JP3555566B2 - Method for producing polylactic acid fiber - Google Patents

Method for producing polylactic acid fiber Download PDF

Info

Publication number
JP3555566B2
JP3555566B2 JP2000240946A JP2000240946A JP3555566B2 JP 3555566 B2 JP3555566 B2 JP 3555566B2 JP 2000240946 A JP2000240946 A JP 2000240946A JP 2000240946 A JP2000240946 A JP 2000240946A JP 3555566 B2 JP3555566 B2 JP 3555566B2
Authority
JP
Japan
Prior art keywords
polylactic acid
yarn
lactic acid
stretching
supply roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000240946A
Other languages
Japanese (ja)
Other versions
JP2002061021A (en
Inventor
義高 荒西
敏明 木村
裕平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000240946A priority Critical patent/JP3555566B2/en
Publication of JP2002061021A publication Critical patent/JP2002061021A/en
Application granted granted Critical
Publication of JP3555566B2 publication Critical patent/JP3555566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリ乳酸繊維の製造方法に関する。さらに詳しくは、高配向未延伸糸を特定の温度条件を用いて延伸することにより、機械的特性および繊度均一性が良好なポリ乳酸延伸糸を得ることを特徴とするポリ乳酸繊維の製造方法に関する。
【0002】
【従来の技術】
ポリ乳酸繊維は自然環境中において分解する生分解性繊維として、また発色性や触感に優れた新規な繊維として大きな注目を集めつつある。
【0003】
ポリ乳酸繊維の製造方法はこれまで紡糸速度2500m/min以下で紡糸し、これを2.5倍以上に延伸するコンベンショナルな方法が用いられてきた。しかし、この場合には未延伸糸の分子配向が極めて低いため、延伸を行う際に均一な分子配向を生じさせることは困難であり、その結果、繊度の均一性(U%)に劣る繊維しか得ることができなかった。ポリ乳酸繊維を衣料用途に用いる場合には、一般的に布帛を染色することが必要であり、この繊度の均一性(U%)の劣る繊維では染め斑などの染色異常が発生して、品位の高い染色布帛を得ることができない。
【0004】
特開平10−37020号公報や特開平11−61561号公報には、高速で紡糸を行い、配向結晶化した繊維を得る方法が開示されている。これらの方法は、その後の延伸工程を必要としないため、効率の良い製糸方法であり、繊度の均一性にも優れた繊維が得られるが、延伸工程を経ないために得られる繊維の強度が低く、また沸騰水収縮率も高くなるので、高次加工通過性に劣るという欠点を有していた。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、上記の問題点を解消し、機械的特性が良好で、繊度の均一性が高く、染め斑などの染色欠点を生じにくい均質なポリ乳酸繊維の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上述した本発明の課題を達成するため、本発明は下記の構成を有する。
(1)L−乳酸および/またはD−乳酸を主たる繰り返し単位とするポリ乳酸からなる、複屈折率△nが0.008〜0.020である高配向未延伸糸を、一定速度で回転する供給ローラーと該供給ローラーよりも速い速度で回転する延伸ローラーとの間で1.1〜2.5倍に延伸し、前記供給ローラーよりも下流側に位置する熱処理手段によって熱セットを行うに際して、前記供給ローラーの温度T1(℃)と熱処理手段の温度T2(℃)が下記式(1)の関係を満足することを特徴とするポリ乳酸繊維の製造方法。
【0007】
70≦T1≦100、 T1+10≦T2 ・・・(1)
(2)熱処理手段が延伸ローラーであることを特徴とする前記(1)記載のポリ乳酸繊維の製造方法。
(3)L−乳酸および/またはD−乳酸を主たる繰り返し単位とするポリ乳酸の重量平均分子量が、80,000〜170,000であることを特徴とする前記(1)または(2)に記載のポリ乳酸繊維の製造方法。
(4)高配向未延伸糸のウースターノーマル%(U1)と延伸糸のウースターノーマル%(U2)が下記式(2)の関係を満足することを特徴とする前記(1)〜(3)のいずれかに記載のポリ乳酸繊維の製造方法。
【0008】
U2≦1.7×U1 ・・・(2)
【0009】
【発明の実施の形態】
本発明のポリ乳酸繊維は、L−乳酸および/またはD−乳酸を主たる繰り返し単位とするポリ乳酸からなる。ポリ乳酸の製造方法には、L−乳酸および/またはD−乳酸を原料として一旦環状二量体であるラクチドを生成せしめ、その後開環重合を行う二段階のラクチド法と、L−乳酸および/またはD−乳酸を原料として溶媒中で直接脱水縮合を行う一段階の直接重合法が知られている。本発明で用いるポリ乳酸はいずれの製法によって得られたものであってもよい。
【0010】
ポリ乳酸の重量平均分子量は、80,000〜170,000であることが好ましい。重量平均分子量が80,000に満たない場合には繊維の強度が低くなるため、紡糸時、延伸時に糸切れを生じたり、布帛の耐久性が不良となる傾向にあるため、好ましくない。また、重量平均分子量が170,000よりも高い場合には、紡糸、延伸時における分子配向が困難になるため斑を生じやすく、また溶融粘度を適切なレベルまで下げて紡糸すると熱分解物の発生が顕著となる。良好な繊維物性および配向の容易さから、ポリ乳酸の重量平均分子量は好ましくは100,000〜150,000、最も好ましくは110,000〜130,000である。
【0011】
また、本発明におけるポリ乳酸は、L−乳酸、D−乳酸のほかにエステル形成能を有するその他の成分を共重合した共重合ポリ乳酸であってもよい。共重合可能な成分としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、6−ヒドロキシカプロン酸などのヒドロキシカルボン酸類の他、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、グリセリン、ペンタエリスリトール等の分子内に複数の水酸基を含有する化合物類またはそれらの誘導体、アジピン酸、セバシン酸、フマル酸など分子内に複数のカルボン酸基を含有する化合物類またはそれらの誘導体が挙げられる。共重合成分は分子構造内に芳香環を含まないものであることが望ましい。また、良好な機械特性を維持するため、80モル%以上がL−乳酸および/またはD−乳酸成分よりなることが望ましい。
【0012】
また、溶融粘度を低減させるため、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリヒドロキシ酪酸のような脂肪族ポリエステルポリマーを内部可塑剤として、あるいは外部可塑剤として用いることができる。
【0013】
また、耐加水分解性を向上させるため、ポリ乳酸のカルボキシル末端基を、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、アジリジン化合物、ジオール化合物、長鎖アルコール化合物などの末端封鎖剤によって封鎖したポリ乳酸であってもよい。
【0014】
さらには、艶消し剤、消臭剤、難燃剤、糸摩擦低減剤、抗酸化剤、着色顔料等として無機微粒子や有機化合物を必要に応じて添加することができる。
【0015】
本発明のポリ乳酸繊維の製造方法において、延伸に供する高配向未延伸糸の複屈折率△nは、0.008〜0.020であることが重要である。複屈折率△nが0.008に満たない場合には、未延伸糸の分子配向が極めて低いために、延伸を行う際に、配向がスムーズに行われない。そのためどのような延伸条件をとっても延伸糸の繊度斑は大きなものとなってしまい、このような繊維を用いて作成した布帛を染色した場合には、染め斑などの染色異常が発生することになる。また、複屈折率△nが0.020よりも高い未延伸糸では、未延伸糸の伸度がすでに低下しており高い延伸倍率が取れず強度が向上しない。また延伸時にも単糸切れを生じやすく毛羽発生により高次加工通過性が悪化するので好ましくない。良好な延伸性の観点から、ポリ乳酸高配向未延伸糸の複屈折率△nは、より好ましくは0.010〜0.015である。
【0016】
本発明のポリ乳酸繊維の製造方法において、高配向未延伸糸は一定速度で回転する供給ローラーと該供給ローラーよりも速い速度で回転する延伸ローラーとの間で1.1〜2.5倍に延伸され、供給ローラーよりも下流側に位置する熱処理手段によって熱セットが行われる。
【0017】
延伸倍率が1.1未満の場合には延伸時における配向結晶化が十分に進まず、強度の向上が達成できないため、好ましくない。また、延伸倍率が2.5倍を越える場合には、延伸倍率が高すぎて、適正な複屈折率の未延伸糸を用いた場合にさえ、繊度斑が悪化する傾向にあるので好ましくない。良好な機械特性および延伸性の観点から、供給ローラーと延伸ローラーとの間の延伸倍率は、より好ましくは1.2〜2.0倍であり、最も好ましくは1.3〜1.7倍である。延伸糸の強度は、高次加工通過性の観点から3.0cN/dtex以上であることが好ましい。
【0018】
また、本発明のポリ乳酸繊維の製造方法において、供給ローラーの温度T1(℃)と熱処理手段の温度T2(℃)は、下記式1の関係を満足することが重要である。
【0019】
70≦T1≦100、 T1+10≦T2 ・・・(1)
供給ローラーの温度T1が70℃に満たない場合には、予熱が不十分となり、延伸時の熱変形が均一に行われなくなり繊度斑が発生する。また、100℃を越える温度ではローラー上における糸揺れが激しくなり、延伸点が固定できなくなるため、繊度斑が発生する。そのため、供給ローラーの温度T1は70℃以上100℃以下であるが、より好ましくは80℃以上95℃以下であり、最も好ましくは82℃以上90℃以下である。
【0020】
さらに熱処理手段の温度T2は供給ローラーの温度よりも10℃以上高い温度とするものである。熱処理手段の温度T2が供給ローラーの温度T1よりも10℃以上高くない場合には、繊維の熱セットが十分おこなわれず、得られた延伸糸は沸騰水収縮率が高く安定性に劣るものとなる。延伸糸の沸騰水収縮率は布帛の取り扱い性の観点から15%以下であることが望ましい。
【0021】
ここで、熱処理手段は供給ローラーより下流側に設けられてなるものであって、走行糸条を直接的あるいは間接的に加熱させうる装置であれば特に限定はされない。具体的な熱処理手段としては、熱ローラー、熱板、スチーム発生装置、ホットチューブ、スリットヒーターなどが挙げられる。繊維に対する加熱効率および走行摩擦を低減する観点からは熱ローラーを熱処理手段として用いることが好ましく、この場合図1に記載のごとく、延伸ローラー2が加熱され、熱処理手段3を兼ねることが最も効率的である。なお、図1において、5は高配向未延伸糸であり、該高配向未延伸糸は、供給ローラー1と延伸ローラー2との間の延伸ゾーン4で延伸される。また、図2に記載のごとく、供給ローラー1と加熱または非加熱の延伸ローラー2との間で、熱板などの熱処理手段3によって緊張下、あるいはリラックス下で熱処理を行う延伸方法としてもよい。
【0022】
本発明の延伸は紡糸工程で高配向未延伸糸を一旦巻き取った後、延伸しても良いが、紡糸工程から連続して延伸する方法を採用してもよい。
【0023】
また、上述した本発明のポリ乳酸繊維の製造方法においては、高配向未延伸糸のウースターノーマル%(U1)と延伸糸のウースターノーマル%(U2)が下記式(2)の関係を満足することが好ましい。
【0024】
U2≦1.7×U1 ・・・(2)
延伸され、熱処理を施された後の繊維である延伸糸のウースターノーマル%(U2)が延伸前の繊維である高配向未延伸糸のウースターノーマル%(U1)の1.7倍以下であることは、繊度の均一性に優れた延伸糸を得る上で重要な事柄である。U2がU1の1.5倍以下であることがさらに好ましく、1.3倍以下であることが最も好ましい。
【0025】
【実施例】
以下、実施例によって本発明をより詳細に説明する。なお、実施例中の各特性値は次の方法で求めたものである。
A.複屈折率(△n)
OLYMPUS社製BH−2偏光顕微鏡を用い、コンペンセーター法によって、レターデーションと繊維径より求めた。
B.繊度斑(ウースターノーマル%)
ツェルベガーウースター社製ウースター斑試験機を用いて、糸速25m/min、測定タイプノーマル、測定時間3分間の条件で測定をおこない、得られた値をU%とした。
C.沸騰水収縮率(沸収)
試料を10回巻きのかせ取りにし、0.1cN/dtexの荷重下で原長(L)を測定する。このかせを98℃の沸水バス中で無荷重で15分間処理した後に取り出し、風乾した後、0.1cN/dtexの荷重下で処理後長(L)を測定する。次式によって得られる値を沸騰水収縮率(沸収)とした。
【0026】
沸収(%)={(L−L)/L}×100
D.染め斑
測定する延伸糸を用いてヨコ打ちの織物を作製し、下記の条件で染色して目視にて染め斑を判定した。すなわち、全く染め斑が認められないものを◎、ほとんど染め斑が認められないものを○、染め斑が認められるが許容レベルのものを△、著しい染め斑があるものを×とした(それぞれ10、15、30、50点に相当)。
【0027】

Figure 0003555566
E.強度
試料を20℃、65%RHの温調室に24時間以上放置した後、(株)オリエンテック社製テンシロン引張試験機を用い、試長25cm、引取速度30cm/minでS−S曲線を求め、繊度で割返して強度(cN/tex)を算出した。
【0028】
実施例1〜4
重量平均分子量120,000であるポリL−乳酸のチップを、105℃に設定した真空乾燥器で12時間乾燥した。乾燥したチップをプレッシャーメルター型紡糸機にて、メルター温度220℃にて溶融し、紡糸温度220℃とした溶融パックへ導入して、0.34mmφ−0.50mmLの口金孔より紡出した。この紡出糸を20℃、30m/minのチムニー風によって冷却し、油剤を付与して収束した後、3000m/minで引き取って120dtex−36fの高配向未延伸糸を得た。この高配向未延伸糸の△nを測定したところ、0.012であり、ウースターノーマル%(U1)は0.68であった。
【0029】
この未延伸糸をホットローラー−ホットローラー系の延伸機を用いて、1HR温度T1(℃)、2HR温度T2(℃)および延伸倍率をそれぞれ表1に記載の条件とし、延伸速度800m/minの条件で延伸した(図1を参照)。
【0030】
得られた延伸糸のU2はそれぞれ表1記載のごとく、高配向未延伸糸のU1に対して1.7倍以内であり、繊度斑の小さな均一な繊維が得られたことが分かった。T1を85℃とした実施例2およびT1を100℃とした実施例3では、U2が若干高めの値であった。染め斑も全ての水準でほとんど認められず、良好な外観品位を示した。また、繊維の沸収は全て15%以内となっており、優れた熱安定性を有するものであった。
【0031】
実施例5〜7
用いるポリL−乳酸ポリマーの重量平均分子量を表1記載のように変更する以外は、実施例1〜4と同様にして延伸を行った。得られた延伸糸は表1に示すように良好な繊度の均一性、熱セット性を有するものであった。
【0032】
ただし、分子量が62,000のポリ乳酸を用いた実施例6では、延伸時に単糸切れが発生することがあり、製糸性は良好ではなかった。また、分子量が198,000のポリ乳酸を用いた実施例7では、延伸糸のウースターノーマル%(U2)が高く、染め斑が認められた。
【0033】
実施例8
用いるポリL−乳酸ポリマーとして、分子量が150,000であり、D−乳酸の共重合率が5%であるD−乳酸共重合ポリL−乳酸を用いる他は、実施例1と同様にして延伸を行った。得られた延伸糸は表1に示すように良好な繊度の均一性、熱セット性を有するものであった。
【0034】
比較例1〜4
延伸時の1HR温度T1(℃)、2HR温度T2(℃)および延伸倍率を、それぞれ表1記載の温度に変更する以外は、実施例1と同様にして延伸を行った。比較例1ではT1が60℃と低いために、得られる延伸糸の繊度斑が大きく、染色布帛には著しい染め斑が認められた。また、比較例2ではT2が室温(約30℃)と低いために、沸騰水収縮率が40.2%と高い値であり、染色時に布帛が著しく収縮して高次加工の取り扱い性に難のあるものであった。比較例3では、延伸倍率が高すぎ、延伸時に単糸切れによる単巻きおよび延伸糸切れが発生した。布帛にも毛羽が認められ品位に問題のあるものであった。
【0035】
比較例4
紡糸速度を1300m/minとする以外は実施例1と同様にして得たポリL−乳酸高配向未延伸糸を用い、この未延伸糸をホットローラー−ホットローラー系の延伸機により、1HR温度T1が90(℃)、2HR温度T2が120(℃)、延伸速度800m/minの条件で延伸倍率3.0で延伸を行った。高配向未延伸糸の△nは0.004であり、ウースターノーマル%(U1)は0.48であった。得られた延伸糸は繊度斑が極めて大きな繊維となった。
【0036】
比較例5
紡糸速度を6000m/minとする以外は実施例1と同様にしてポリL−乳酸高配向未延伸糸を得た。得られた繊維の△nは0.022で、U1%は0.82であった。また、沸収は20.8%と高く、強度が2.4cN/dtexと低かった。
【0037】
この繊維を延伸することなくヨコ打ちの織物を作成し、これを染色したところ、ヨコひけが発生して著しい染め斑が認められた。
【0038】
【表1】
Figure 0003555566
【0039】
【発明の効果】
本発明のポリ乳酸繊維の製造方法を用いることによって、機械的特性が優れ、収縮率が低く抑えられた熱的に安定な延伸糸を、繊度斑の発生なくポリ乳酸繊維を製造することができる。この結果、高強度で染め斑などの染色異常のない高品位のポリ乳酸繊維構造物を得ることができる。
【図面の簡単な説明】
【図1】本発明のポリ乳酸繊維の製造方法の一例を示す工程図である。
【図2】本発明のポリ乳酸繊維の製造方法の他の一例を示す工程図である。
【符号の説明】
1:供給ローラー
2:延伸ローラー
3:熱処理手段
4:延伸ゾーン
5:高配向未延伸糸[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polylactic acid fiber. More specifically, the present invention relates to a method for producing a polylactic acid fiber, characterized by obtaining a polylactic acid drawn yarn having good mechanical properties and fineness uniformity by stretching a highly oriented undrawn yarn using specific temperature conditions. .
[0002]
[Prior art]
Polylactic acid fiber is attracting great attention as a biodegradable fiber that degrades in the natural environment and as a novel fiber having excellent coloring and touch.
[0003]
Conventionally, a polylactic acid fiber has been produced by a conventional method of spinning at a spinning speed of 2500 m / min or less and stretching it 2.5 times or more. However, in this case, since the molecular orientation of the undrawn yarn is extremely low, it is difficult to generate a uniform molecular orientation at the time of drawing, and as a result, only fibers having poor uniformity (U%) in fineness are obtained. I couldn't get it. In the case of using polylactic acid fibers for clothing, it is generally necessary to dye the fabric. With fibers having poor uniformity (U%) of fineness, dyeing irregularities such as spots occur, and Cannot be obtained.
[0004]
JP-A-10-37020 and JP-A-11-61561 disclose a method of spinning at a high speed to obtain oriented and crystallized fibers. Since these methods do not require a subsequent drawing step, they are efficient yarn production methods, and fibers with excellent uniformity of fineness can be obtained. It has a drawback of being inferior in high-order workability because it is low and the boiling water shrinkage rate is high.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to solve the above problems, to provide a method for producing a homogeneous polylactic acid fiber having good mechanical properties, high uniformity of fineness, and less likely to cause dyeing defects such as spotting. To provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object of the present invention, the present invention has the following configuration.
(1) A highly oriented undrawn yarn having a birefringence of Δn of 0.008 to 0.020, made of polylactic acid having L-lactic acid and / or D-lactic acid as a main repeating unit, is rotated at a constant speed. When stretching between 1.1 to 2.5 times between a supply roller and a stretching roller rotating at a speed higher than the supply roller, and performing heat setting by heat treatment means located downstream from the supply roller, A method for producing a polylactic acid fiber, wherein the temperature T1 (° C.) of the supply roller and the temperature T2 (° C.) of the heat treatment means satisfy the relationship of the following formula (1).
[0007]
70 ≦ T1 ≦ 100, T1 + 10 ≦ T2 (1)
(2) The method for producing a polylactic acid fiber according to the above (1), wherein the heat treatment means is a drawing roller.
(3) The polylactic acid having L-lactic acid and / or D-lactic acid as a main repeating unit has a weight average molecular weight of 80,000 to 170,000, as described in (1) or (2) above. Method for producing polylactic acid fiber.
(4) Worster normal% (U1) of the highly oriented undrawn yarn and Uoster normal% (U2) of the drawn yarn satisfy the relationship of the following formula (2). A method for producing the polylactic acid fiber according to any one of the above.
[0008]
U2 ≦ 1.7 × U1 (2)
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The polylactic acid fiber of the present invention comprises polylactic acid having L-lactic acid and / or D-lactic acid as a main repeating unit. The method for producing polylactic acid includes a two-stage lactide method in which L-lactic acid and / or D-lactic acid is used as a raw material to once produce lactide as a cyclic dimer, followed by ring-opening polymerization, and L-lactic acid and / or Alternatively, a one-stage direct polymerization method in which D-lactic acid is used as a raw material to directly perform dehydration condensation in a solvent is known. The polylactic acid used in the present invention may be obtained by any production method.
[0010]
The weight average molecular weight of the polylactic acid is preferably from 80,000 to 170,000. If the weight-average molecular weight is less than 80,000, the strength of the fiber becomes low, so that the yarn tends to break during spinning or drawing, or the durability of the fabric tends to be unfavorable. On the other hand, when the weight average molecular weight is higher than 170,000, the molecular orientation during spinning and stretching becomes difficult, so that unevenness is likely to occur. Becomes remarkable. The weight average molecular weight of the polylactic acid is preferably from 100,000 to 150,000, and most preferably from 110,000 to 130,000, from the viewpoint of good fiber properties and easy orientation.
[0011]
Further, the polylactic acid in the present invention may be a copolymerized polylactic acid obtained by copolymerizing other components having an ester-forming ability in addition to L-lactic acid and D-lactic acid. Examples of copolymerizable components include hydroxycarboxylic acids such as glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid, as well as ethylene glycol, propylene glycol, butanediol, Compounds having a plurality of hydroxyl groups in the molecule such as pentyl glycol, polyethylene glycol, glycerin, pentaerythritol or derivatives thereof, and compounds having a plurality of carboxylic acid groups in the molecule such as adipic acid, sebacic acid and fumaric acid Or derivatives thereof. It is desirable that the copolymer component does not contain an aromatic ring in the molecular structure. Further, in order to maintain good mechanical properties, it is desirable that 80 mol% or more be composed of L-lactic acid and / or D-lactic acid components.
[0012]
In order to reduce the melt viscosity, an aliphatic polyester polymer such as polycaprolactone, polybutylene succinate, polyethylene succinate and polyhydroxybutyric acid can be used as an internal plasticizer or as an external plasticizer.
[0013]
In addition, in order to improve the hydrolysis resistance, the carboxyl terminal group of polylactic acid is blocked with a terminal blocking agent such as a carbodiimide compound, an epoxy compound, an oxazoline compound, an oxazine compound, an aziridine compound, a diol compound, and a long-chain alcohol compound. It may be lactic acid.
[0014]
Further, inorganic fine particles and organic compounds as a matting agent, a deodorant, a flame retardant, a yarn friction reducing agent, an antioxidant, a coloring pigment and the like can be added as required.
[0015]
In the method for producing a polylactic acid fiber of the present invention, it is important that the birefringence Δn of the highly oriented undrawn yarn to be drawn is 0.008 to 0.020. When the birefringence Δn is less than 0.008, the molecular orientation of the undrawn yarn is extremely low, so that the orientation is not smoothly performed during the drawing. That what fineness unevenness of very drawn yarn stretching conditions for the becomes a big thing, when stained the fabric that was created by using such a fiber, so that the staining abnormality, such as uneven dyeing occurs . In the case of an unstretched yarn having a birefringence Δn of higher than 0.020, the elongation of the unstretched yarn has already been reduced, so that a high draw ratio cannot be obtained and the strength does not improve. In addition, even during stretching, single yarn breakage is likely to occur, and the generation of fluff deteriorates the high-order processing passability, which is not preferable. From the viewpoint of good stretchability, the birefringence Δn of the polylactic acid highly oriented undrawn yarn is more preferably 0.010 to 0.015.
[0016]
In the method for producing a polylactic acid fiber of the present invention, the highly oriented undrawn yarn is 1.1 to 2.5 times higher between a supply roller rotating at a constant speed and a drawing roller rotating at a higher speed than the supply roller. It is stretched and heat set by heat treatment means located downstream of the supply roller.
[0017]
If the stretching ratio is less than 1.1, the orientation crystallization during stretching does not sufficiently proceed, and improvement in strength cannot be achieved. On the other hand, when the draw ratio exceeds 2.5 times, the draw ratio is too high, and even when an undrawn yarn having an appropriate birefringence is used, the fineness unevenness tends to deteriorate, which is not preferable. In light of good mechanical properties and stretchability, the stretch ratio between the supply roller and the stretch roller is more preferably 1.2 to 2.0 times, and most preferably 1.3 to 1.7 times. is there. The strength of the drawn yarn is preferably 3.0 cN / dtex or more from the viewpoint of high-order processing passability.
[0018]
In the method for producing a polylactic acid fiber of the present invention, it is important that the temperature T1 (° C.) of the supply roller and the temperature T2 (° C.) of the heat treatment unit satisfy the relationship of the following equation (1).
[0019]
70 ≦ T1 ≦ 100, T1 + 10 ≦ T2 (1)
If the temperature T1 of the supply roller is less than 70 ° C., the preheating becomes insufficient, so that thermal deformation during stretching is not performed uniformly, and unevenness of fineness occurs. On the other hand, if the temperature exceeds 100 ° C., the yarn sway on the roller becomes severe and the stretching point cannot be fixed, so that fineness unevenness occurs. Therefore, the temperature T1 of the supply roller is 70 ° C. or more and 100 ° C. or less, more preferably 80 ° C. or more and 95 ° C. or less, and most preferably 82 ° C. or more and 90 ° C. or less.
[0020]
Further, the temperature T2 of the heat treatment means is set to a temperature higher than the temperature of the supply roller by 10 ° C. or more. When the temperature T2 of the heat treatment means is not higher than the temperature T1 of the supply roller by 10 ° C. or more, the heat setting of the fiber is not sufficiently performed, and the obtained drawn yarn has a high boiling water shrinkage and a poor stability. . The boiling water shrinkage of the drawn yarn is desirably 15% or less from the viewpoint of handleability of the fabric.
[0021]
Here, the heat treatment means is provided downstream of the supply roller, and is not particularly limited as long as it can directly or indirectly heat the traveling yarn. Specific heat treatment means include a heat roller, a hot plate, a steam generator, a hot tube, a slit heater and the like. It is preferable to use a heat roller as a heat treatment means from the viewpoint of reducing heating efficiency and running friction against the fiber. In this case, it is most efficient that the drawing roller 2 is heated and also serves as the heat treatment means 3, as shown in FIG. It is. In FIG. 1, reference numeral 5 denotes a highly oriented undrawn yarn, which is drawn in a drawing zone 4 between the supply roller 1 and the drawing roller 2. Further, as shown in FIG. 2, a stretching method in which a heat treatment is performed between the supply roller 1 and the heated or unheated stretching roller 2 under tension or relaxation by a heat treatment means 3 such as a hot plate.
[0022]
In the drawing of the present invention, the highly oriented undrawn yarn may be once wound in the spinning step and then drawn, but a method of continuously drawing from the spinning step may be employed.
[0023]
Further, in the above-mentioned method for producing a polylactic acid fiber of the present invention, the Worster normal% (U1) of the highly oriented undrawn yarn and the Wooster normal% (U2) of the drawn yarn satisfy the following formula (2). Is preferred.
[0024]
U2 ≦ 1.7 × U1 (2)
The Worcester Normal% (U2) of the drawn yarn that is drawn and subjected to the heat treatment is 1.7 times or less the Worcester Normal% (U1) of the highly oriented undrawn yarn that is the fiber before drawing. Is an important matter in obtaining a drawn yarn excellent in uniformity of fineness. U2 is more preferably not more than 1.5 times U1 and most preferably not more than 1.3 times.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. Each characteristic value in the examples is obtained by the following method.
A. Birefringence (△ n)
It was determined from the retardation and the fiber diameter by a compensator method using a BH-2 polarizing microscope manufactured by OLYMPUS.
B. Fineness unevenness (Worcester normal%)
The measurement was performed using a Worcester spot tester manufactured by Zellbeger Worcester Co., Ltd. under the conditions of a yarn speed of 25 m / min, a measurement type normal, and a measurement time of 3 minutes, and the obtained value was defined as U%.
C. Boiling water shrinkage (boiling yield)
The sample is wound into a skein of 10 turns, and the original length (L 0 ) is measured under a load of 0.1 cN / dtex. The skein is treated in a boiling water bath at 98 ° C. for 15 minutes with no load, taken out, air-dried, and the post-treatment length (L 1 ) is measured under a load of 0.1 cN / dtex. The value obtained by the following equation was defined as the boiling water shrinkage (boiling yield).
[0026]
Boiling yield (%) = {(L 0 −L 1 ) / L 0 } × 100
D. A wefted fabric was prepared using the drawn yarn to be measured for dye spots, dyed under the following conditions, and dye spots were visually determined. That is, ◎ indicates no dyeing spots, ○ indicates almost no dyeing spots, 斑 indicates dyeing spots but has an acceptable level, and × indicates marked dyeing spots (10 each). , 15, 30, 50 points).
[0027]
Figure 0003555566
E. FIG. After leaving the strength sample in a temperature control room at 20 ° C. and 65% RH for 24 hours or more, an SS curve was obtained using a Tensilon tensile tester manufactured by Orientec Co., Ltd. at a test length of 25 cm and a take-up speed of 30 cm / min. The strength (cN / tex) was calculated by dividing by the fineness.
[0028]
Examples 1-4
A chip of poly L-lactic acid having a weight average molecular weight of 120,000 was dried in a vacuum dryer set at 105 ° C for 12 hours. The dried chips were melted at a melter temperature of 220 ° C. by a pressure melter type spinning machine, introduced into a melt pack at a spinning temperature of 220 ° C., and spun through a 0.34 mmφ-0.50 mmL die hole. The spun yarn was cooled by a chimney wind at 20 ° C. and 30 m / min, applied with an oil agent and converged, and then taken out at 3000 m / min to obtain a 120 dtex-36f highly oriented undrawn yarn. When Δn of this highly oriented undrawn yarn was measured, it was 0.012 and the Worcester Normal% (U1) was 0.68.
[0029]
Using a hot roller-hot roller type stretching machine, the unstretched yarn was subjected to the conditions of 1 HR temperature T1 (° C.), 2 HR temperature T2 (° C.), and a draw ratio shown in Table 1, and a drawing speed of 800 m / min. The film was stretched under the conditions (see FIG. 1).
[0030]
As shown in Table 1, U2 of the obtained drawn yarn was 1.7 times or less of U1 of the highly oriented undrawn yarn, and it was found that uniform fibers with small unevenness of fineness were obtained. In Example 2 where T1 was 85 ° C. and Example 3 where T1 was 100 ° C., U2 was a slightly higher value. Dyeing spots were scarcely recognized at all levels, showing good appearance quality. In addition, the boiling points of all the fibers were within 15%, indicating that the fibers had excellent thermal stability.
[0031]
Examples 5 to 7
Stretching was carried out in the same manner as in Examples 1 to 4, except that the weight average molecular weight of the poly L-lactic acid polymer used was changed as shown in Table 1. The obtained drawn yarn had good fineness uniformity and heat setting property as shown in Table 1.
[0032]
However, in Example 6 in which polylactic acid having a molecular weight of 62,000 was used, single yarn breakage sometimes occurred at the time of stretching, and the spinning property was not good. In Example 7 using polylactic acid having a molecular weight of 198,000, the drawn yarn had a high Worcester Normal% (U2), and dyed spots were observed.
[0033]
Example 8
Stretching was carried out in the same manner as in Example 1 except that as the poly L-lactic acid polymer used, a D-lactic acid copolymerized poly L-lactic acid having a molecular weight of 150,000 and a copolymerization ratio of D-lactic acid of 5% was used. Was done. The obtained drawn yarn had good fineness uniformity and heat setting property as shown in Table 1.
[0034]
Comparative Examples 1-4
Stretching was performed in the same manner as in Example 1 except that the 1 HR temperature T1 (° C.), the 2HR temperature T2 (° C.) and the stretching ratio during stretching were changed to the temperatures shown in Table 1, respectively. In Comparative Example 1, since T1 was as low as 60 ° C., the obtained drawn yarn had large fineness unevenness, and the dyed fabric had remarkable dyeing unevenness. In Comparative Example 2, since T2 was low at room temperature (about 30 ° C.), the boiling water shrinkage ratio was as high as 40.2%, and the fabric was significantly shrunk during dyeing, making it difficult to handle high-order processing. It was something with In Comparative Example 3, the draw ratio was too high, and a single winding and a broken yarn due to a single yarn break occurred during stretching. Fluff was also observed in the fabric, and the quality was problematic.
[0035]
Comparative Example 4
A poly L-lactic acid highly oriented undrawn yarn obtained in the same manner as in Example 1 except that the spinning speed was set to 1300 m / min, and this undrawn yarn was subjected to a 1 HR temperature T1 using a hot roller-hot roller drawing machine. The stretching was performed at a stretching ratio of 3.0 under the conditions of 90 (° C.), a 2HR temperature T2 of 120 (° C.), and a stretching speed of 800 m / min. Δn of the highly oriented undrawn yarn was 0.004 and Worcester Normal% (U1) was 0.48. The obtained drawn yarn was a fiber having an extremely large fineness unevenness.
[0036]
Comparative Example 5
A poly-L-lactic acid highly oriented undrawn yarn was obtained in the same manner as in Example 1 except that the spinning speed was changed to 6000 m / min. Δn of the obtained fiber was 0.022, and U1% was 0.82. The boiling point was as high as 20.8%, and the strength was as low as 2.4 cN / dtex.
[0037]
A horizontal-woven fabric was prepared without stretching the fiber, and dyed. As a result, horizontal sink marks were generated and marked spots were observed.
[0038]
[Table 1]
Figure 0003555566
[0039]
【The invention's effect】
By using the method for producing a polylactic acid fiber of the present invention, it is possible to produce a thermally stable drawn yarn having excellent mechanical properties and a low shrinkage ratio, and a polylactic acid fiber without unevenness of fineness. . As a result, it is possible to obtain a high-quality polylactic acid fiber structure having a high strength and free from abnormal dyeing such as spotting.
[Brief description of the drawings]
FIG. 1 is a process chart showing an example of a method for producing a polylactic acid fiber of the present invention.
FIG. 2 is a process chart showing another example of the method for producing a polylactic acid fiber of the present invention.
[Explanation of symbols]
1: Supply roller 2: Drawing roller 3: Heat treatment means 4: Drawing zone 5: Highly oriented undrawn yarn

Claims (4)

L−乳酸および/またはD−乳酸を主たる繰り返し単位とするポリ乳酸からなる、複屈折率△nが0.008〜0.020である高配向未延伸糸を、一定速度で回転する供給ローラーと該供給ローラーよりも速い速度で回転する延伸ローラーとの間で1.1〜2.5倍に延伸し、前記供給ローラーよりも下流側に位置する熱処理手段によって熱セットを行うに際して、前記供給ローラーの温度T1(℃)と熱処理手段の温度T2(℃)が下記式(1)の関係を満足することを特徴とするポリ乳酸繊維の製造方法。
70≦T1≦100、 T1+10≦T2 ・・・(1)
A supply roller configured to rotate a highly oriented undrawn yarn having a birefringence Δn of 0.008 to 0.020, made of polylactic acid having L-lactic acid and / or D-lactic acid as a main repeating unit, at a constant speed; When stretching by 1.1 to 2.5 times with a stretching roller rotating at a speed higher than the supply roller, and performing heat setting by a heat treatment unit located downstream of the supply roller, the supply roller Wherein the temperature T1 (° C.) and the temperature T2 (° C.) of the heat treatment means satisfy the relationship of the following formula (1).
70 ≦ T1 ≦ 100, T1 + 10 ≦ T2 (1)
熱処理手段が延伸ローラーであることを特徴とする請求項1記載のポリ乳酸繊維の製造方法。The method for producing a polylactic acid fiber according to claim 1, wherein the heat treatment means is a drawing roller. L−乳酸および/またはD−乳酸を主たる繰り返し単位とするポリ乳酸の重量平均分子量が、80,000〜170,000であることを特徴とする請求項1または2に記載のポリ乳酸繊維の製造方法。The polylactic acid fiber according to claim 1 or 2, wherein the weight average molecular weight of the polylactic acid containing L-lactic acid and / or D-lactic acid as a main repeating unit is 80,000 to 170,000. Method. 高配向未延伸糸のウースターノーマル%(U1)と延伸糸のウースターノーマル%(U2)が下記式(2)の関係を満足することを特徴とする請求項1〜3のいずれか1項記載のポリ乳酸繊維の製造方法。
U2≦1.7×U1 ・・・(2)
The Worcester normal% (U1) of the highly oriented undrawn yarn and the Worcester normal% (U2) of the drawn yarn satisfy the relationship represented by the following formula (2). A method for producing polylactic acid fibers.
U2 ≦ 1.7 × U1 (2)
JP2000240946A 2000-08-09 2000-08-09 Method for producing polylactic acid fiber Expired - Lifetime JP3555566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240946A JP3555566B2 (en) 2000-08-09 2000-08-09 Method for producing polylactic acid fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240946A JP3555566B2 (en) 2000-08-09 2000-08-09 Method for producing polylactic acid fiber

Publications (2)

Publication Number Publication Date
JP2002061021A JP2002061021A (en) 2002-02-28
JP3555566B2 true JP3555566B2 (en) 2004-08-18

Family

ID=18732223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240946A Expired - Lifetime JP3555566B2 (en) 2000-08-09 2000-08-09 Method for producing polylactic acid fiber

Country Status (1)

Country Link
JP (1) JP3555566B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035951A2 (en) * 2008-09-25 2010-04-01 이홍구 Method for preparing pla fiber using coffee extract waste

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI222475B (en) 2001-07-30 2004-10-21 Toray Industries Polylactic acid fiber
CN102493003B (en) * 2011-11-04 2014-03-26 马鞍山同杰良生物材料有限公司 Method for preparing environment-friendly cigarette tows
JP7335118B2 (en) * 2019-09-13 2023-08-29 帝人フロンティア株式会社 Method for producing polylactic acid long fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035951A2 (en) * 2008-09-25 2010-04-01 이홍구 Method for preparing pla fiber using coffee extract waste
WO2010035951A3 (en) * 2008-09-25 2010-06-10 이홍구 Method for preparing pla fiber using coffee extract waste

Also Published As

Publication number Publication date
JP2002061021A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP5730782B2 (en) Normal pressure dyeable polyester fiber and method for producing the same
KR100901325B1 (en) Polylatic acid fiber
WO2000078839A1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
MXPA04012282A (en) Poly(trimethylene dicarboxylate) fibers, their manufacture and use.
JP2002030523A (en) Polylactic acid fiber
JP4605640B2 (en) Method for producing polylactic acid fiber
JP3692950B2 (en) Polylactic acid fiber and method for producing the same
JP2008106410A (en) Crimped yarn and fiber structure using the same
JP3555566B2 (en) Method for producing polylactic acid fiber
JP2010053491A (en) Blended yarn having modified shape and modified fineness
JPS62276017A (en) Polyester blended fiber
JP2008057082A (en) Method for producing polylactic acid monofilament
JP4586287B2 (en) Polylactic acid false twisted yarn and production method thereof
JP4269604B2 (en) Biodegradable ground yarn for pile knitted fabric and pile knitted fabric
JP7335118B2 (en) Method for producing polylactic acid long fiber
JP2861335B2 (en) Method for producing naphthalate polyester fiber
JP2000290845A (en) Aliphatic polyester false twisted yarn having excellent luster
JP4803192B2 (en) Low shrinkage aliphatic polyester fiber and method for producing the same
JP4203978B2 (en) Low shrinkage polylactic acid fiber and method for producing the same
JP4100162B2 (en) Core-sheath composite fiber
JP3693552B2 (en) Method for producing polyester fiber
JP4725200B2 (en) Split type composite fiber excellent in uniform dyeability and method for producing the same
JP2000248426A (en) Production of aliphatic polyester multifilament
JP4788480B2 (en) Split type composite partially drawn yarn and method for producing the same
JP2000226757A (en) Safety net

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R151 Written notification of patent or utility model registration

Ref document number: 3555566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

EXPY Cancellation because of completion of term