JP3554889B2 - Double feedback current transformer - Google Patents
Double feedback current transformer Download PDFInfo
- Publication number
- JP3554889B2 JP3554889B2 JP2000182950A JP2000182950A JP3554889B2 JP 3554889 B2 JP3554889 B2 JP 3554889B2 JP 2000182950 A JP2000182950 A JP 2000182950A JP 2000182950 A JP2000182950 A JP 2000182950A JP 3554889 B2 JP3554889 B2 JP 3554889B2
- Authority
- JP
- Japan
- Prior art keywords
- current transformer
- voltage
- secondary coil
- amplifier
- coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Transformers For Measuring Instruments (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は非接触で大電流から小電流まで検出測定するための、磁束の微小で鉄心量の少ない帰還形変流器に関する。
【0002】
【従来の技術】
磁束を少なくして励磁電流を小さくする変流器としては、帰還形変流器が用いられる。図2は従来の帰還形変流器の例で、主変流器CTの2次コイルN2の内部電圧を小さくし励磁電流を小さくするため、3次コイルN3の出力を増幅器A1で増幅して2次負担抵抗RLと2次コイルN2に帰還すると共に、この帰還ループゲインを小さくし安定化するため別に設けた補助変流器CT’の2次コイルN2’からも電流を供給する必要があった。従って2個の鉄心を必要とし、しかも1次電流I1を流す主変流器CT、補助変流器CT’の1次コイルN1,N1’に対する2次コイルN2,N2’の比は正確に等しくするなど、複雑高価であった。
図3は鉄心1個でしかも安定動作をする別の例で、本発明者らの特許第637920号による変流器の電圧補償変流器である。これも一種の帰還形変流器で2次負担抵抗RLの電圧を増幅器A2で増幅して2次直列抵抗R0に帰還し、前記RLの電圧を打消し2次コイルN2の内部電圧を小さくするものである。しかし、これは自動帰還ではなく増幅器A2の増幅度をほぼ1より若干大きめに(2次コイルN2の内部抵抗分だけ)手動で調節する必要があった。従って温度などで2次コイルN2の内部抵抗が変化すると再調節の必要があり、2次コイルN2の内部電圧を微小にすることは不可能で高精度変流器は得られなかった。
【0003】
【発明が解決しようとする課題】
本発明は鉄心1個のみで変流器の励磁電流、即ち2次コイル内部電圧を自動的に殆ど零にするような自動制御装置で、且つこの制御系が発振して不安定にならないようループゲインを極めて低くすることを課題とする。
【0004】
【課題を解決するための手段】
本発明は上記目的を達成するため1個の鉄心で3次コイルの電圧を増幅して2次側の負担電圧に対応した電圧を2次コイル電圧に対して手動で負帰還し、上記自動負帰還の制御ループゲインを低くして発振しないようにする。
具体的には2次負担電圧にほぼ等しい電圧を手動で先ず2次コイル電圧を帰還補償し、その補償しきれない僅かな電圧を3次コイル電圧を検出増幅して自動帰還補償せんとするものであり、自動制御ループゲインを小さくして安定動作させるものにする。
【0005】
【発明の実施の形態】
図1は本発明の実施例であり、変流器CTは1次コイルN1、2次コイルN2、3次コイルN3及び1個の鉄心Tより構成される。RLは2次負担抵抗、Op1及びOp2はオペアンプである。オペアンプOp1は分圧抵抗R3,R4と共に第1の非反転増幅器を構成する。オペアンプOp2は分圧抵抗R1,R2と共に第2の非反転増幅器を構成する。
【0006】
図1に於いてオペアンプOp1の出力電圧V01はR1の下端にカスケード接続され、オペアンプOp2の出力に加算される。一方、オペアンプOp2の出力電圧V02は、オペアンプOp1の出力電圧V01を含んでおり、これは2次コイルN2に帰還される。而して、2次コイルN2の内部抵抗分だけ2次負担抵抗RLの電圧より大きめの電圧をオペアンプOp2の出力V02を得るため分圧抵抗R2が必要である。Cは位相調整用コンデンサである。他方、2次コイルN2の内部抵抗が極めて小さい場合は、分圧抵抗R2の値も極めて小さくなる。この場合、以下の理論式に示されるように、オペアンプOp1の出力電圧V01の実質上の加算増幅度が極めて小さくなるので、2次コイルN2に直列に補助抵抗r0を押入し、分圧抵抗R2を大きくせしめる。
【0007】
これを以下の数式により説明する。(簡単化のためコンデンサCは考慮しない)図に於いて、2次コイルN2の内部抵抗をr2、2次出力電流をI2とすれば、2次電流I2はオペアンプOp2の入力には流れないので、2次コイルN2の内部電圧V2は次式で示される。
V2=I2(r2+r0)+I2RL−V02 (1)
ところで、オペアンプOp2、分圧抵抗R2,R1は非反転増幅器を構成しているから、
V02=I2RL+I02R2 (2)
I2RL=I02R1+V01 (3)
但し、I02はR1,R2に流れる電流であり、これは(3)式により、
I02=(I2RL−V01)/R1 (4)
が得られ、これを(2)式に代入すれば、オペアンプOp2の出力電圧は、
V02=I2RL+I2RL(R2/R1)−V01(R2/R1) (5)
となる。
【0008】
(5)式右辺第3項はオペアンプOp1の出力電圧V01の加算を意味し、R2=0ならば、オペアンプOp1の出力は全く加算されないことになる。なお、マイナス符号になっているので、オペアンプOp1の入力はマイナスにする必要があり、3次コイルN3は2次コイルN2に対し逆巻きとする。
分圧抵抗R2を大きくして加算効果を大きくするためには2次コイルN2に直列に補助抵抗r0を挿入する。
【0009】
次に(5)式を(1)式に代入すれば、2次コイルの内部電圧は、
V2=I2(r2+r0)+I2RL−(I2RL+I2RL(R2/R1)−V01(R2/R1))
=I2(r2+R0)−I2RL(R2/R1)+V01(R2/R1) となる (6)
【0010】
一方、オペアンプOp1及び分圧抵抗R3,R4よりなる非反転増幅器の増幅度K1は
K1=V01/V3=(R3+R4)/R4 (7)
であり、3次コイルN3を2次コイルN2に対して逆巻きとすれば、3次コイルの内部電圧は、
V3=−(N3/N2)V2 (8)
【0011】
従って、オペアンプOp1の出力電圧V01は、K0=K1(N3/N2)として、
V01=−K1(N3/N2)V2=−K0V2 (9)
となり、2次コイルN2の内部電圧を増幅したものがV01になっている。(9)式を(6)式に代入して整理すれば、
V2(1+K0(R2/R1))=I2(r2+r0−RL(R2/R1)) (10)
となる。
【0012】
以上により、2次コイルの内部電圧V2は、
V2=(r2+r0−RL(R2/R1))/(1+K0(R2/R1))I2 (11)
となる。
今、上記で補助抵抗r0を挿入すれば2次コイルの内部抵抗が小さくても分圧抵抗R2を大きくでき、分母の実質ループゲインK0(R2/R1)を大きくできる。
【0013】
上記(11)式に見られる通り、オペアンプOp2により分子を手動で、できる限り小さくすると共に、分母のK0をオペアンプOp1で大きくし、2次コイルの内部電圧V2全体をさらに自動的に小さくする。分子が小さいからいわゆる自動制御系ループゲインK0(R2/R1)は発振する程大きくしなくても2次コイルの内部電圧V2を極めて小さくできるものとなる。なお、オペアンプOp2の入力は必ずしも2次負担抵抗RLの電圧を直接でなく、2次電流I2に対応した信号であればよいことは明らかである。
【0014】
【発明の効果】
本発明は以上の通り構成するものであって、第1の増幅器で自動帰還すると共に、第2の増幅器で手動帰還するので、自動帰還のループゲインを低く安定化して、鉄心1個でも2次コイル内部電圧を安定に極めて小さくでき、少量の鉄心で高精度の変流器が得られる優れた作用効果がある。
【図面の簡単な説明】
【図1】本発明の実施態様例を示すものである。
【図2】従来例(帰還形変流器)を示すものである。
【図3】従来例(変流器の電圧補償変流器)を示すものである。
【符号の説明】
CT,CT’ 変流器
T 鉄心
N1,N1’ 1次コイル
N2 2次コイル
N3 3次コイル
A1,A2 増幅器
RL 2次負担抵抗
I2 2次電流
R0 抵抗
V2 2次コイルの内部電圧
r2 2次コイルの内部抵抗
r0 補助抵抗
Op1,Op2 オペアンプ
R1〜R4 抵抗
C コンデンサ
V01 Op1の出力電圧
V02 Op2の出力電圧
I02 R2,R1を流れる電流[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a feedback type current transformer having a small magnetic flux and a small iron core for detecting and measuring a large current to a small current in a non-contact manner.
[0002]
[Prior art]
A feedback type current transformer is used as a current transformer for reducing the magnetic flux to reduce the exciting current. Figure 2 is an example of a conventional feedback type current transformer, to reduce the small and excitation current secondary internal voltage of the coil N 2 of the main current transformer CT, the output of the tertiary coil N 3 in the amplifier A 1 amplifies and thereby fed back to the secondary load resistor R L and the secondary coil N 2, current from 'secondary coil N 2 of' the feedback loop gain reduced by separately provided for stabilizing auxiliary current transformer CT Had to be supplied. Therefore, two iron cores are required, and the secondary coils N 2 , N 2 ′ for the primary coils N 1 , N 1 ′ of the main current transformer CT and the auxiliary current transformer CT ′ for flowing the primary current I 1 . The ratios were complicated and expensive, with exactly equal ratios.
FIG. 3 shows another example in which a single iron core operates stably and is a voltage-compensated current transformer of a current transformer according to Japanese Patent No. 637920 of the present inventors. This is also fed back to amplify the voltage of the secondary load resistor R L in the amplifier A 2 is a kind of feedback type current transformer on the secondary series resistors R 0, wherein R L voltage cancellation secondary coil N 2 of This is to reduce the internal voltage. However, this had to be adjusted substantially 1 than slightly larger (secondary internal resistance of the coil N 2 only) manually amplification factor of the amplifier A 2 not automatic feedback. Thus such in need readjustment when the internal resistance of the secondary coil N 2 is changed temperature, high-precision current transformer is not possible to the internal voltage of the secondary coil N 2 to fine was not obtained.
[0003]
[Problems to be solved by the invention]
The present invention relates to an automatic control device for automatically setting the exciting current of the current transformer, that is, the internal voltage of the secondary coil to almost zero with only one iron core, and a loop for preventing the control system from oscillating and becoming unstable. It is an object to make the gain extremely low.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention amplifies the voltage of the tertiary coil with one iron core, and manually negatively feeds back the voltage corresponding to the burden voltage on the secondary side to the secondary coil voltage. Reduce the feedback control loop gain to prevent oscillation.
Specifically, a voltage almost equal to the secondary burden voltage is manually compensated first by feedback of the secondary coil voltage, and a small voltage that cannot be compensated is detected and amplified by the tertiary coil voltage to perform automatic feedback compensation. In this case, the automatic control loop gain is reduced so as to perform stable operation.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention, in which a current transformer CT includes a primary coil N 1 , a secondary coil N 2 , a tertiary coil N 3 and one iron core T. RL is a secondary load resistance, and Op1 and Op2 are operational amplifiers. Operational amplifier Op1 constitutes a first non-inverting amplifier with voltage dividing resistors R 3, R 4. Operational amplifier Op2 constitutes a second non-inverting amplifier with voltage dividing resistors R 1, R 2.
[0006]
Output voltage V 01 of the operational amplifier Op1 In Figure 1 are cascade connected to the lower end of the R 1, it is added to the output of the operational amplifier Op2. On the other hand, the output voltage V 02 of the operational amplifier Op2 includes a output voltage V 01 of the operational amplifier Op1, which is fed back to the secondary coil N 2. And Thus, it is necessary a larger voltage than the voltage of only the internal resistance of the secondary coil N 2 secondary load resistance R L is dividing resistor R 2 to obtain an output V 02 of the operational amplifier Op2. C is a phase adjusting capacitor. On the other hand, if the internal resistance of the secondary coil N 2 is very small, the dividing resistors R 2 value is extremely small. In this case, as shown in the following theoretical formula, since substantially the sum amplitude of the output voltage V 01 of the operational amplifier Op1 is extremely small, the auxiliary resistor r 0 in series with the secondary coil N 2 was pushed, minutes allowed to increase the pressure resistance R 2.
[0007]
This will be described with the following mathematical formula. (The capacitor C is not considered for simplicity.) In the figure, if the internal resistance of the secondary coil N 2 is r 2 and the secondary output current is I 2 , the secondary current I 2 is supplied to the input of the operational amplifier Op2. since not flow, the internal voltage V 2 of the secondary coil N 2 is expressed by the following equation.
V 2 = I 2 (r 2 + r 0 ) + I 2 RL− V 02 (1)
However, operational amplifier Op2, dividing resistors R 2, R 1 is because they constitute a non-inverting amplifier,
V 02 = I 2 R L + I 02 R 2 (2)
I 2 R L = I 02 R 1 + V 01 (3)
Here, I 02 is a current flowing through R 1 and R 2 , which is expressed by equation (3).
I 02 = (I 2 RL− V 01 ) / R 1 (4)
Is obtained, and this is substituted into the equation (2), the output voltage of the operational amplifier Op2 becomes
V 02 = I 2 R L + I 2 R L (R 2 / R 1) -V 01 (R 2 / R 1) (5)
It becomes.
[0008]
(5) third term denotes the sum of the output voltage V 01 of the operational amplifier Op1, if R 2 = 0, so that the output of the operational amplifier Op1 is not at all added. Since has become minus sign, the input of the operational amplifier Op1 must be in the negative, the tertiary coil N 3 is the reverse wound with respect to secondary coil N 2.
To increase the addition effect by increasing the partial pressure resistors R 2 inserts an auxiliary resistor r 0 in series with the secondary coil N 2.
[0009]
Next, if the equation (5) is substituted into the equation (1), the internal voltage of the secondary coil becomes
V 2 = I 2 (r 2 + r 0) + I 2 R L - (I 2 R L + I 2 R L (R 2 / R 1) -V 01 (R 2 / R 1))
= I 2 (r 2 + R 0 ) −I 2 RL (R 2 / R 1 ) + V 01 (R 2 / R 1 ) (6)
[0010]
On the other hand, the amplification degree K 1 of the non-inverting amplifier consisting of an operational amplifier Op1 and voltage dividing resistors R 3, R 4 is K 1 = V 01 / V 3 = (R 3 + R 4) / R 4 (7)
, And the if reverse winding the tertiary coil N 3 to the secondary coil N 2, the internal voltage of the tertiary coil,
V 3 = − (N 3 / N 2 ) V 2 (8)
[0011]
Therefore, the output voltage V 01 of the operational amplifier Op1 is, as K 0 = K 1 (N 3 / N 2),
V 01 = −K 1 (N 3 / N 2 ) V 2 = −K 0 V 2 (9)
Next, an amplified version of the internal voltage of the secondary coil N 2 is in the V 01. Substituting equation (9) into equation (6) and rearranging,
V 2 (1 + K 0 ( R 2 / R 1)) = I 2 (r 2 + r 0 -R L (R 2 / R 1)) (10)
It becomes.
[0012]
As described above, the internal voltage V 2 of the secondary coil is
V 2 = (r 2 + r 0 -R L (R 2 / R 1)) / (1 + K 0 (R 2 / R 1)) I 2 (11)
It becomes.
Now, even with a small internal resistance of the secondary coil by inserting the auxiliary resistance r 0 with the possible to increase the voltage dividing resistors R 2, can be increased substantially loop gain K 0 (R 2 / R 1 ) in the denominator.
[0013]
As seen in the above (11), manually molecule by operational amplifier Op2, with as small as possible, a K 0 in the denominator is increased by operational amplifier Op1, further automatically reduce the overall internal voltage V 2 of the secondary coil I do. Since the numerator is small, the so-called automatic control loop gain K 0 (R 2 / R 1 ) can extremely reduce the internal voltage V 2 of the secondary coil without increasing it so much as to oscillate. The input of the operational amplifier Op2 is not necessarily a voltage of the secondary load resistance R L directly obvious that may be a signal corresponding to the secondary current I 2.
[0014]
【The invention's effect】
The present invention is configured as described above. Since the automatic feedback is performed by the first amplifier and the manual feedback is performed by the second amplifier, the loop gain of the automatic feedback is stabilized at a low level. The coil internal voltage can be stably extremely reduced, and there is an excellent operational effect that a high precision current transformer can be obtained with a small amount of iron core.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention.
FIG. 2 shows a conventional example (feedback current transformer).
FIG. 3 shows a conventional example (voltage compensation current transformer of current transformer).
[Explanation of symbols]
CT, CT 'current transformer T core N 1, N 1' 1 primary coil N 2 2 coil N 3 3 coil A 1, A 2 amplifier R L 2 primary burden resistor I 2 2 primary current R 0 resistance V 2 The internal voltage r 2 of the secondary coil The internal resistance r 0 of the secondary coil The auxiliary resistors Op 1 and Op 2 The operational amplifiers R 1 to R 4 The resistance voltage of the capacitor V 01 Op 1 The output voltage V 02 Op 2 The output voltage I 02 R 2 and R 1 of Op 2 Flowing current
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000182950A JP3554889B2 (en) | 2000-06-19 | 2000-06-19 | Double feedback current transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000182950A JP3554889B2 (en) | 2000-06-19 | 2000-06-19 | Double feedback current transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002008934A JP2002008934A (en) | 2002-01-11 |
JP3554889B2 true JP3554889B2 (en) | 2004-08-18 |
Family
ID=18683605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000182950A Expired - Fee Related JP3554889B2 (en) | 2000-06-19 | 2000-06-19 | Double feedback current transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3554889B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7103485B2 (en) | 2003-04-17 | 2006-09-05 | Myongji University | Method for compensating secondary current of current transformers |
KR100542245B1 (en) * | 2003-12-23 | 2006-01-11 | 한국표준과학연구원 | An Electronically Compensated Current Transformer for Instrumentation |
CN107946062A (en) * | 2016-10-13 | 2018-04-20 | 北京维森科技有限公司 | Current transformer and current detection circuit |
-
2000
- 2000-06-19 JP JP2000182950A patent/JP3554889B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002008934A (en) | 2002-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7843272B2 (en) | Low noise amplifier | |
WO2000036427A1 (en) | Magnetic sensor and current sensor | |
JP3554889B2 (en) | Double feedback current transformer | |
JP2000148257A (en) | Power source with voltage detecting function | |
JP2003014788A (en) | Current sensor | |
US20070035341A1 (en) | Amplifier circuit having a compensating amplifier unit for improving loop gain and linearity | |
US20040135627A1 (en) | Current feedback circuit and feedback amplifier using the same | |
JP3660846B2 (en) | FET bias circuit | |
KR100416168B1 (en) | Power amplifier | |
JP2001141757A (en) | Sensor device using hall element | |
EP0502056A1 (en) | Difference amplifier apparatus employing an input attenuator network. | |
WO2004019487A1 (en) | Digital amplification device | |
US2795652A (en) | Magnetic amplifiers | |
JPH0818353A (en) | Operational amplifier circuit | |
JPH0580843B2 (en) | ||
EP0493519B1 (en) | Output amplifier | |
JP3766855B2 (en) | Current transformer | |
JP2000106513A (en) | Automatic gain controller with temperature compensation function | |
US4716378A (en) | Amplifier circuit | |
KR200315301Y1 (en) | Open loop type current sensor including compensation sercuit | |
JP4001685B2 (en) | Load disconnection detector | |
JP2544265B2 (en) | Current detector | |
JP2002071773A (en) | Magnetometrioc sensor device and current sensor device | |
JPS6330811B2 (en) | ||
JP3345339B2 (en) | Dual tracking circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040422 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100521 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110521 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |