JP3554889B2 - Double feedback current transformer - Google Patents

Double feedback current transformer Download PDF

Info

Publication number
JP3554889B2
JP3554889B2 JP2000182950A JP2000182950A JP3554889B2 JP 3554889 B2 JP3554889 B2 JP 3554889B2 JP 2000182950 A JP2000182950 A JP 2000182950A JP 2000182950 A JP2000182950 A JP 2000182950A JP 3554889 B2 JP3554889 B2 JP 3554889B2
Authority
JP
Japan
Prior art keywords
current transformer
voltage
secondary coil
amplifier
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000182950A
Other languages
Japanese (ja)
Other versions
JP2002008934A (en
Inventor
英志 大久保
昭二 楠井
Original Assignee
山陽電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽電気工業株式会社 filed Critical 山陽電気工業株式会社
Priority to JP2000182950A priority Critical patent/JP3554889B2/en
Publication of JP2002008934A publication Critical patent/JP2002008934A/en
Application granted granted Critical
Publication of JP3554889B2 publication Critical patent/JP3554889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は非接触で大電流から小電流まで検出測定するための、磁束の微小で鉄心量の少ない帰還形変流器に関する。
【0002】
【従来の技術】
磁束を少なくして励磁電流を小さくする変流器としては、帰還形変流器が用いられる。図2は従来の帰還形変流器の例で、主変流器CTの2次コイルNの内部電圧を小さくし励磁電流を小さくするため、3次コイルNの出力を増幅器Aで増幅して2次負担抵抗Rと2次コイルNに帰還すると共に、この帰還ループゲインを小さくし安定化するため別に設けた補助変流器CT’の2次コイルN’からも電流を供給する必要があった。従って2個の鉄心を必要とし、しかも1次電流Iを流す主変流器CT、補助変流器CT’の1次コイルN,N’に対する2次コイルN,N’の比は正確に等しくするなど、複雑高価であった。
図3は鉄心1個でしかも安定動作をする別の例で、本発明者らの特許第637920号による変流器の電圧補償変流器である。これも一種の帰還形変流器で2次負担抵抗Rの電圧を増幅器Aで増幅して2次直列抵抗Rに帰還し、前記Rの電圧を打消し2次コイルNの内部電圧を小さくするものである。しかし、これは自動帰還ではなく増幅器Aの増幅度をほぼ1より若干大きめに(2次コイルNの内部抵抗分だけ)手動で調節する必要があった。従って温度などで2次コイルNの内部抵抗が変化すると再調節の必要があり、2次コイルNの内部電圧を微小にすることは不可能で高精度変流器は得られなかった。
【0003】
【発明が解決しようとする課題】
本発明は鉄心1個のみで変流器の励磁電流、即ち2次コイル内部電圧を自動的に殆ど零にするような自動制御装置で、且つこの制御系が発振して不安定にならないようループゲインを極めて低くすることを課題とする。
【0004】
【課題を解決するための手段】
本発明は上記目的を達成するため1個の鉄心で3次コイルの電圧を増幅して2次側の負担電圧に対応した電圧を2次コイル電圧に対して手動で負帰還し、上記自動負帰還の制御ループゲインを低くして発振しないようにする。
具体的には2次負担電圧にほぼ等しい電圧を手動で先ず2次コイル電圧を帰還補償し、その補償しきれない僅かな電圧を3次コイル電圧を検出増幅して自動帰還補償せんとするものであり、自動制御ループゲインを小さくして安定動作させるものにする。
【0005】
【発明の実施の形態】
図1は本発明の実施例であり、変流器CTは1次コイルN、2次コイルN、3次コイルN及び1個の鉄心Tより構成される。Rは2次負担抵抗、Op1及びOp2はオペアンプである。オペアンプOp1は分圧抵抗R,Rと共に第1の非反転増幅器を構成する。オペアンプOp2は分圧抵抗R,Rと共に第2の非反転増幅器を構成する。
【0006】
図1に於いてオペアンプOp1の出力電圧V01はRの下端にカスケード接続され、オペアンプOp2の出力に加算される。一方、オペアンプOp2の出力電圧V02は、オペアンプOp1の出力電圧V01を含んでおり、これは2次コイルNに帰還される。而して、2次コイルNの内部抵抗分だけ2次負担抵抗Rの電圧より大きめの電圧をオペアンプOp2の出力V02を得るため分圧抵抗Rが必要である。Cは位相調整用コンデンサである。他方、2次コイルNの内部抵抗が極めて小さい場合は、分圧抵抗Rの値も極めて小さくなる。この場合、以下の理論式に示されるように、オペアンプOp1の出力電圧V01の実質上の加算増幅度が極めて小さくなるので、2次コイルNに直列に補助抵抗rを押入し、分圧抵抗Rを大きくせしめる。
【0007】
これを以下の数式により説明する。(簡単化のためコンデンサCは考慮しない)図に於いて、2次コイルNの内部抵抗をr、2次出力電流をIとすれば、2次電流IはオペアンプOp2の入力には流れないので、2次コイルNの内部電圧Vは次式で示される。
=I(r+r)+I−V02 (1)
ところで、オペアンプOp2、分圧抵抗R,Rは非反転増幅器を構成しているから、
02=I+I02(2)
=I02+V01 (3)
但し、I02はR,Rに流れる電流であり、これは(3)式により、
02=(I−V01)/R(4)
が得られ、これを(2)式に代入すれば、オペアンプOp2の出力電圧は、
02=I+I(R/R)−V01(R/R) (5)
となる。
【0008】
(5)式右辺第3項はオペアンプOp1の出力電圧V01の加算を意味し、R=0ならば、オペアンプOp1の出力は全く加算されないことになる。なお、マイナス符号になっているので、オペアンプOp1の入力はマイナスにする必要があり、3次コイルNは2次コイルNに対し逆巻きとする。
分圧抵抗Rを大きくして加算効果を大きくするためには2次コイルNに直列に補助抵抗rを挿入する。
【0009】
次に(5)式を(1)式に代入すれば、2次コイルの内部電圧は、
=I(r+r)+I−(I+I(R/R)−V01(R/R))
=I(r+R)−I(R/R)+V01(R/R) となる (6)
【0010】
一方、オペアンプOp1及び分圧抵抗R,Rよりなる非反転増幅器の増幅度K
=V01/V=(R+R)/R (7)
であり、3次コイルNを2次コイルNに対して逆巻きとすれば、3次コイルの内部電圧は、
=−(N/N)V(8)
【0011】
従って、オペアンプOp1の出力電圧V01は、K=K(N/N)として、
01=−K(N/N)V=−K(9)
となり、2次コイルNの内部電圧を増幅したものがV01になっている。(9)式を(6)式に代入して整理すれば、
(1+K(R/R))=I(r+r−R(R/R)) (10)
となる。
【0012】
以上により、2次コイルの内部電圧Vは、
=(r+r−R(R/R))/(1+K(R/R))I (11)
となる。
今、上記で補助抵抗rを挿入すれば2次コイルの内部抵抗が小さくても分圧抵抗Rを大きくでき、分母の実質ループゲインK(R/R)を大きくできる。
【0013】
上記(11)式に見られる通り、オペアンプOp2により分子を手動で、できる限り小さくすると共に、分母のKをオペアンプOp1で大きくし、2次コイルの内部電圧V全体をさらに自動的に小さくする。分子が小さいからいわゆる自動制御系ループゲインK(R/R)は発振する程大きくしなくても2次コイルの内部電圧Vを極めて小さくできるものとなる。なお、オペアンプOp2の入力は必ずしも2次負担抵抗Rの電圧を直接でなく、2次電流Iに対応した信号であればよいことは明らかである。
【0014】
【発明の効果】
本発明は以上の通り構成するものであって、第1の増幅器で自動帰還すると共に、第2の増幅器で手動帰還するので、自動帰還のループゲインを低く安定化して、鉄心1個でも2次コイル内部電圧を安定に極めて小さくでき、少量の鉄心で高精度の変流器が得られる優れた作用効果がある。
【図面の簡単な説明】
【図1】本発明の実施態様例を示すものである。
【図2】従来例(帰還形変流器)を示すものである。
【図3】従来例(変流器の電圧補償変流器)を示すものである。
【符号の説明】
CT,CT’ 変流器
T 鉄心
,N’ 1次コイル
2次コイル
3次コイル
,A 増幅器
2次負担抵抗
2次電流
抵抗
2次コイルの内部電圧
2次コイルの内部抵抗
補助抵抗
Op1,Op2 オペアンプ
〜R 抵抗
C コンデンサ
01 Op1の出力電圧
02 Op2の出力電圧
02,Rを流れる電流
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a feedback type current transformer having a small magnetic flux and a small iron core for detecting and measuring a large current to a small current in a non-contact manner.
[0002]
[Prior art]
A feedback type current transformer is used as a current transformer for reducing the magnetic flux to reduce the exciting current. Figure 2 is an example of a conventional feedback type current transformer, to reduce the small and excitation current secondary internal voltage of the coil N 2 of the main current transformer CT, the output of the tertiary coil N 3 in the amplifier A 1 amplifies and thereby fed back to the secondary load resistor R L and the secondary coil N 2, current from 'secondary coil N 2 of' the feedback loop gain reduced by separately provided for stabilizing auxiliary current transformer CT Had to be supplied. Therefore, two iron cores are required, and the secondary coils N 2 , N 2 ′ for the primary coils N 1 , N 1 ′ of the main current transformer CT and the auxiliary current transformer CT ′ for flowing the primary current I 1 . The ratios were complicated and expensive, with exactly equal ratios.
FIG. 3 shows another example in which a single iron core operates stably and is a voltage-compensated current transformer of a current transformer according to Japanese Patent No. 637920 of the present inventors. This is also fed back to amplify the voltage of the secondary load resistor R L in the amplifier A 2 is a kind of feedback type current transformer on the secondary series resistors R 0, wherein R L voltage cancellation secondary coil N 2 of This is to reduce the internal voltage. However, this had to be adjusted substantially 1 than slightly larger (secondary internal resistance of the coil N 2 only) manually amplification factor of the amplifier A 2 not automatic feedback. Thus such in need readjustment when the internal resistance of the secondary coil N 2 is changed temperature, high-precision current transformer is not possible to the internal voltage of the secondary coil N 2 to fine was not obtained.
[0003]
[Problems to be solved by the invention]
The present invention relates to an automatic control device for automatically setting the exciting current of the current transformer, that is, the internal voltage of the secondary coil to almost zero with only one iron core, and a loop for preventing the control system from oscillating and becoming unstable. It is an object to make the gain extremely low.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention amplifies the voltage of the tertiary coil with one iron core, and manually negatively feeds back the voltage corresponding to the burden voltage on the secondary side to the secondary coil voltage. Reduce the feedback control loop gain to prevent oscillation.
Specifically, a voltage almost equal to the secondary burden voltage is manually compensated first by feedback of the secondary coil voltage, and a small voltage that cannot be compensated is detected and amplified by the tertiary coil voltage to perform automatic feedback compensation. In this case, the automatic control loop gain is reduced so as to perform stable operation.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention, in which a current transformer CT includes a primary coil N 1 , a secondary coil N 2 , a tertiary coil N 3 and one iron core T. RL is a secondary load resistance, and Op1 and Op2 are operational amplifiers. Operational amplifier Op1 constitutes a first non-inverting amplifier with voltage dividing resistors R 3, R 4. Operational amplifier Op2 constitutes a second non-inverting amplifier with voltage dividing resistors R 1, R 2.
[0006]
Output voltage V 01 of the operational amplifier Op1 In Figure 1 are cascade connected to the lower end of the R 1, it is added to the output of the operational amplifier Op2. On the other hand, the output voltage V 02 of the operational amplifier Op2 includes a output voltage V 01 of the operational amplifier Op1, which is fed back to the secondary coil N 2. And Thus, it is necessary a larger voltage than the voltage of only the internal resistance of the secondary coil N 2 secondary load resistance R L is dividing resistor R 2 to obtain an output V 02 of the operational amplifier Op2. C is a phase adjusting capacitor. On the other hand, if the internal resistance of the secondary coil N 2 is very small, the dividing resistors R 2 value is extremely small. In this case, as shown in the following theoretical formula, since substantially the sum amplitude of the output voltage V 01 of the operational amplifier Op1 is extremely small, the auxiliary resistor r 0 in series with the secondary coil N 2 was pushed, minutes allowed to increase the pressure resistance R 2.
[0007]
This will be described with the following mathematical formula. (The capacitor C is not considered for simplicity.) In the figure, if the internal resistance of the secondary coil N 2 is r 2 and the secondary output current is I 2 , the secondary current I 2 is supplied to the input of the operational amplifier Op2. since not flow, the internal voltage V 2 of the secondary coil N 2 is expressed by the following equation.
V 2 = I 2 (r 2 + r 0 ) + I 2 RL− V 02 (1)
However, operational amplifier Op2, dividing resistors R 2, R 1 is because they constitute a non-inverting amplifier,
V 02 = I 2 R L + I 02 R 2 (2)
I 2 R L = I 02 R 1 + V 01 (3)
Here, I 02 is a current flowing through R 1 and R 2 , which is expressed by equation (3).
I 02 = (I 2 RL− V 01 ) / R 1 (4)
Is obtained, and this is substituted into the equation (2), the output voltage of the operational amplifier Op2 becomes
V 02 = I 2 R L + I 2 R L (R 2 / R 1) -V 01 (R 2 / R 1) (5)
It becomes.
[0008]
(5) third term denotes the sum of the output voltage V 01 of the operational amplifier Op1, if R 2 = 0, so that the output of the operational amplifier Op1 is not at all added. Since has become minus sign, the input of the operational amplifier Op1 must be in the negative, the tertiary coil N 3 is the reverse wound with respect to secondary coil N 2.
To increase the addition effect by increasing the partial pressure resistors R 2 inserts an auxiliary resistor r 0 in series with the secondary coil N 2.
[0009]
Next, if the equation (5) is substituted into the equation (1), the internal voltage of the secondary coil becomes
V 2 = I 2 (r 2 + r 0) + I 2 R L - (I 2 R L + I 2 R L (R 2 / R 1) -V 01 (R 2 / R 1))
= I 2 (r 2 + R 0 ) −I 2 RL (R 2 / R 1 ) + V 01 (R 2 / R 1 ) (6)
[0010]
On the other hand, the amplification degree K 1 of the non-inverting amplifier consisting of an operational amplifier Op1 and voltage dividing resistors R 3, R 4 is K 1 = V 01 / V 3 = (R 3 + R 4) / R 4 (7)
, And the if reverse winding the tertiary coil N 3 to the secondary coil N 2, the internal voltage of the tertiary coil,
V 3 = − (N 3 / N 2 ) V 2 (8)
[0011]
Therefore, the output voltage V 01 of the operational amplifier Op1 is, as K 0 = K 1 (N 3 / N 2),
V 01 = −K 1 (N 3 / N 2 ) V 2 = −K 0 V 2 (9)
Next, an amplified version of the internal voltage of the secondary coil N 2 is in the V 01. Substituting equation (9) into equation (6) and rearranging,
V 2 (1 + K 0 ( R 2 / R 1)) = I 2 (r 2 + r 0 -R L (R 2 / R 1)) (10)
It becomes.
[0012]
As described above, the internal voltage V 2 of the secondary coil is
V 2 = (r 2 + r 0 -R L (R 2 / R 1)) / (1 + K 0 (R 2 / R 1)) I 2 (11)
It becomes.
Now, even with a small internal resistance of the secondary coil by inserting the auxiliary resistance r 0 with the possible to increase the voltage dividing resistors R 2, can be increased substantially loop gain K 0 (R 2 / R 1 ) in the denominator.
[0013]
As seen in the above (11), manually molecule by operational amplifier Op2, with as small as possible, a K 0 in the denominator is increased by operational amplifier Op1, further automatically reduce the overall internal voltage V 2 of the secondary coil I do. Since the numerator is small, the so-called automatic control loop gain K 0 (R 2 / R 1 ) can extremely reduce the internal voltage V 2 of the secondary coil without increasing it so much as to oscillate. The input of the operational amplifier Op2 is not necessarily a voltage of the secondary load resistance R L directly obvious that may be a signal corresponding to the secondary current I 2.
[0014]
【The invention's effect】
The present invention is configured as described above. Since the automatic feedback is performed by the first amplifier and the manual feedback is performed by the second amplifier, the loop gain of the automatic feedback is stabilized at a low level. The coil internal voltage can be stably extremely reduced, and there is an excellent operational effect that a high precision current transformer can be obtained with a small amount of iron core.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention.
FIG. 2 shows a conventional example (feedback current transformer).
FIG. 3 shows a conventional example (voltage compensation current transformer of current transformer).
[Explanation of symbols]
CT, CT 'current transformer T core N 1, N 1' 1 primary coil N 2 2 coil N 3 3 coil A 1, A 2 amplifier R L 2 primary burden resistor I 2 2 primary current R 0 resistance V 2 The internal voltage r 2 of the secondary coil The internal resistance r 0 of the secondary coil The auxiliary resistors Op 1 and Op 2 The operational amplifiers R 1 to R 4 The resistance voltage of the capacitor V 01 Op 1 The output voltage V 02 Op 2 The output voltage I 02 R 2 and R 1 of Op 2 Flowing current

Claims (3)

変流器に3次コイルを設け、この出力信号を増幅する第1の増幅器と、前記変流器の負担に関わる電気信号を増幅する第2の増幅器を設け、前記第1の増幅器と前記第2の増幅器の各出力信号の合成信号を前記変流器の2次コイルに直列に、その2次コイルの内部電圧を減ずる方向に挿入帰還することを特徴とした二重帰還変流器。A tertiary coil is provided in the current transformer, and a first amplifier for amplifying the output signal and a second amplifier for amplifying an electric signal related to the load of the current transformer are provided. A double feedback current transformer characterized in that a composite signal of the output signals of the two amplifiers is inserted and fed back in series with the secondary coil of the current transformer in a direction to reduce the internal voltage of the secondary coil. 第1及び第2の増幅器は、オペアンプOp1、分圧帰還用抵抗R,Rよりなる第1の非反転増幅器、及びオペアンプOp2、分圧帰還用抵抗R,Rよりなる第2の非反転増幅器で構成され、且つ第1の非反転増幅器の出力は、第2の非反転増幅器の前記分圧帰還用抵抗R,Rに対してカスケード接続されることを特徴とした請求項1記載の二重帰還変流器。The first and second amplifiers, operational amplifiers Op1, partial pressure feedback resistor R 3, the first non-inverting amplifier consisting of R 4, and an operational amplifier Op2, partial pressure feedback resistors R 2, R 1 from become second consists of a non-inverting amplifier, and the output of the first non-inverting amplifier, claim that characterized in that it is cascaded to the partial pressure feedback resistors R 2, R 1 of the second non-inverting amplifier 2. The double feedback current transformer according to 1. 2次コイルに直列に補助抵抗rを挿入し、第1の非反転増幅器の実質加算増幅度を上げることを特徴とした請求項1又は2記載の二重帰還変流器。Insert the auxiliary resistor r 0 in series with the secondary coil, the double feedback current transformer according to claim 1 or 2, wherein the said raising the substantial addition amplification of the first non-inverting amplifier.
JP2000182950A 2000-06-19 2000-06-19 Double feedback current transformer Expired - Fee Related JP3554889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000182950A JP3554889B2 (en) 2000-06-19 2000-06-19 Double feedback current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000182950A JP3554889B2 (en) 2000-06-19 2000-06-19 Double feedback current transformer

Publications (2)

Publication Number Publication Date
JP2002008934A JP2002008934A (en) 2002-01-11
JP3554889B2 true JP3554889B2 (en) 2004-08-18

Family

ID=18683605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000182950A Expired - Fee Related JP3554889B2 (en) 2000-06-19 2000-06-19 Double feedback current transformer

Country Status (1)

Country Link
JP (1) JP3554889B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103485B2 (en) 2003-04-17 2006-09-05 Myongji University Method for compensating secondary current of current transformers
KR100542245B1 (en) * 2003-12-23 2006-01-11 한국표준과학연구원 An Electronically Compensated Current Transformer for Instrumentation
CN107946062A (en) * 2016-10-13 2018-04-20 北京维森科技有限公司 Current transformer and current detection circuit

Also Published As

Publication number Publication date
JP2002008934A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
US7843272B2 (en) Low noise amplifier
WO2000036427A1 (en) Magnetic sensor and current sensor
JP3554889B2 (en) Double feedback current transformer
JP2000148257A (en) Power source with voltage detecting function
JP2003014788A (en) Current sensor
US20070035341A1 (en) Amplifier circuit having a compensating amplifier unit for improving loop gain and linearity
US20040135627A1 (en) Current feedback circuit and feedback amplifier using the same
JP3660846B2 (en) FET bias circuit
KR100416168B1 (en) Power amplifier
JP2001141757A (en) Sensor device using hall element
EP0502056A1 (en) Difference amplifier apparatus employing an input attenuator network.
WO2004019487A1 (en) Digital amplification device
US2795652A (en) Magnetic amplifiers
JPH0818353A (en) Operational amplifier circuit
JPH0580843B2 (en)
EP0493519B1 (en) Output amplifier
JP3766855B2 (en) Current transformer
JP2000106513A (en) Automatic gain controller with temperature compensation function
US4716378A (en) Amplifier circuit
KR200315301Y1 (en) Open loop type current sensor including compensation sercuit
JP4001685B2 (en) Load disconnection detector
JP2544265B2 (en) Current detector
JP2002071773A (en) Magnetometrioc sensor device and current sensor device
JPS6330811B2 (en)
JP3345339B2 (en) Dual tracking circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040422

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees