JP3555270B2 - Manufacturing method of magnet roll - Google Patents

Manufacturing method of magnet roll Download PDF

Info

Publication number
JP3555270B2
JP3555270B2 JP22485295A JP22485295A JP3555270B2 JP 3555270 B2 JP3555270 B2 JP 3555270B2 JP 22485295 A JP22485295 A JP 22485295A JP 22485295 A JP22485295 A JP 22485295A JP 3555270 B2 JP3555270 B2 JP 3555270B2
Authority
JP
Japan
Prior art keywords
magnetic
roll
magnet
developing
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22485295A
Other languages
Japanese (ja)
Other versions
JPH0968866A (en
Inventor
敏秀 田端
政毅 鈴村
勝比古 見永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP22485295A priority Critical patent/JP3555270B2/en
Publication of JPH0968866A publication Critical patent/JPH0968866A/en
Application granted granted Critical
Publication of JP3555270B2 publication Critical patent/JP3555270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、PPC複写機、LBPプリンター、ファクシミリなどの電子写真現像装置などに用いられるマグネットロールの製造方法に関するものである。
【0002】
【従来の技術】
一般に、磁気ブラシ現像用のマグネットロールは、円筒形の非磁性体スリーブと、この非磁性体スリーブ内にあって、複数個の磁極を表面に有するロール状磁石を主要部として構成され、上記非磁性体スリーブとロール状磁石の少なくとも一方を回転させるための軸受け、あるいは軸受けを一体化したフランジが、ロール状磁石の両端の軸部を保持するようにして非磁性体スリーブの両端に固定されている。
【0003】
電子写真現像装置では、上記非磁性体スリーブとロール状磁石の少なくとも一方を回転させ、非磁性体スリーブ上の、磁性粉体からなる現像剤を吸着搬送し、かつ帯電させ、感光体表面に形成された静電潜像に移行させて顕像化する磁気ブラシ現像法が使用されている。
【0004】
図6は一般的なマグネットロールの断面図であり、非磁性体スリーブ11内でロール状磁石10を相対的に回転させるが、非磁性体スリーブ11の両端に、軸受け12a,12bおよびこの軸受け12a,12bを保持し、かつ両端から非磁性体スリーブ11内に異物が進入するのを防ぐためのフランジ13a,13bからなる軸受部が形成されており、ロール状磁石10と非磁性体スリーブ11が最小限の間隔9を設けて、かつ回転負荷が大きくならないような寸法関係でフランジ13aと13bは、非磁性体スリーブ11に接着剤で接着固定されている。
【0005】
ロール状磁石10を回転または固定させるためのシャフト8は一方のフランジ13bの外側に引き出されているが、ロール状磁石10が固定され非磁性体スリーブ11を回転させる方式が主流であり、着磁パターンと感光体の位置関係を規制するために、シャフト8の端部にはDカットなどの基準面8aが設けられている。
【0006】
シャフト8の外側に固定されたロール状磁石10は、従来、図7に示すような複数本の棒状焼結フェライト14や、図8に示すような円筒状の焼結フェライト15を用いて構成されていたが、近年ではナイロン(6,66,11,12など)、ポリプロピレン、ポリエチレン、塩素化ポリエチレン、酢酸ビニール等の熱可塑性樹脂を結着剤とした複合樹脂マグネット材料を用いて構成されている。
【0007】
複合樹脂マグネットロールは、従来、強磁性体粉末であるフェライト粉末の磁化容易軸を機械的な手段により一定方向に配向させる方法と、磁場の作用で配向させる方法で作られている。
【0008】
機械的な手段を用いてフェライト粉末の磁化容易軸を一定方向に配向させる方法は、図9(a)に示すように複合樹脂マグネット材料16を圧延ローラー17などで圧延して、フェライト粉末の磁化容易軸18をシート面に対して直角方向に配向させたシート状マグネット19を形成し、次に図9(b)のようにこのシート状マグネット19をシャフト8に巻き付けてロール状とし、その後、着磁を行ってロール状磁石10とするものである。
【0009】
別の方法として、図10(a)〜図10(c)に示すように、配向効率を高めるために、シート状マグネット19を数枚重ねた後、扇形に加圧成形したピース20を、図10(d)に示すようにシャフト8を中心に隣接して貼り合わせ外周を切削加工してロール状とし、着磁を行ってロール状磁石10とする工夫もなされている。磁場の作用で配向させる方法は磁場射出成形といわれるもので、射出成形時に、金型内にある可塑状態の複合樹脂マグネット材料に強力な磁場を作用させ、フェライト粉末の磁化容易軸が磁束線の方向に配向されたロール状磁石とするもので、図11に示すように射出成形時に、可塑状態の複合樹脂マグネット材料が、金型21内のキャビティ22の周囲に配置されたコイル23aとヨーク23bからなる配向磁石23から磁場の作用を受け、フェライト粉末の磁化容易軸18が磁束線の方向に配向するものであった。
【0010】
いずれにおいても、ロール状磁石の端部は中央部と同一形状であり、平面状態で構成されている。
【0011】
【発明が解決しようとする課題】
以上のような従来の複合樹脂マグネットロールの内、図9(a)(b)に示した巻付けによる方法では、図9(b)に示すようにフェライト粉末の磁化容易軸18がシャフト8から放射状に配向され、磁束線が円周上の磁極に集中しないため高磁力が得られない。それに対して、扇形に加圧成形する図10(a)〜(d)の方法ではフェライト粉末の磁化容易軸が磁束線の方向に配向するため高磁力が得られ、扇形角度や磁極部の寸法及び位置関係を組み合わせる事により、特定磁極の着磁特性を独立して設計し、複雑な着磁パターンを得られるが、工程が複雑になり生産性に劣るものである。
【0012】
また図11の磁場射出成形では、配向磁石23は、得ようとする現像用マグネットロールの磁極位置に対応して、磁極数と同数が配置されており、配向磁石23からの磁束線は磁極の方向に集中するため配向が効率よく行われ、工程がより単純であるが、隣接する配向磁石との関係で、全体の着磁パターンが一括して決められ、特定磁極の着磁特性を個別に設計することはできず、複雑な着磁パターンが得られない。更に、ロール中心部迄充分な配向磁界が寄与できず、高磁力化に限界があるものであった。
【0013】
一般に乾式現像剤を用いる電子写真現像装置は、感光体に帯電−露光を経て潜像化された文字などの画像情報に現像材を静電気吸引効果で作用させて顕像化するものであり、現像剤を攪拌帯電し吸着搬送する目的で高磁力としたロール状磁石を、軸受けを介してフランジで受け、非磁性体スリーブ内に組み込んだ構成となっている。
【0014】
そして、ロール状磁石を固定しフランジを駆動して非磁性スリーブを回転させ、非磁性体スリーブ表面の磁力線分布に沿って現像剤を移行させる。
【0015】
このため、複数極で構成される現像用マグネットロールの個々の磁極は、現像ユニットの構成や感光体との関係などに応じてそれぞれ機能が定められており、その機能に最適な磁力線分布が要求される。つまり、ロール状磁石から発生する磁力線分布は、画像特性を決定する重要な役目を持っており、構成される複数磁極を個別に設計でき、複雑な着磁パターンを容易な工程で実現することが要求される。
【0016】
特に、感光体に対向する現像極は主極とも呼ばれ、現像材が感光体に接触する前後で異なって移行し、感光体に接触し、現像する時はゆるやかに、感光体から離れる現像後は素早く動くことが要求され、その為には、接触点となる磁極ピークの前後で、非対称な磁束密度分布の着磁パターンを有することが重要となる。また、現像剤を確実に搬送し、高精細度な画質を実現する目的で強い磁束密度(磁力)が要求され、感光体と着磁パターンの位置関係を高精度に組み立てることが重要である。
【0017】
また、全面に均一な画質を得るためには長手方向の磁力均一性も重要であり、特に全長形状が一様の従来品ではエッジ効果の関係で現像材端部盛り上がりが生じ、画像汚れ防止の部材が必要となっている。
【0018】
本発明は上述のような従来技術では解決できない相反する課題を解決することを目的とし、端部まで平坦で高磁力かつ複雑な着磁パターンを高精度に形成する磁気ブラシ現像用のマグネットロールの製造方法を安価に提供するものである。
【0019】
【課題を解決するための手段】
上記課題を解決するために本発明は、強磁性体粉末材料と高分子化合物材料を主体とする混合物を加熱溶融させた後、配向用磁界により、断面形状が扇型で円弧側から他の三辺に強磁性体粉末を配向しつつ成形させた磁極ピースを長手方向両端部が凸形状の突状部を有するように成形した後、シャフトにそれらを複数個組み合わせて貼り合わせたものである。
【0020】
【作用】
上記構成によって、同軸特性が優れた高磁力の現像用マグネットロールを、容易に生産することが可能となるものである。
【0021】
【実施例】
まず、本発明のマグネットロールの概要について説明する。
【0022】
本発明の要点とする処は、予め配向磁力が最大限に活用できる断面形状が扇型で円弧側から他の三辺に配向した磁極ピースを長手方向両端部においては幅が小なる形状に成形し、これらを複数個シャフトに組み合わせて貼り合わせることである。
【0023】
特に、幅が小なる部分とシャフト基準部の角度関係を治具を用いて規制して貼り合わせることにより感光体とマグネットロール着磁パターンの最適位置関係を容易に得ることができる。
【0024】
このように生産される現像用マグネットロールは個別の磁極毎に端部迄均一で最適な特性を有しており、良好な電子写真現像画像を再現することが可能である。つまり、貼り合わせる磁極ピース数、磁極ピースの扇開き角度や、円弧側配向極の位置・幅は要求されるマグネットロール着磁パターンに応じて、最適内容に設計される事が重要である。
【0025】
成形に使用される強磁性体粉末材料と高分子化合物材料を主体とする混合物は、ポリアミド、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂を母材として、希土類系磁性粉体や、バリウムフェライト、ストロンチュウムフェライトなどのハードフェライト粉末をチタニュウム或はシランなどのカップリング剤で表面処理をし、80〜95重量%の含有率で、混練したものが用いられる。
【0026】
以下、本発明の具体的実施例を図面を用いて説明する。本発明の断面形状が薄型の扇型で円弧側から他の三辺に強磁性体粉末を配向したピースを磁場射出成形する装置の一実施例を図2により説明する。
【0027】
すなわち、希土類系磁性粉末やフェライト粉末と高分子材料からなる複合樹脂マグネット材料ペレットを縦型射出成形機1で図2に示すような、コイル2中に設置された中央部に扇状凹部3aを設けた下部磁性材3bとT字状の上部磁性材3cとで円弧中央部から他の三辺へ磁路を形成する磁性材3と、扇状の両側の上部と円弧面の中央部を除く部分を囲む非磁性材4で構成され、長手方向両端部が凸形状となるように加工された金型5内に射出成形する。コイル2に通電し発生する磁界で希土類系磁性粉体やフェライト粒子の磁化容易軸を磁力線の方向に配向させることにより、図3に示すような断面が扇形で円弧中央部から他の三辺へ配向し、長手方向両端部の幅が小なる突状部6aを有する磁極ピース6を成形する。
【0028】
上部円弧半径r1、下部円弧半径r2、及び開き角度θ、さらにはT字状の上部磁性材3cによって円弧中央部から他の三辺へ形成される配向磁場は製品仕様に対応し、端部凸形状寸法はこれらの寸法に対応して最適状態に決定されるが実施例と比較例における現像極磁極ピースの各寸法を(表1)に記す。
【0029】
【表1】

Figure 0003555270
【0030】
そして、図1に示すように、鉄などからなるシャフト8の周囲に複数個の磁極ピース6を貼り合わせてロール状磁石を得る。
【0031】
電子写真現像装置で重要な感光体と着磁パターンの位置関係を確保するために、現像装置に組み込む時に基準面となるシャフト端部のDカット部8aと現像極磁極ピース端部を設計寸法角度に固定する図4に示す磁極ピース端部の突状部6aと対応する穴部7aと、シャフト基準となるDカット部8aに対応した他の穴部7bを有する位置決め治具7を用いて、SUM材からなるシャフト8の周囲に複数個の磁極ピース6を貼り合わせてロール状磁石を得る。
【0032】
図1は本発明に於ける一ピース成形装置の主要部を示す断面図であるが、断面が扇形で円弧中央部から他の三辺へ配向した磁極ピース6のキャビティ部一端にはノズル口に連なるスプール、ランナーが連結されているのは一般の射出成形金型と同等である。
【0033】
成形に使用した複合樹脂マグネットは6ナイロンを母材樹脂とし、チタニウムカップリング処理されたバリウムフェライトを87重量%含有した混合物を用いて成形した。
【0034】
得られたロール状磁石の表面磁束密度をガウスメーターにより測定した。測定はマグネットロールとして使用される状態とするために、外径30mmのスリーブ内に組み込み、ガウスメーターのホール素子をそのスリーブ表面に接触させて行った。
【0035】
このマグネットロールの主極長手方向の磁束密度特性を(表1)の実施例1〜3および比較例について図5に示す。
【0036】
本発明によれば端部を凸形状とし小とする程比較例Dと比べてエッジ効果が解消されることが図5により明らかであるが、小にし過ぎるといわゆる肩ダレ状態になりマイナス効果となるため、製品要求特性から定められた磁極ピース設計寸法とのバランスで端部凸形状寸法を最適設計すれば良い。又、実際のマグネットロールの着磁特性はそれぞれの極間角度、磁力は不均一であり、開き角度θは異なり、端部を小とした程度が異なる磁極ブロックを組み合わせるという事が設計ポイントとなってくる。
【0037】
【発明の効果】
以上のように本発明のマグネットロールの製造方法によれば、良質な画像特性を実現するために端部まで平坦で高磁力かつ複雑な着磁パターンを高精度に形成する磁気ブラシ現像用ロールを、生産性に優れ、安価に生産でき、電子写真現像装置などに最適な磁気ブラシ現像用ロールを得ることができ、その実用価値は大きい。
【図面の簡単な説明】
【図1】本発明のマグネットロールの一実施例である薄型の断面が扇形で円弧中央部から他の三辺へ配向した磁極ピースをシャフトに接着固定した磁石ロールの斜視図
【図2】同マグネットロールの製造に用いられる製造装置の断面図
【図3】同要部である薄型の断面が扇形で円弧中央部から他の三辺へ配向し端部が小なる形状とした磁極ピースの斜視図
【図4】同磁極ピースをシャフト基準面に接着固定する時の位置決め治具の一実施例の斜視図
【図5】同特性図
【図6】従来のマグネットロールの断面図
【図7】同径方向の断面図
【図8】同他の従来技術におけるマグネットロールの径方向の断面図
【図9】従来の磁石ロールの製造方法の説明図
【図10】従来の磁石ロールの他の製造方法の説明図
【図11】従来の磁石ロールの他の製造方法の説明図
【符号の説明】
1 縦型射出成形機
2 コイル
3 磁性材
4 非磁性材
5 金型
6 磁極ピース
7 位置決め治具
8 シャフト[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a magnet roll used in an electrophotographic developing device such as a PPC copier, an LBP printer, and a facsimile.
[0002]
[Prior art]
In general, a magnet roll for magnetic brush development is mainly composed of a cylindrical non-magnetic sleeve and a roll-shaped magnet having a plurality of magnetic poles on its surface within the non-magnetic sleeve. A bearing for rotating at least one of the magnetic sleeve and the roll-shaped magnet, or a flange integrated with the bearing is fixed to both ends of the non-magnetic sleeve so as to hold the shaft portions at both ends of the roll-shaped magnet. I have.
[0003]
In the electrophotographic developing device, at least one of the non-magnetic sleeve and the roll-shaped magnet is rotated, and the developer made of magnetic powder on the non-magnetic sleeve is conveyed by suction, charged, and formed on the surface of the photoreceptor. A magnetic brush development method is used in which a latent image is transferred to a developed electrostatic latent image and visualized.
[0004]
FIG. 6 is a sectional view of a general magnet roll, in which the roll-shaped magnet 10 is relatively rotated in the non-magnetic sleeve 11, but bearings 12a, 12b and the bearings 12a are provided at both ends of the non-magnetic sleeve 11. , 12b and a flange 13a, 13b for preventing foreign matter from entering the non-magnetic sleeve 11 from both ends is formed. The roll-shaped magnet 10 and the non-magnetic sleeve 11 The flanges 13a and 13b are fixed to the non-magnetic sleeve 11 with an adhesive with a minimum distance 9 and a dimensional relationship that does not increase the rotational load.
[0005]
The shaft 8 for rotating or fixing the roll-shaped magnet 10 is drawn out of one of the flanges 13b, but the method in which the roll-shaped magnet 10 is fixed and the non-magnetic sleeve 11 is rotated is mainly used, In order to regulate the positional relationship between the pattern and the photoconductor, a reference surface 8a such as a D-cut is provided at an end of the shaft 8.
[0006]
Conventionally, the roll-shaped magnet 10 fixed to the outside of the shaft 8 is configured using a plurality of rod-shaped sintered ferrites 14 as shown in FIG. 7 or a cylindrical sintered ferrite 15 as shown in FIG. However, in recent years, it is configured using a composite resin magnet material using a thermoplastic resin such as nylon (6, 66, 11, 12), polypropylene, polyethylene, chlorinated polyethylene, or vinyl acetate as a binder. .
[0007]
Conventionally, composite resin magnet rolls are manufactured by a method of orienting an easy axis of magnetization of ferrite powder, which is a ferromagnetic powder, in a fixed direction by mechanical means, and a method of orienting by the action of a magnetic field.
[0008]
As shown in FIG. 9A, a method for orienting the easy axis of ferrite powder in a certain direction using mechanical means is to roll the composite resin magnet material 16 with a rolling roller 17 or the like as shown in FIG. A sheet-like magnet 19 in which the easy axis 18 is oriented in a direction perpendicular to the sheet surface is formed, and then the sheet-like magnet 19 is wound around the shaft 8 into a roll as shown in FIG. Magnetization is performed to form the roll-shaped magnet 10.
[0009]
As another method, as shown in FIGS. 10 (a) to 10 (c), in order to increase the orientation efficiency, a piece 20 formed by stacking several sheet-like magnets 19 and pressure-forming in a fan shape is shown in FIG. As shown in FIG. 10 (d), there is a device in which the outer periphery of the lamination is cut into a roll shape adjacent to the shaft 8 as a center and magnetized to form the roll magnet 10. The method of orienting by the action of a magnetic field is called magnetic field injection molding.At the time of injection molding, a strong magnetic field is applied to the composite resin magnet material in a plastic state in a mold, and the easy axis of ferrite powder is changed to the magnetic flux line. As shown in FIG. 11, a composite resin magnet material in a plastic state is provided with a coil 23a and a yoke 23b arranged around a cavity 22 in a mold 21 during injection molding as shown in FIG. Under the action of a magnetic field from the orienting magnet 23 made of, the axis of easy magnetization 18 of the ferrite powder is oriented in the direction of the magnetic flux lines.
[0010]
In each case, the end of the roll-shaped magnet has the same shape as the center, and is configured in a planar state.
[0011]
[Problems to be solved by the invention]
Among the above-described conventional composite resin magnet rolls, in the winding method shown in FIGS. 9A and 9B, the easy magnetization axis 18 of the ferrite powder is separated from the shaft 8 as shown in FIG. Since the magnetic flux lines are radially oriented and the magnetic flux lines do not concentrate on the magnetic poles on the circumference, a high magnetic force cannot be obtained. On the other hand, in the method shown in FIGS. 10A to 10D in which pressure is formed into a sector shape, a high magnetic force is obtained because the axis of easy magnetization of the ferrite powder is oriented in the direction of the magnetic flux line, and the angle of the sector and the dimension of the magnetic pole portion are obtained. By combining the position and the positional relationship, the magnetization characteristics of the specific magnetic pole can be independently designed to obtain a complicated magnetization pattern, but the process becomes complicated and productivity is poor.
[0012]
Also, in the magnetic field injection molding of FIG. 11, the same number of magnetic poles as the number of magnetic poles are arranged corresponding to the magnetic pole positions of the developing magnet roll to be obtained. Since the orientation is concentrated, the orientation is performed efficiently and the process is simpler, but the entire magnetization pattern is determined collectively in relation to the adjacent orientation magnet, and the magnetization characteristics of the specific magnetic pole are individually determined. It cannot be designed and a complicated magnetization pattern cannot be obtained. Furthermore, a sufficient orientation magnetic field cannot be contributed to the center of the roll, and there is a limit in increasing the magnetic force.
[0013]
Generally, an electrophotographic developing device using a dry developer is a device in which a developing material acts on image information such as a latent image formed by charging and exposing a photoreceptor to a latent image by using a developing material with an electrostatic attraction effect to visualize the image. A roll-shaped magnet with a high magnetic force for the purpose of stirring and charging the suction agent to carry it by suction is received by a flange via a bearing, and is incorporated in a non-magnetic sleeve.
[0014]
Then, the roll-shaped magnet is fixed, the flange is driven to rotate the non-magnetic sleeve, and the developer is transferred along the magnetic field distribution on the surface of the non-magnetic sleeve.
[0015]
For this reason, the function of each magnetic pole of the developing magnet roll composed of a plurality of poles is determined in accordance with the configuration of the developing unit and the relationship with the photoreceptor, and an optimal magnetic force line distribution is required for the function. Is done. In other words, the magnetic field line distribution generated from the roll-shaped magnet has an important role in determining the image characteristics, a plurality of configured magnetic poles can be individually designed, and a complicated magnetization pattern can be realized in an easy process. Required.
[0016]
In particular, the developing pole facing the photoreceptor is also called the main pole, and migrates differently before and after the developer contacts the photoreceptor, contacts the photoreceptor slowly when developing, and after developing away from the photoreceptor Is required to move quickly, and for that purpose, it is important to have a magnetization pattern with an asymmetric magnetic flux density distribution before and after a magnetic pole peak serving as a contact point. Further, a strong magnetic flux density (magnetic force) is required for the purpose of reliably transporting the developer and realizing high-definition image quality, and it is important to assemble the positional relationship between the photoconductor and the magnetization pattern with high precision.
[0017]
In addition, in order to obtain uniform image quality over the entire surface, uniformity of magnetic force in the longitudinal direction is also important. Particularly in the case of a conventional product having a uniform overall shape, the edge of the developing material rises due to the edge effect, and the image contamination is prevented. Members are needed.
[0018]
An object of the present invention is to solve a contradictory problem that cannot be solved by the conventional technology as described above, and to provide a magnet roll for magnetic brush development that forms a flat, high magnetic force and a complicated magnetized pattern with high accuracy to the end. The manufacturing method is provided at low cost.
[0019]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention is to heat and melt a mixture mainly composed of a ferromagnetic powder material and a polymer compound material, and then use a magnetic field for orientation to form a fan-shaped cross-sectional shape and form another three-dimensional shape from the arc side. A magnetic pole piece formed by molding ferromagnetic powder on the side while orienting the magnetic pole piece so that both ends in the longitudinal direction have a protruding portion is formed, and then a plurality of these are combined and attached to a shaft .
[0020]
[Action]
According to the above configuration, it is possible to easily produce a developing magnet roll having a high magnetic force and excellent coaxial characteristics.
[0021]
【Example】
First, the outline of the magnet roll of the present invention will be described.
[0022]
The key point of the present invention is that a magnetic pole piece having a sector shape in which the orientation magnetic force can be utilized to the utmost in advance and oriented from the arc side to the other three sides is formed into a shape having a small width at both ends in the longitudinal direction. Then, these are combined with a plurality of shafts and bonded.
[0023]
In particular, by regulating the angle relationship between the narrow portion and the shaft reference portion by using a jig and bonding, the optimum positional relationship between the photoconductor and the magnet roll magnetized pattern can be easily obtained.
[0024]
The developing magnet roll produced in this way has uniform and optimal characteristics up to the end for each individual magnetic pole, and is capable of reproducing a good electrophotographic developed image. In other words, it is important that the number of magnetic pole pieces to be bonded, the fan opening angle of the magnetic pole pieces, and the position and width of the arc-side alignment pole are designed to be optimal according to the required magnet roll magnetization pattern.
[0025]
A mixture mainly composed of a ferromagnetic powder material and a polymer compound material used for molding is made of a rare earth magnetic powder, a barium ferrite, a strontium based on a thermoplastic resin such as polyamide, polypropylene, or polyethylene. Hard ferrite powder such as ferrite is subjected to a surface treatment with a coupling agent such as titanium or silane, and kneaded at a content of 80 to 95% by weight.
[0026]
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. An embodiment of an apparatus for magnetic field injection molding of a piece of the present invention, which has a thin sector shape and has ferromagnetic powder oriented on the other three sides from the arc side, will be described with reference to FIG.
[0027]
That is, as shown in FIG. 2, a fan-shaped concave portion 3a is provided in a central portion provided in a coil 2 of a composite resin magnet material pellet made of a rare earth magnetic powder or a ferrite powder and a polymer material, as shown in FIG. The magnetic material 3 which forms a magnetic path from the center of the arc to the other three sides by the lower magnetic material 3b and the T-shaped upper magnetic material 3c, and the part excluding the upper part on both sides of the fan and the center of the arc surface. Injection molding is performed in a mold 5 which is formed of the surrounding non-magnetic material 4 and is processed so that both ends in the longitudinal direction are convex. The magnetic field generated by energizing the coil 2 orients the axis of easy magnetization of the rare-earth magnetic powder or ferrite particles in the direction of the line of magnetic force, so that the cross section shown in FIG. A magnetic pole piece 6 having a protruding portion 6a that is oriented and has a small width at both ends in the longitudinal direction is formed.
[0028]
The upper arc radius r1, the lower arc radius r2, the opening angle θ, and the orientation magnetic field formed from the center of the arc to the other three sides by the T-shaped upper magnetic material 3c correspond to the product specifications. The shape and dimensions are determined in an optimum state corresponding to these dimensions. Table 1 shows the dimensions of the developing pole pieces in the examples and comparative examples.
[0029]
[Table 1]
Figure 0003555270
[0030]
Then, as shown in FIG. 1, a plurality of magnetic pole pieces 6 are bonded around a shaft 8 made of iron or the like to obtain a roll-shaped magnet.
[0031]
To ensure the important positional relationship between the photoreceptor and the magnetized pattern in the electrophotographic developing device, the D-cut portion 8a at the end of the shaft and the end of the developing magnetic pole piece, which serve as a reference surface when assembling into the developing device, are designed at a dimensional angle. Using a positioning jig 7 having a hole 7a corresponding to the protrusion 6a at the end of the magnetic pole piece shown in FIG. 4 and another hole 7b corresponding to the D cut 8a serving as a shaft reference, as shown in FIG. A plurality of magnetic pole pieces 6 are bonded around a shaft 8 made of a SUM material to obtain a roll-shaped magnet.
[0032]
FIG. 1 is a cross-sectional view showing a main part of a one-piece molding apparatus according to the present invention. The cross-section of the pole piece 6 is sector-shaped and oriented from the center of the arc to the other three sides. The connection of the continuous spool and runner is equivalent to that of a general injection mold.
[0033]
The composite resin magnet used in the molding was molded using a mixture containing 6% nylon as a base resin and containing 87% by weight of barium ferrite subjected to titanium coupling treatment.
[0034]
The surface magnetic flux density of the obtained roll-shaped magnet was measured with a Gauss meter. The measurement was carried out by assembling it in a sleeve having an outer diameter of 30 mm and bringing a Hall element of a Gauss meter into contact with the surface of the sleeve in order to be used as a magnet roll.
[0035]
FIG. 5 shows the magnetic flux density characteristics of the magnet roll in the main pole longitudinal direction with respect to Examples 1 to 3 in Table 1 and Comparative Example.
[0036]
According to the present invention, it is clear from FIG. 5 that the edge effect is eliminated as compared with Comparative Example D as the end portion is made convex and smaller, but if it is too small, a so-called shoulder sagging state occurs and a negative effect is obtained. Therefore, it is only necessary to optimally design the convex shape at the end portion in balance with the design dimension of the magnetic pole piece determined from the required characteristics of the product. In addition, the design points are that the magnetizing characteristics of the actual magnet roll are such that the pole angle and the magnetic force are non-uniform, the opening angle θ is different, and the magnetic pole blocks differ in the degree to which the ends are small. Come.
[0037]
【The invention's effect】
As described above, according to the method of manufacturing a magnet roll of the present invention, a magnetic brush developing roll that forms a high-magnetism and complex magnetized pattern with high accuracy and flatness to the end to achieve good image characteristics is provided. It is excellent in productivity, can be produced at low cost, and can obtain a magnetic brush developing roll most suitable for an electrophotographic developing device and the like, and its practical value is great.
[Brief description of the drawings]
FIG. 1 is a perspective view of a magnet roll according to one embodiment of the present invention, in which a magnetic pole piece having a fan-shaped cross section having a fan-shaped cross section and oriented from the center of a circular arc to other three sides is bonded and fixed to a shaft. FIG. 3 is a cross-sectional view of a manufacturing apparatus used for manufacturing a magnet roll. FIG. 3 is a perspective view of a magnetic pole piece in which a thin section, which is an essential part, has a sector shape and is oriented from the center of the arc to the other three sides and the ends are small. FIG. 4 is a perspective view of an embodiment of a positioning jig when the magnetic pole piece is bonded and fixed to a shaft reference surface. FIG. 5 is a characteristic diagram. FIG. 6 is a cross-sectional view of a conventional magnet roll. FIG. 8 is a sectional view in the radial direction of the magnet roll according to another related art. FIG. 9 is an explanatory view of a method of manufacturing a conventional magnet roll. FIG. 10 is another manufacturing method of a conventional magnet roll. FIG. 11 is an illustration of a method. Explanatory diagram of a method [DESCRIPTION OF SYMBOLS]
Reference Signs List 1 vertical injection molding machine 2 coil 3 magnetic material 4 non-magnetic material 5 mold 6 magnetic pole piece 7 positioning jig 8 shaft

Claims (1)

強磁性体粉末材料と高分子化合物材料を主体とする混合物を加熱溶融させた後、配向用磁界により、断面形状が扇型で円弧側から他の三辺に強磁性体粉末を配向しつつ成形させた磁極ピースを長手方向両端部が凸形状の突状部を有するように成形した後、シャフトにそれらを複数個組み合わせて貼り合わせることを特長とするマグネットロールの製造方法After heating and melting a mixture mainly composed of a ferromagnetic powder material and a polymer compound material, the magnetic field for orientation is used to shape the ferromagnetic powder while orienting the ferromagnetic powder from the arc side to the other three sides from the arc side. A method for manufacturing a magnet roll , comprising: forming a magnetic pole piece so that both ends in the longitudinal direction have a protruding projection, and combining and bonding a plurality of them to a shaft.
JP22485295A 1995-09-01 1995-09-01 Manufacturing method of magnet roll Expired - Fee Related JP3555270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22485295A JP3555270B2 (en) 1995-09-01 1995-09-01 Manufacturing method of magnet roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22485295A JP3555270B2 (en) 1995-09-01 1995-09-01 Manufacturing method of magnet roll

Publications (2)

Publication Number Publication Date
JPH0968866A JPH0968866A (en) 1997-03-11
JP3555270B2 true JP3555270B2 (en) 2004-08-18

Family

ID=16820179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22485295A Expired - Fee Related JP3555270B2 (en) 1995-09-01 1995-09-01 Manufacturing method of magnet roll

Country Status (1)

Country Link
JP (1) JP3555270B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963913B2 (en) * 2004-08-30 2007-08-22 Tdk株式会社 Mold for molding bonded magnet for magnet roll and molding method

Also Published As

Publication number Publication date
JPH0968866A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
US3392432A (en) Magnetic roller for electro-photographic development
JPS61148474A (en) Magnetic roller for copying machine and making thereof
JP3399625B2 (en) Method of manufacturing roll-shaped magnet for development
JP3555270B2 (en) Manufacturing method of magnet roll
JP3265876B2 (en) Magnet roll
JP4430798B2 (en) Magnet roller, method of manufacturing magnet roller, developing roller, and developing device
JPH1165283A (en) Magnet roller
JP4420197B2 (en) Magnet roll and manufacturing method thereof
JP2001185415A (en) Method of manufacturing magnet roller
JPH06231941A (en) Magnet roll and its manufacture
JPH10189336A (en) Method and device for magnetizing magnet roller, magnet roller, and method and device for forming electrophotograph using the magnet roller
JPS59145507A (en) Magnet-roll for dry development
JPH0324574A (en) Developing device
JP2001319810A (en) Magnet roller and developing device
JPH0221643B2 (en)
JPH0337689A (en) Developing device
JP4506944B2 (en) Magnet roll magnetizing method and apparatus
JP5423351B2 (en) Magnet roll magnetizing device and magnet roll manufacturing method
JP2000153540A (en) Manufacture of resin magnet moldings
JPH0431169B2 (en)
JP2000164443A (en) Manufacture of resin magnet molding
JPS62108272A (en) Magnet roller
JPH08339124A (en) Magnet roll
JP2003015424A (en) Magnetic roll
JPH0344670A (en) Developing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees