, a phenomenon occurs in which the roller of the bearing rotating at low speed collides with the retainer when moving from the load zone to the boundary surface of the non-load zone, and a collision sound at this time is generated as a roller drop signal and emitted from the bearing. It gets mixed in the damage signal. The occurrence of this roller drop signal varies greatly depending on the size and type of the bearing and the rotation speed of the bearing.However, the conventional self-aligning roller bearing damage diagnosis device Since signal processing is performed at the same time, even a normal bearing is determined to be abnormal, resulting in poor diagnostic accuracy and low reliability.
[0004]
An object of the present invention is to provide a self-aligning roller bearing damage diagnosing method and a diagnosing device capable of determining with high accuracy and high reliability.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a self-aligning roller bearing damage diagnosis method for measuring a signal emitted from a bearing and determining whether the bearing is normal from the measurement result. On the other hand, the falling signal is extracted by the waveform processing circuit unit, and after calculating all the numbers of the roller falling signal and the damage signal from the extracted signal as measurement values, the corresponding roller rolling signal operation number of the bearing is calculated, and the measurement is performed. It is characterized in that the calculated roller drop signal operation number is subtracted from the value, and based on the result, it is determined whether the bearing is normal or not.
[0006]
Further, in order to achieve the above object, the present invention provides a self-aligning roller bearing damage diagnosis device which measures a signal emitted from a bearing and determines whether the bearing is normal or not based on the measurement result. The sensor part that receives the signal drop signal, the waveform processing circuit part that extracts only the drop signal and the damage signal from the received signal, and the number of the drop signal and the damage signal from the extracted signal are all measured values. It is characterized by including a counter unit for calculating and a subtractor for subtracting the number of calculated roller drop signals from the measured value from the bearing information.
[0007]
As described above, the self-aligning roller bearing damage diagnosing method and diagnostic apparatus of the present invention removes a noise signal from a signal generated from a bearing by a waveform processing circuit unit, and extracts only a roller falling signal and a damage signal as measured values. Since the number of operation of the roller falling signal corresponding to the bearing is calculated, and the number of the operation of the roller falling signal is subtracted from the measured value, only the damage signal generated from the damaged bearing can be obtained. Can be determined with high accuracy and high reliability.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a main part of a self-aligning roller bearing damage diagnosis apparatus employing a self-aligning roller bearing damage diagnosis method according to one embodiment of the present invention.
The roller drop signal removing circuit includes a sensor unit 1, a waveform processing circuit unit 2, and a terminal unit 3 such as a personal computer. The sensor unit 1 includes a roller drop signal including a damage signal generated from a bearing. And an amplifying circuit 5 for amplifying the received signal to facilitate processing. The waveform processing circuit unit 2 includes a band-pass filter 6 for removing a noise signal from the amplified signal, a detection circuit 7 for performing envelope detection processing on the signal that has passed through the band-pass filter 6, and a signal after passing through the detection circuit 7. An amplifier circuit 8 having a non-linear characteristic for amplifying the detected output voltage to reliably measure all signals having a very small output voltage, and providing only a fall signal and a damage signal from the amplified signal. And a threshold setting circuit 9.
[0009]
The terminal unit 3 also includes a counter unit 10 for measuring all signals passing through the waveform processing circuit unit 2, an input unit 12 for inputting the type of bearing, the number of revolutions of the bearing, and a measurement time. An arithmetic circuit 13 for calculating the number of operations of the falling signal generated from the set conditions, a memory 11 for storing the measured value of the counter unit 10 and the number of operations calculated by the arithmetic circuit 13, and a counter stored in the memory 11. A subtractor 14 for subtracting the number of operations in the arithmetic circuit 13 from the measurement value of the unit 10, a display unit 15 for displaying the result obtained by the subtractor 14, and a set value changing circuit unit 16. The set value change circuit section 16 includes an amplifier circuit 5, a band-pass filter 6, and an amplifier circuit 5 so as to cope with a case where the state of occurrence of a roller drop signal is different in a bearing currently used. circuit When, it is to freely change the respective settings of the threshold setting circuit 9.
[0010]
FIG. 2 is a front view showing an elevator hoist that employs the above-described self-aligning roller bearing damage diagnosis device.
During operation of the elevator, the hoisting machine 21 repeats an intermittent operation of rotating until reaching the designated floor according to the passenger's instruction and stopping when reaching the designated floor. A sheave 22 driven by the hoisting machine 21 and a beam pulley 23 driven in conjunction with the sheave 22 are wound with ropes each having a not-shown car and a counterweight connected to both ends thereof. The beam pulley 23 rotates at about 30 to 300 times per minute, and is supported by two self-aligning roller bearings provided on the left and right sides thereof. The AE sensors 4a and 4b are used to measure all signals including a rolling signal generated from each bearing.
[0011]
The signals measured by the AE sensors 4a and 4b are processed by a roller drop signal removal circuit of the self-aligning roller bearing damage diagnosis device shown in FIG. The signal measured by the sensor unit 1 is processed by the waveform processing circuit unit 2, and the number of occurrences of the signal including the roller drop signal is displayed on the counter unit 10 as a measured value as an integer value. The measured values include a rolling signal and a damage signal, and then the rolling signal is determined and removed in order to perform accurate bearing damage.
[0012]
Next, a description will be given of a method of calculating a roll-off signal to be removed from a measured value including a roll-down signal and a damage signal.
First, information about the bearing, such as the type of the bearing and the number of revolutions of the bearing, is input from the input unit 12, and the time for performing the measurement is also input. For example, as the bearing information, the rolling element diameter is Dm [mm], the contact angle is cos α [°], the rolling element pitch circle diameter is dm [mm], the outer ring rotation speed is ne [rpm], and the inner ring rotation speed is ni [rpm]. Then, the number n of the operation of the roller drop signal can be obtained from Expression (1).
Figure 0003556127
In addition, since the bearing of the beam pulley 23 in the elevator hoist shown in FIG. 2 is fixed to the inner ring, ni = 0, and the equation (1) can be expressed as the following equation (2).
n = (1 + Dmcosα / dm) × ne / 2 (2)
Therefore, it is represented by n] X [rpm], and the frequency f [Hz] of the obtained roller-falling sound is f = n × the number of bearing rollers = Y, and the period T, which is the interval between occurrences of the roller-falling sound, is T = 1 ÷ Y, and it is possible to obtain the number of operations of the roll-down signal generated during the measurement time.
[0013]
The arithmetic circuit 13 incorporates an arithmetic expression based on such a mathematical expression. The calculated number of times of the fall-off signal operation is stored in the memory 11 together with the measured value of the counter unit 10, and when the time for measurement is reached, the subtraction is performed. By subtracting the operation number of the roller drop signal calculated by the arithmetic circuit 13 from the measured value of the counter unit 10 by the unit 14, only the damage signal generated from the damaged bearing can be obtained. At this time, the terminal unit 3 enables information about the bearing such as the bearing shape and the number of rotations of the bearing and the measurement time to be input from the input unit 12, and the arithmetic circuit 13 calculates the number of times of the rolling-down signal calculation based on the input information about the bearing. Can be automatically processed.
[0014]
The self-aligning roller bearing damage diagnosis device displays only the damage signal calculated in this way on the display unit 15 and compares it with a reference set value to determine the quality of the bearing with high accuracy and high reliability. be able to. At this time, the waveform processing circuit unit 2 includes the band-pass filter 6, the detection circuit 7, the amplification circuit 8, and the threshold setting circuit 8, so that reliable processing can be performed even when a very small signal is received. Since the amplifier circuit having the non-linear characteristic described above is provided, the number of operations of the roller drop signal calculated by the arithmetic circuit 13 and the number of the roller drop signals received from the sensor unit 1 can be surely matched. The set value change circuit section 16 includes an amplifying circuit 5, a band-pass filter 6, an amplifying circuit 8, and a threshold value setting when the state of occurrence of the roller drop signal is different in the currently used bearing. The setting can be changed by giving a command from the input unit 12 to each of the circuits 9.
[0015]
As a method for diagnosing the damage of the self-aligning roller bearing, the measured value of the counter unit 10 and the number of operation of the roller drop signal obtained by the arithmetic circuit 13 are displayed side by side on the display unit 15, and the difference between the displayed values is used by the operator. Obtains only the damage signal, determines the degree of damage to the bearing, configures the arithmetic circuit 13 and the output part of the result separately from the terminal unit 3, and allows the operator to determine only the damage signal from the difference between the display and the output. , The degree of damage to the bearing can be determined. However, as in the terminal unit 3, if the subtractor 14 subtracts the number of operation of the roller drop signal calculated by the arithmetic circuit 13 from the measurement value of the counter unit 10 and displays the result on the display unit 15, the burden on the operator is increased. It is possible to accurately and easily judge the quality of the bearing by eliminating calculation errors and calculation errors.
[0016]
In the present embodiment, the self-aligning roller bearing used for the beam pulley 23 has been described. However, the present invention can be similarly applied to a self-aligning bearing used for a cage pulley or a counterweight pulley. In addition, the terminal unit 3 subtracts the number of operation of the roller drop signal obtained by the arithmetic circuit 13 from the measurement value of the counter unit 10 and displays only the damage signal generated from the damaged bearing on the display unit 15. A set value for judging the quality of the bearing may be set in the signal, and the result of comparison with the set value may be output to an output unit such as the display unit 15.
[0017]
【The invention's effect】
As described above, the self-aligning roller bearing damage diagnosing method and the diagnostic device according to the present invention, after being received by the sensor unit, are processed by the waveform processing circuit unit to take out only the roller drop signal and the damage signal, and thereafter, the calculation is performed. Since the number of times of the rolling-down signal operation is subtracted from the measured value, only a damaged signal generated from the damaged bearing can be obtained, and a highly accurate and highly reliable determination can be performed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a main part of a self-aligning roller bearing damage diagnosis apparatus according to an embodiment of the present invention.
FIG. 2 is a front view of an elevator hoist equipped with the self-aligning roller bearing damage diagnosis device shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sensor part 2 Waveform processing circuit part 3 Terminal part 6 Bandpass filter 7 Detection circuit 8 Amplification circuit 9 Threshold value setting circuit 10 Counter part 12 Input part 13 Operation circuit 14 Subtractor 15 Display part 16 Setting value change circuit part

Claims (6)

軸受から発する信号を計測し、この計測結果から上記軸受が正常か否かを判定する自動調心ころ軸受損傷診断方法において、上記軸受から発生した損傷信号ところ落ち信号を波形処理回路部で抽出し、その抽出した信号からころ落ち信号と損傷信号の数を全て計測値として算出した後、対応する上記軸受のころ落ち信号演算数を算出し、上記計測値からこの算出したころ落ち信号演算数を差し引いて、これに基づいて上記軸受が正常か否かを判定するようにしたことを特徴とする自動調心ころ軸受損傷診断方法。In the self-aligning roller bearing damage diagnosis method of measuring a signal emitted from the bearing and determining whether the bearing is normal or not from the measurement result, the waveform processing circuit unit extracts a damaged signal generated from the bearing and a drop signal. After calculating the number of the roller drop signal and the number of the damage signal from the extracted signal as a measured value, calculate the corresponding number of the calculated roller drop signal of the bearing, and calculate the calculated number of the calculated roller drop signal from the measured value. A method for diagnosing damage to a self-aligning roller bearing, wherein the method determines whether the bearing is normal or not based on the difference. 軸受から発する信号を計測し、この計測結果から上記軸受が正常か否かを判定する自動調心ころ軸受損傷診断装置において、上記軸受から発生した損傷信号ところ落ち信号を受信するセンサ部と、その受信した信号からころ落ち信号と損傷信号のみを抽出する波形処理回路部と、その抽出した信号からころ落ち信号と損傷信号の数を全て計測値として算出するカウンタ部と、軸受に関する情報から算出したころ落ち信号演算数を上記計測値から差し引く減算器とを設けたことを特徴とする自動調心ころ軸受損傷診断装置。In a self-aligning roller bearing damage diagnosis device that measures a signal emitted from the bearing and determines whether the bearing is normal from the measurement result, a sensor unit that receives a damage signal generated from the bearing and a drop signal, A waveform processing circuit unit that extracts only the roller drop signal and the damage signal from the received signal, a counter unit that calculates all the numbers of the roller drop signal and the damage signal from the extracted signal as a measurement value, and a calculation based on information about the bearing. A self-aligning roller bearing damage diagnosis device, comprising: a subtractor for subtracting the number of calculated roller drop signals from the measured value. 請求項2記載のものにおいて、上記軸受に関する情報から上記軸受のころ落ち信号演算数を算出する演算回路と、上記減算器で計算した結果を出力するための出力部を設けたことを特徴とする自動調心ころ軸受損傷診断装置。3. The apparatus according to claim 2, further comprising: an arithmetic circuit for calculating the number of operation of the bearing rolling signal from the information on the bearing; and an output unit for outputting a result calculated by the subtractor. Self-aligning roller bearing damage diagnosis device. 請求項2記載のものにおいて、上記軸受に関する情報を入力する入力部と、上記軸受に関する情報から上記軸受のころ落ち信号演算数を算出する演算回路とを設けたことを特徴とする自動調心ころ軸受損傷診断装置。3. The self-aligning roller according to claim 2, further comprising: an input unit for inputting information on the bearing, and an arithmetic circuit for calculating the number of arithmetic operations of the roller drop signal from the information on the bearing. Bearing damage diagnosis device. 請求項2記載のものにおいて、上記波形処理回路部は、少なくともバンドパスフィルタと、検波回路と、非線形の特性をもった増幅回路と、しきい値設定回路とを有して構成したことを特徴とする自動調心ころ軸受損傷診断装置。3. The waveform processing circuit according to claim 2, wherein the waveform processing circuit section includes at least a bandpass filter, a detection circuit, an amplification circuit having non-linear characteristics, and a threshold setting circuit. Self-aligning roller bearing damage diagnosis device. 請求項2記載のものにおいて、上記波形処理回路部は、少なくともバンドパスフィルタと、検波回路と、非線形の特性をもった増幅回路と、しきい値設定回路とを有して構成し、また上記バンドパスフィルタ、上記増幅回路および上記しきい値設定回路の乗数を変更する設定値変更回路部を設けたことを特徴とする自動調心ころ軸受損傷診断装置。3. The apparatus according to claim 2, wherein the waveform processing circuit section includes at least a bandpass filter, a detection circuit, an amplification circuit having non-linear characteristics, and a threshold setting circuit. An apparatus for diagnosing damage to a self-aligning roller bearing, comprising a bandpass filter, a set value changing circuit for changing a multiplier of the amplifier circuit and a multiplier of the threshold value setting circuit.
JP18662399A 1999-06-30 1999-06-30 Self-aligning roller bearing damage diagnosis method and self-aligning roller bearing damage diagnosis device Expired - Fee Related JP3556127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18662399A JP3556127B2 (en) 1999-06-30 1999-06-30 Self-aligning roller bearing damage diagnosis method and self-aligning roller bearing damage diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18662399A JP3556127B2 (en) 1999-06-30 1999-06-30 Self-aligning roller bearing damage diagnosis method and self-aligning roller bearing damage diagnosis device

Publications (2)

Publication Number Publication Date
JP2001013040A JP2001013040A (en) 2001-01-19
JP3556127B2 true JP3556127B2 (en) 2004-08-18

Family

ID=16191829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18662399A Expired - Fee Related JP3556127B2 (en) 1999-06-30 1999-06-30 Self-aligning roller bearing damage diagnosis method and self-aligning roller bearing damage diagnosis device

Country Status (1)

Country Link
JP (1) JP3556127B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012078288A (en) * 2010-10-05 2012-04-19 Asahi Kasei Engineering Kk Method for diagnosing roller bearing
AT517836B1 (en) * 2015-11-19 2017-05-15 Avl List Gmbh Method and test bench for carrying out a test for a test object

Also Published As

Publication number Publication date
JP2001013040A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
KR101178962B1 (en) Abnormality diagnostic method and device of extremely low speed rotary machine
JP2008292288A (en) Bearing diagnostic device for reduction gear
JP2007008709A (en) Passenger conveyor diagnosing device
JP2001021453A (en) Method and device for diagnosing anomaly in bearing
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
JP2013224853A (en) Method of diagnosing anomalies in low speed rotational bearing of elevator
JP3556127B2 (en) Self-aligning roller bearing damage diagnosis method and self-aligning roller bearing damage diagnosis device
JP5673382B2 (en) Abnormal diagnosis method
JP3829924B2 (en) Evaluation device
JPH0588774B2 (en)
JP2019158514A (en) Inspection device of bearing for passenger conveyor, and inspection method of bearing for passenger conveyor
JP3325448B2 (en) Diagnosis device for rotating machine bearings using acoustic emission
JP6733838B1 (en) Rolling bearing abnormality diagnosis method and abnormality diagnosis device
JP2695366B2 (en) Abnormality diagnosis method for low-speed rotating machinery
JP4542918B2 (en) Bearing abnormality detection device
JP3325449B2 (en) Diagnosis device for rotating machine bearings using acoustic emission
JP2004170318A (en) Method and apparatus for diagnosing anomaly of rotator
JP2004093185A (en) Abnormality diagnostic device and method for rotator
JPH05281094A (en) Inspection method of directly moving type guide provided with circulating type rolling guide and its apparatus
JP2848253B2 (en) Drive unit life prediction device
JP2001324417A (en) Method and device for evaluating damage in bearing
JP2021128110A (en) Belt conveyor monitoring device
JP6460030B2 (en) Rotating bearing state determination device and state determination method
JPH05248938A (en) Rubber exfoliation diagnostic method for rubber-lined roller
JPH07270228A (en) Anomaly diagnosis method for low speed rotary machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees