JP3555699B2 - Ultrasonic device - Google Patents

Ultrasonic device Download PDF

Info

Publication number
JP3555699B2
JP3555699B2 JP30495394A JP30495394A JP3555699B2 JP 3555699 B2 JP3555699 B2 JP 3555699B2 JP 30495394 A JP30495394 A JP 30495394A JP 30495394 A JP30495394 A JP 30495394A JP 3555699 B2 JP3555699 B2 JP 3555699B2
Authority
JP
Japan
Prior art keywords
ultrasonic
data
correction
tomographic image
sound velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30495394A
Other languages
Japanese (ja)
Other versions
JPH08154930A (en
Inventor
隆一 篠村
裕 鱒沢
浩 神田
純 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP30495394A priority Critical patent/JP3555699B2/en
Publication of JPH08154930A publication Critical patent/JPH08154930A/en
Application granted granted Critical
Publication of JP3555699B2 publication Critical patent/JP3555699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【0001】
【産業上の利用分野】
本発明は超音波装置に関し、特に被検体の音速不均一を補正して像を表示することを可能とした超音波装置に関する。
【0002】
【従来の技術】
従来の超音波装置の例を図2に示す。超音波振動子アレー1を送波回路2により複数の振動子を選択駆動し超音波を送波する。放射された超音波は、被検体3より反射され超音波振動子アレー1で受波され各振動子の焦点までの時間差を受波整相部4にて遅延整相し、信号処理部5にて画像表示用の処理をして、モニタ6に表示するものである。この時の送波のフォーカスのための各素子の遅延データ及び受波整相部4の遅延フォーカスデータは被検体の音速Cを一様と仮定して作成しており、素子間のフォーカス点までの距離差dとすると、遅延時間tは、t−d/cで与えられる。しかし実際の被検体は一様ではなく、速度分布を呈している。従って、所望のビームは形成されず分解能は劣化している。この速度分布補正に素子間の位相差を求め補正する方式や、隣接素子の信号を相互相関をとることにより位相差を求めて補正する方式等各種提案されている。
【0003】
【発明が解決しようとする課題】
前記各種補正方式は、シミュレーション上でしかも特定条件において有効であるものが多い。このため、必ずしも正確な画像が表示されるとは限らず、実際の医療用としては診断が難しいという問題があった。また、従来の構成では、より適確な補正アルゴリズムを開発、利用するための判断材料として役立てるには不充分であった。
そこで本発明の目的は、被検体に適用した場合に、正しい補正がなされているか、像が改善されているかの判断を支援するのに好適な超音波装置を提供することにある。
【0004】
【課題を解決するための手段】
前記目的を達成するため、本発明の超音波装置は、同一部位について、「補正しない撮像(仮想一様音速にて作成したビーム形成データに基づいた断層像)」と「音速補正部(図1の7)にて補正した撮像(音速不均一の補正をしたビーム形成データに基づいた断層像)」を同時に比較可能に表示することに特徴がある。また、同時に複数の超音波ビームを形成する場合は、全表示ラスタ数を分割し、同時に形成するビームの内の一つを、被検体の仮想設定一様音速によって作成されたビーム形成データに基づいて形成し、同時に形成する他のビームを、被検体の音速不均一の補正をしたビーム形成データに基づいて形成し、それぞれの断層像を得ることに特徴がある。さらに、被検体の仮想設定一様音速によって作成されたビーム形成データに基づき断層像を得ている間に、被検体の音速不均一の補正データを求めてフォーカスデータを書き替え、補正断層像を表示することに特徴がある。
【0005】
【作用】
本発明においては、前記のように同一部位を同時に補正しない撮像と、補正した撮像を比較可能に同時(または選択して)表示することにより、使用者への判断材料を提供することが可能であって、医師や検査技師に、より正確な診断を仰ぐことができる。あるいは、ソフトウェア開発支援に利用して実用的かつ効率的な補正アルゴリズム開発を進めることができる。
また、複ビーム形成可能な装置において、全表示ラスタ数を分割し、それぞれから一様音速によるビーム形成データと音速不均一の補正によるものとを形成することにより、フレームレートを向上させることができる。
さらに、一様音速によるビーム形成データから断層像を得ている間に、音速不均一の補正データを求めて制御データを書き替え、補正断層像を表示することにより、使用者に違和感を与えないリアルタイム表示を行うことができる。
【0006】
【実施例】
以下本発明の一実施例を説明する。図1に基本構成を示す。超音波振動子アレー1を送波回路2により複数の振動子を選択駆動し超音波を送波する。放射された超音波は、被検体3より反射され超音波振動子アレー1で受波され各振動子の焦点までの時間差を受波整相部4にて遅延整相し、信号処理部5にて画像表示用の処理をして、モニタ6に表示するものである。従来の技術では、被検体の音速は一様と仮定しているが、実際は不均一分布を呈するため、この速度分布補正に素子間の位相差を求め補正する方式や、隣接素子の信号を相互相関をとることにより位相差を求めて補正する方式等各種提案されている。本実施例では、これらの補正方法の一つを用いた音速補正部7により、補正音速を求めフォーカスデータを求めてそのデータに基づいて送波部2、受波整相部4を動作させ、補正ビームを形成する。
この時図3に示すようにモニタ6を2分割し、補正前のデータによる画像Aと、補正後のデータによる画像Bを同時に表示する。補正前の画像Aは、対象像(球形部分)が不鮮明であるが、補正後の画像Bは、球形部分がより鮮明になっている。しかし、前述のように、補正後の画像が必ずしも正しい画像とは限らないので、本実施例では、使用者が、この両者の画像A、Bを観ることによってどのように画像が変化したかを理解でき、さらに処理を進めるか、もとの画像に戻すか等、の判断を容易に行い選択できるように構成している。
【0007】
次に、図4に複ビーム可能な装置の場合の適用方法の例を示す。図4は特に受波整相複ビームの例である。図4は受波整相部4を2面用意して同時に受波複ビームを形成する例である。Aビームを形成する受波整相部4−Aは、制御データ部7−Aにより遅延される。Bビームを形成する受波整相部4−Bは、制御データ部7−Bにより遅延される。ここで受波整相部4−Aは、補正前の制御データを使用してビームを形成する。受波整相部4−Bは、補正処理部7−Cによって求められたデータが制御データ部7−Bに書かれそのデータに基づいて受波整相部4−Aに入力するものと同じ受波信号を同時に補正データで処理するものである。この処理により図3に示したように同じ部位の補正前後の像を同時に表示することができるものである。
【0008】
図5は、受波複ビームの別の形成例である。前記実施例では、受波信号は、アナログ信号でもデジタル信号でも構わない。図5はサンプリングにより時系列に受波データを扱うことのできる受波整相部4の例で、サンプリングごとにAビームBビームと交互に使用するものである。当然ながら制御データ7−Aと7−Bが交互に用いられることになる。整相後に信号処理部5ではビームデータAとBが並列に分離され処理される。Aビームを形成するサンプリングデータA列は、制御データ部7−Aにより遅延される。Bビームを形成するサンプリングデータB列は、制御データ部7−Bにより遅延される。ここで制御データ7−Aは補正前の制御データであり補正前のビームを形成する。制御データ7−Bは補正処理部7−Cによって求められたデータが制御データ部7−Bに書かれそのデータに基づいて受波整相部4に入力するものと同じ受波信号を同時に補正データで処理するものである。この処理により図3に示したように同じ部位の補正前後の像を同時に表示することができるものである。
これらの例において、補正処理部7−Cによる補正データの作成に時間を要する場合は、受波整相部4により画像を形成して表示し、その間に制御データを作成し制御データ部7−Bを書替え、動作可能になった段階で切り替えることにより、使用者に違和感を与えず効率良く表示するものである。
【0009】
次にラスタ作成順番について図6に例を示す。一画像が図6(a)のようにラスタ数nから構成され、しかも複ビームが同じラスタ数であって、フレームレートを向上させようとする場合は、図6(b)に示すようにラスタ数を半分にし、前半のラスタ1〜n/2を補正前の画像に割当て、後半のラスタ(1+n/2)〜nを補正データに割り当てるものである。この走査では、制御メモリデータ数はラスタ本数概略ビーム本数が変わらないため同じである。一方、全画面をそれぞれの像のみにし走査密度を変えないためには、データ数が倍増するものである。
なお、本実施例では2本ビームのみについて説明したがその数に限定されるものではないことは言うまでもない。また、受波についてのみ記したが、送波において同時に同じ部位を撮像するには、周波数や位相を変える必要があるが、複数方向に超音波を送波できるシステムでは、違う部位において同時に同様の走査が可能であることは言うまでもない。
【0010】
また、図7(b)に示すように送受波ビームのフレームレートを変えない場合には、全ラスタ数nの1/2ずつの表示とし、走査領域はn/4から3n/4までとする。また、図7(a)のように、補正しないAビームはラスタ1から順番にn/2まで走査する。一方、補正するBビームはラスタn/4から同時に開始し順番に送受波し、BラスタのラスタはAビームのラスタのn/4から開始し、n/2まで行き次に1に戻って、n/4まで進むことにより、送波を同時にした場合の干渉を避けるような走査で結果的に同じ領域を走査でき、同様の送受波の補正前と補正後の同部位のほぼ同時撮像が可能となる。
【0011】
【発明の効果】
本発明によれば、音速不均一補正を実際被検体に適用した場合に、正しい補正がなされているか、像が改善されているかの判断を支援し、より正確な像を提供することができる。また、医療に用いればより正確な診断を可能にし、アルゴリズム開発支援に用いれば効率的な開発に役立つ。
【図面の簡単な説明】
【図1】本発明の一実施例における超音波診断装置の基本構成図である。
【図2】従来の超音波診断装置の基本構成例図である。
【図3】本発明の一実施例における撮像表示方法を示す図である。
【図4】本発明の第1の実施例におけるメモリ書替え構成を示す図である。
【図5】本発明の第2の実施例におけるメモリ書替え構成を示す図である。
【図6】本発明の第3の実施例におけるビーム走査方法を示す図である。
【図7】本発明の第4の実施例におけるビーム走査方法を示す図である。
【符号の説明】
1…超音波振動子アレー、2…送波回路、3…被検体、4,4−A,4−B…受波整相部、5…信号処理部、6…モニタ、7…音速補正部、7−A,7−B…制御データ部、7−C…補正処理部。
[0001]
[Industrial applications]
The present invention relates to an ultrasonic device, and more particularly to an ultrasonic device capable of correcting an uneven sound velocity of a subject and displaying an image.
[0002]
[Prior art]
FIG. 2 shows an example of a conventional ultrasonic device. An ultrasonic transducer array 1 is selectively driven by a plurality of transducers by a transmission circuit 2 to transmit ultrasonic waves. The radiated ultrasonic wave is reflected from the subject 3 and received by the ultrasonic transducer array 1, and the time difference to the focal point of each transducer is delayed and phased by the wave receiving and phasing unit 4, and is transmitted to the signal processing unit 5. The image is processed for display on the monitor 6. At this time, the delay data of each element for focusing the transmission wave and the delay focus data of the reception phasing unit 4 are created assuming that the sound speed C of the subject is uniform, and the focus point between the elements is obtained. , The delay time t is given by t−d / c. However, the actual subject is not uniform and has a velocity distribution. Therefore, a desired beam is not formed and the resolution is deteriorated. Various methods have been proposed for this velocity distribution correction, such as a method of obtaining and correcting a phase difference between elements, and a method of obtaining and correcting a phase difference by cross-correlating signals of adjacent elements.
[0003]
[Problems to be solved by the invention]
Many of the various correction methods are effective on simulation and under specific conditions. For this reason, an accurate image is not always displayed, and there is a problem that diagnosis is difficult for actual medical use. Further, the conventional configuration is insufficient to be used as a judgment material for developing and using a more accurate correction algorithm.
Therefore, an object of the present invention is to provide an ultrasonic apparatus suitable for assisting a determination as to whether a correct correction has been made or an image has been improved when applied to a subject.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the ultrasonic apparatus according to the present invention employs, for the same part, “imaging without correction (tomographic image based on beam forming data created at virtual uniform sound velocity)” and “sound velocity correction unit (FIG. 1) (7)) (the tomographic image based on the beam forming data corrected for the non-uniform sound velocity) "displayed simultaneously and in a comparable manner. When a plurality of ultrasonic beams are formed at the same time, the total number of display rasters is divided, and one of the beams to be formed at the same time is determined based on the beam forming data created by the virtual setting uniform sound velocity of the subject. It is characterized in that other beams to be formed at the same time are formed based on the beam forming data in which the sound velocity non-uniformity of the subject is corrected, and respective tomographic images are obtained. Further, while obtaining a tomographic image based on the beam forming data created by the virtual setting uniform sound velocity of the subject, the correction data of the non-uniform sound speed of the subject is obtained, the focus data is rewritten, and the corrected tomographic image is obtained. There is a feature in displaying.
[0005]
[Action]
In the present invention, it is possible to provide a user with information by simultaneously (or selecting) and displaying an image in which the same part is not corrected at the same time and a corrected image that can be compared, as described above. You can ask a doctor or a laboratory technician for a more accurate diagnosis. Alternatively, a practical and efficient correction algorithm can be developed using the software development support.
Further, in an apparatus capable of forming multiple beams, the frame rate can be improved by dividing the total number of display rasters and forming beamforming data with uniform sound speed and data obtained by correcting nonuniform sound speed from each. .
Further, while obtaining the tomographic image from the beam forming data at the uniform sound velocity, the control data is rewritten to obtain the correction data for the non-uniform sound velocity and the corrected tomographic image is displayed, so that the user does not feel uncomfortable. Real-time display can be performed.
[0006]
【Example】
Hereinafter, an embodiment of the present invention will be described. FIG. 1 shows the basic configuration. An ultrasonic transducer array 1 is selectively driven by a plurality of transducers by a transmission circuit 2 to transmit ultrasonic waves. The radiated ultrasonic wave is reflected from the subject 3 and received by the ultrasonic transducer array 1, and the time difference to the focal point of each transducer is delayed and phased by the wave receiving and phasing unit 4, and is transmitted to the signal processing unit 5. The image is processed for display on the monitor 6. In the prior art, the sound velocity of the subject is assumed to be uniform. However, since the sound velocity actually shows a non-uniform distribution, the velocity distribution is corrected by obtaining the phase difference between the elements or by correcting the signals of adjacent elements. Various proposals have been made such as a method of obtaining and correcting a phase difference by taking a correlation. In the present embodiment, the sound velocity correction unit 7 using one of these correction methods obtains a corrected sound velocity, obtains focus data, and operates the transmission unit 2 and the reception phasing unit 4 based on the data. Form a correction beam.
At this time, as shown in FIG. 3, the monitor 6 is divided into two parts, and an image A based on the data before correction and an image B based on the data after correction are simultaneously displayed. In the image A before correction, the target image (spherical portion) is unclear, whereas in the image B after correction, the spherical portion is clearer. However, as described above, the corrected image is not always the correct image. Therefore, in the present embodiment, it is determined how the user changes the image by viewing the images A and B. It is configured so that the user can easily understand and further determine whether to proceed with the process or return to the original image and make a selection.
[0007]
Next, FIG. 4 shows an example of an application method in the case of a device capable of multiple beams. FIG. 4 is an example of the reception phasing multiple beam. FIG. 4 shows an example in which two receiving phasing units 4 are prepared and a receiving double beam is formed at the same time. The reception phasing unit 4-A that forms the A beam is delayed by the control data unit 7-A. The reception phasing unit 4-B that forms the B beam is delayed by the control data unit 7-B. Here, the wave receiving phasing unit 4-A forms a beam using the control data before correction. The reception phasing unit 4-B is the same as that in which the data obtained by the correction processing unit 7-C is written in the control data unit 7-B and input to the reception phasing unit 4-A based on the data. The received signal is simultaneously processed with the correction data. By this processing, as shown in FIG. 3, images before and after the correction of the same part can be simultaneously displayed.
[0008]
FIG. 5 is another example of formation of a receiving double beam. In the above embodiment, the received signal may be an analog signal or a digital signal. FIG. 5 shows an example of the wave receiving phasing unit 4 capable of handling received data in a time series by sampling, and is used alternately with the A beam and the B beam for each sampling. Naturally, the control data 7-A and 7-B are used alternately. After the phasing, the signal processor 5 separates and processes the beam data A and B in parallel. The sequence of sampling data A forming the A beam is delayed by the control data unit 7-A. The sequence of the sampling data B forming the B beam is delayed by the control data unit 7-B. Here, the control data 7-A is control data before correction, and forms a beam before correction. As for the control data 7-B, the data received by the correction processing unit 7-C is written in the control data unit 7-B, and based on the data, the same reception signal as that input to the reception phasing unit 4 is simultaneously corrected. It is to be processed with data. By this processing, as shown in FIG. 3, images before and after the correction of the same part can be simultaneously displayed.
In these examples, when it takes time to generate the correction data by the correction processing unit 7-C, the image is formed and displayed by the reception phasing unit 4, and the control data is generated during that time. By rewriting B and switching when it becomes operable, the display is efficiently performed without giving the user a sense of incongruity.
[0009]
Next, an example of the raster creation order is shown in FIG. When one image is composed of the number of rasters n as shown in FIG. 6A and the multiple beams have the same number of rasters and the frame rate is to be improved, as shown in FIG. The number is halved, the first half rasters 1 to n / 2 are allocated to the image before correction, and the second half rasters (1 + n / 2) to n are allocated to correction data. In this scanning, the number of control memory data is the same because the number of raster lines and the approximate number of beams do not change. On the other hand, the number of data is doubled in order to make the entire screen only the respective images and not change the scanning density.
In this embodiment, only two beams have been described, but it is needless to say that the number is not limited to two. Although only the reception is described, it is necessary to change the frequency and phase to simultaneously image the same part in the transmission, but in a system that can transmit ultrasonic waves in multiple directions, the same It goes without saying that scanning is possible.
[0010]
When the frame rate of the transmitted / received beam is not changed as shown in FIG. 7B, the display is performed by 1/2 of the total number n of rasters, and the scanning area is set to n / 4 to 3n / 4. . Also, as shown in FIG. 7A, the uncorrected A beam scans from raster 1 to n / 2 in order. On the other hand, the B beam to be corrected starts simultaneously from the raster n / 4 and transmits and receives in order, and the raster of the B raster starts from n / 4 of the raster of the A beam, goes to n / 2, and then returns to 1. By proceeding to n / 4, it is possible to scan the same area as a result by scanning that avoids interference when transmitting waves at the same time, and it is possible to perform almost simultaneous imaging of the same part before and after correction of similar transmitted and received waves It becomes.
[0011]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, when a non-uniform sound velocity correction is actually applied to a subject, it is possible to assist in determining whether correct correction has been made or an image has been improved, and a more accurate image can be provided. In addition, if used for medical treatment, more accurate diagnosis can be made, and if it is used for algorithm development support, it will be useful for efficient development.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a basic configuration example of a conventional ultrasonic diagnostic apparatus.
FIG. 3 is a diagram illustrating an imaging display method according to an embodiment of the present invention.
FIG. 4 is a diagram showing a memory rewriting configuration according to the first embodiment of the present invention.
FIG. 5 is a diagram showing a memory rewriting configuration according to a second embodiment of the present invention.
FIG. 6 is a diagram illustrating a beam scanning method according to a third embodiment of the present invention.
FIG. 7 is a diagram illustrating a beam scanning method according to a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic transducer array, 2 ... Transmission circuit, 3 ... Subject, 4,4-A, 4-B ... Reception phasing unit, 5 ... Signal processing unit, 6 ... Monitor, 7 ... Sound speed correction unit , 7-A, 7-B... Control data section, 7-C... Correction processing section.

Claims (2)

配列された超音波振動子により超音波を送受波し、被検体について設定された音速を用い断層像を得る超音波装置であって、同時に複数の超音波ビームを形成し撮像する装置において、
超音波走査線のラスタ数を分割する手段と、同時に形成するビームの内の一つを、被検体について仮想設定された一様音速によって作成されたビーム形成データに基づいて断層像を形成する手段と、同時に形成する他のビームを、被検体の音速不均一を素子間の位相差または隣接素子の信号の相互相関に基づいて補正したビーム形成データに基づいて断層像を形成する手段と、両者によって得られた断層像を同時に表示する表示手段とを具備したことを特徴とする超音波装置。
An ultrasonic apparatus that transmits and receives ultrasonic waves by an arrayed ultrasonic transducer and obtains a tomographic image using a sound velocity set for a subject, and an apparatus that simultaneously forms and captures a plurality of ultrasonic beams,
Means for dividing the number of rasters of the ultrasonic scanning line, and means for forming one of the beams formed simultaneously with a tomographic image based on beam forming data created at a uniform sound velocity virtually set for the subject. Means for forming a tomographic image based on beam forming data obtained by correcting other beams to be formed simultaneously based on the phase difference between the elements or the cross-correlation of signals of adjacent elements, with respect to the non-uniform velocity of sound of the subject; And a display means for simultaneously displaying the tomographic images obtained by the method.
請求項1に記載の超音波装置において、
前記一様音速によって作成されたビーム形成データに基づき断層像を得て表示する各手段は、前記音速不均一の補正データを求めてフォーカスデータを書き替え、補正断層像を表示するように構成したことを特徴とする超音波装置。
The ultrasonic device according to claim 1,
Each means for obtaining and displaying a tomographic image based on the beam forming data created at the uniform sound velocity is configured to obtain the correction data for the non-uniform sound velocity, rewrite the focus data, and display the corrected tomographic image. An ultrasonic device characterized by the above-mentioned.
JP30495394A 1994-12-08 1994-12-08 Ultrasonic device Expired - Fee Related JP3555699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30495394A JP3555699B2 (en) 1994-12-08 1994-12-08 Ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30495394A JP3555699B2 (en) 1994-12-08 1994-12-08 Ultrasonic device

Publications (2)

Publication Number Publication Date
JPH08154930A JPH08154930A (en) 1996-06-18
JP3555699B2 true JP3555699B2 (en) 2004-08-18

Family

ID=17939308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30495394A Expired - Fee Related JP3555699B2 (en) 1994-12-08 1994-12-08 Ultrasonic device

Country Status (1)

Country Link
JP (1) JP3555699B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008051639A2 (en) 2006-10-25 2008-05-02 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
JP2009090104A (en) * 2007-09-18 2009-04-30 Fujifilm Corp Ultrasonic diagnostic method and apparatus
JP5313610B2 (en) * 2007-09-28 2013-10-09 富士フイルム株式会社 Ultrasonic diagnostic method and apparatus
US9282945B2 (en) 2009-04-14 2016-03-15 Maui Imaging, Inc. Calibration of ultrasound probes
JP5174604B2 (en) * 2008-09-30 2013-04-03 富士フイルム株式会社 Ultrasonic signal processing apparatus and method
JP5653057B2 (en) * 2009-05-27 2015-01-14 キヤノン株式会社 measuring device
KR102121040B1 (en) * 2010-02-18 2020-06-09 마우이 이미징, 인코포레이티드 Method of constructing an ultrasound image and multi-aperture ultrasound imaging system therefor
WO2012051305A2 (en) 2010-10-13 2012-04-19 Mau Imaging, Inc. Multiple aperture probe internal apparatus and cable assemblies
JP6092109B2 (en) 2010-10-13 2017-03-08 マウイ イマギング,インコーポレーテッド Concave ultrasonic transducer and 3D array
JP2012161569A (en) * 2011-02-09 2012-08-30 Fujifilm Corp Ultrasound diagnostic apparatus and ultrasound image producing method
TW201336478A (en) 2011-12-01 2013-09-16 Maui Imaging Inc Motion detection using ping-based and multiple aperture doppler ultrasound
KR20140107648A (en) 2011-12-29 2014-09-04 마우이 이미징, 인코포레이티드 M-mode ultrasound imaging of arbitrary paths
EP2816958B1 (en) 2012-02-21 2020-03-25 Maui Imaging, Inc. Determining material stiffness using multiple aperture ultrasound
JP6399999B2 (en) 2012-03-26 2018-10-03 マウイ イマギング,インコーポレーテッド System and method for improving the quality of ultrasound images by applying weighting factors
WO2013176045A1 (en) 2012-05-25 2013-11-28 富士フイルム株式会社 Ultrasonic signal processing device and ultrasonic signal processing method
IN2015DN00556A (en) 2012-08-10 2015-06-26 Maui Imaging Inc
CN104582582B (en) 2012-08-21 2017-12-15 毛伊图像公司 Ultrasonic image-forming system memory architecture
JP5800324B2 (en) * 2013-01-22 2015-10-28 富士フイルム株式会社 Ultrasonic diagnostic apparatus, ultrasonic image generation method and program
US9883848B2 (en) 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
JP6352050B2 (en) * 2014-05-19 2018-07-04 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic equipment
US10401493B2 (en) 2014-08-18 2019-09-03 Maui Imaging, Inc. Network-based ultrasound imaging system
JP6578817B2 (en) * 2015-08-25 2019-09-25 富士電機株式会社 Signal processing apparatus and radiation measuring apparatus
US10856846B2 (en) 2016-01-27 2020-12-08 Maui Imaging, Inc. Ultrasound imaging with sparse array probes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856858B2 (en) * 1990-07-30 1999-02-10 株式会社東芝 Ultrasound diagnostic equipment
JPH0643237A (en) * 1991-03-20 1994-02-18 Fujitsu Ltd Ultrasonic diagnostic device
US5172343A (en) * 1991-12-06 1992-12-15 General Electric Company Aberration correction using beam data from a phased array ultrasonic scanner
JPH05192334A (en) * 1992-01-23 1993-08-03 Fuji Electric Co Ltd Ultrasonic diagnostic device
JP3121703B2 (en) * 1993-02-10 2001-01-09 ジーイー横河メディカルシステム株式会社 Ultrasound diagnostic equipment

Also Published As

Publication number Publication date
JPH08154930A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
JP3555699B2 (en) Ultrasonic device
JP2010017530A (en) Ultrasonic apparatus and control method therefor
JP2802303B2 (en) Probe, imaging apparatus using the probe, and method of applying the apparatus
JP2856858B2 (en) Ultrasound diagnostic equipment
JP5948411B2 (en) Ultrasonic signal processing apparatus and ultrasonic signal processing method
US20160367224A1 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
EP0414261B1 (en) Ultrasonic diagnosing apparatus
JP2017006213A (en) Ultrasonic diagnostic apparatus and control program
US10639013B2 (en) Ultrasound diagnostic apparatus, sound velocity setting method, and recording medium
US10383601B2 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
JP5869958B2 (en) Ultrasonic signal processing apparatus and ultrasonic signal processing method
WO2013176245A1 (en) Ultrasound diagnostic device, and data processing method
US8398548B2 (en) Ultrasound diagnostic apparatus and ultrasound diagnostic method
JP5836197B2 (en) Ultrasonic diagnostic apparatus and data processing method
JP4282144B2 (en) Ultrasonic diagnostic equipment
JP7211150B2 (en) ULTRASOUND DIAGNOSTIC DEVICE, ULTRASOUND IMAGE GENERATING METHOD AND PROGRAM
JP2004242788A (en) Ultrasonic diagnostic apparatus
JPH11113899A (en) Ultrasonograph
JP2001170057A (en) Ultrasonograph
JPH04152939A (en) Ultrasonic diagnostic device
JP7297485B2 (en) Ultrasound diagnostic device, medical image processing device and medical image processing program
JP4610781B2 (en) Ultrasonic beam adjustment method and apparatus, and ultrasonic diagnostic apparatus
JPH07148167A (en) Ultrasonic diagnostic apparatus
JPH0479943A (en) Ultrasonic diagnosing device
JP2004195024A (en) Ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees