JP3553154B2 - Electric furnace for X-ray diffraction - Google Patents

Electric furnace for X-ray diffraction Download PDF

Info

Publication number
JP3553154B2
JP3553154B2 JP24469994A JP24469994A JP3553154B2 JP 3553154 B2 JP3553154 B2 JP 3553154B2 JP 24469994 A JP24469994 A JP 24469994A JP 24469994 A JP24469994 A JP 24469994A JP 3553154 B2 JP3553154 B2 JP 3553154B2
Authority
JP
Japan
Prior art keywords
furnace
electric furnace
heater
core body
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24469994A
Other languages
Japanese (ja)
Other versions
JPH08128972A (en
Inventor
静夫 齋藤
Original Assignee
静夫 齋藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 静夫 齋藤 filed Critical 静夫 齋藤
Priority to JP24469994A priority Critical patent/JP3553154B2/en
Publication of JPH08128972A publication Critical patent/JPH08128972A/en
Application granted granted Critical
Publication of JP3553154B2 publication Critical patent/JP3553154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【産業上の利用分野】
この発明は主として鉱物その他の物質の結晶構造等の解析に用いるX線回折用電気炉に関する。
【0002】
【従来の技術】
従来、鉱物のその他の物質の結晶構造を解析するためのX線回折方法において、χ円型の自動4軸X線回折装置が利用されており、これらの装置には被検体試料の結晶構造が変化する瞬間の温度(相転移点)を得るために、試料を加熱する小型の電気炉が装着され、この電気炉内の試料及び検出器対するX線照射ビームの角度を変化させ、各軸の角度と回折時のX線の量を検出することによって結晶構造の解析が行われる。
【0003】
そして従来の電気炉にあっては、炉内において試料を加熱するための加熱用芯体は馬蹄形に形成された焼結体(セラミック)に、抵抗線を巻装し、ジルコニアセメント等の耐熱性モールド材でモールドしたものが使用されている。
【0004】
【発明が解決しようとする課題】
しかし、上記従来の芯体は馬蹄形内にゴニオメーターヘッドにより支持された試料を挿入して加熱するので、試料に対するX線の照射がまわりの障害物に妨げられず且つ監視鏡の視界が妨げられないという利点があるものの、馬蹄形の内側と開放端側との加熱温度の温度差が生じるため、試料の温度が不安定であるほか、設定温度とも一致せず、回折データが不正確にならざるを得ないという欠点があった。
【0005】
また従来の芯体は筒状の炉体内にシャット状ホルダーを介して挿入固定していたので、ヒーター交換作業が複雑で非能率であるという問題があった。
【0006】
【課題を解決するための手段】
上記問題点を解決するための本発明の電気炉の第1の特徴は、ヒーター41を配線装備した芯体39を外部より遮閉して炉体36,37内に収容した電気炉17において、上記芯体36,37を内部に試料を挿脱自在に挿入する中空部39aを形成し、炉体36,37内の芯体収容部36d,37dの外周に芯体39に装備したヒーター41の端子側を炉体36,37の先端側より基端部側に向かって配線収容する配線溝36eを形成してなる筒状又はリング状に形成した点にある。
【0007】
同じく第2の特徴は、芯体39の周壁にらせん状のヒーター溝39cを形成するとともに、該周壁にはヒーター溝39c位置を避けて、試料挿脱用の孔39bを中空部39aの中心に向かって形成した点にある。
【0008】
【作用】
上記のように構成された本発明の電気炉17においては、芯体39に配線されたヒーター41は通電によって芯体39全体を加熱し、試料が位置するリングの中心位置は外周から均一に加熱されるので、試料及びその雰囲気はすべての方向において均一な温度を形成し、温度変化も安定し、正確なデータが得られる。
【0009】
またヒーター41は芯体39のらせん状ヒーター溝39cに埋入されるように巻付配線されるので、芯体39の加熱効率が良く、正確な制御も行い易いほか、その周壁に形成された試料挿入孔39bより正確な位置に加熱を妨げることなく試料挿入ができる。
【0010】
さらに、リング状の芯体39に巻装されたヒーター41の両端を、炉体支持の先端側から基端部側に向かって且つ芯体39を囲むように配線するので、ヒーター配線が容易でヒーター端子部による中心方向への加熱効果も高まる。
【0011】
【実施例】
図1は本発明の電気炉を装備したχ円型の自動4軸X線回折装置Aを示し、定盤状の基台1上に設置された箱状の本体ケース2上には、円板状の2θテーブル3,ωテーブル6が、略直線状に上下に位置する2θ軸7,ω軸8を軸心として重ねて配置されている。2θテーブル3,ωテーブル6は、水平方向に略180°ずつ可逆回転駆動される可動テーブルを構成しており、各可動テーブルは本体ケース2内の駆動装置により各別に回動される。
【0012】
上記ωテーブル6上には、ボックス状の駆動ケース9が固定的に載置され、該駆動ケース9上には水平方向のχ軸11上に中心をもつ円型のωサークル12が固定的に取り付けられている。そして該ωサークル12内には上記χ軸11とω軸の交点を中心にして時計方向又は反時計方向に可逆回転駆動されるχサークル13がωサークル12と同芯的に重ねられて支持されている。
【0013】
上記ωサークル12の内周には、ホルダ軸14及び炉体ホルダ16を介して、常にその中心が略χ軸11及びω軸の交点に位置するように水平方向のボス状体よりなる電気炉17が付設され、χサークル13と一体に回動する構造となっている。
【0014】
また上記χサークル13内の電気炉先端側位置には、電気炉17内に試料を挿脱自在に挿入する周知のゴニオメーターヘッド18が取り付けられ、該ゴニオメーターヘッド18は、上記ホルダ軸14とともに常にφ軸19上にあり且つχサークルと一体回動する。
【0015】
上記基台1又はそれとは別に、上記ωサークル12の中心高さ位置に対応して、X線発生装置21と同照射装置22及びX線ビームを形成して前記電気炉17内に照射するX線コリメータ23が設けられ、これに対応してωテーブル3の外周にはL字形のフレーム24を介してX線検出器26が設置され、電気炉17内の試料に照射されたX線の量を検出する機構となっている。
【0016】
また前記本ケースのX線発生装置21側には、上端がωサークル12上に位置するタワーフレーム27が立設されており、該タワーフレーム27上には、装置を作動させるためのエア配管や電気配線の配装部28が載置され、その下面には可動アーム29,31を介して監視鏡32が角度及び位置調整自在に取り付けられている。該監視鏡32により電気炉17内の試料の状態監視が行われる。33はホルダ軸14の冷却用ファン、34,34は電気炉17周辺を冷却するためのエアを噴出する冷却ノズルである。
【0017】
図2は上記電気炉17とその取付構造を示し、電気炉17は互いに嵌合し合う一対のハウジング状の炉体36,37よりなり、該炉体36,37は天然のようろう石(パイロフィライト)を切削形成後約950℃下で4時間位焼成したものを自然放熱したもので耐熱性及断熱性を備えている。
【0018】
上記炉体36,37はいずれも中心部に透視孔36a,37aを備えた円形断面のスリーブ又はハウジング状をなし外側面は外部からの透視視界を確保するため摺鉢状の傾斜面をなすとともに、外側周縁には後述する止めリング38をそれぞれ嵌合するための段部36b,37bを形成し、さらに上下外周面には互いに平行な切欠面36c,37cを形成している。
【0019】
そして雄型の炉体36の嵌合部側には、内部に円形の芯体収容部36dが形成され、その外周壁端面にはヒーター端子側のリング状の配線溝36eが凹設され、さらにその外周には嵌合用段部36fが形成されている。上記配線溝36eの上部周壁にはヒーター端子を外部に導出する2個の切欠孔36gが設けられている。
【0020】
これに対し雌型の炉体37の嵌合部側には嵌合時に前記芯体収容部36dと連接する段部状の芯体収容部37dが形成され、該収容部37dに続いて前記段部36fを挿入嵌合せしめる段部37eが内周面端部に形成されている。また該段部37eの上部周壁には前述した雄型炉体36側のヒーター導入用の2個の切欠孔36gに対応した、ヒーター導入用切欠孔37fが形成されている。さらに炉体36,37の下部周壁には、嵌合状態において前述したゴニオメーターヘッド18の先端を挿脱するための挿脱孔36hが穿設されている。
【0021】
上記一対の炉体36,37に対し、その芯体収容部36d,37d内には中心部が中空部39aをなすリング状又は筒状の芯体39が収容され、該芯体39は上記炉体36,37と同材質でこれらと同様な方法によって形成されたもので、その周壁下部には前述したゴニオメーターヘッド18の先端を挿脱自在に挿入し、外周に向かって末広がりのテーパー孔よりなる試料挿脱用の孔39bが穿設されている。また上記芯体39の周壁には白金抵抗線よりなるヒーター41を埋入配線するためのヒーター溝39cが形成されており、該ヒーター溝39cは前述した試料挿脱孔39bを避けて形成され且つ該挿脱孔39bにおいて始端部及び終端部が開放されるように形成されている。
【0022】
さらに、上記芯体39を収容して炉体36,37を嵌合した電気炉17内には、図4(A)に示すように熱電対よりなる温度センサー40が挿入されており、該温度センサー40の回路45は雄型炉体36の周壁と芯体39とに、ヒーター41及びヒーター溝39cを避けて貫通される小径の回路孔36i,39dと炉体36,37の合わせ面間を介して挿入配線される。
【0023】
そしてヒーター41は図示するように上記ヒーター溝39cの始端部側から終端部側に向かってらせん溝に沿って埋入されながら芯体39に巻装され、その入力端及び出力端側は試料挿脱孔39b位置で折り返されて円弧状部41aを形成して上部に折り返され、該円弧状部41aは、前述した雄型炉体36の配線溝36eに埋入され、ヒーター端部が切欠孔36g,37fを介して外部に導出される。芯体39に埋入配線されたヒーター41は、その外周から例えばジルコニアセメント等の耐熱性モールド材でモールド被覆され、芯体39全体を均一に且つ効率良く加熱できる構造となっている。
【0024】
止めリング38は既述のように各炉体36,37の段部36d,37dに嵌合されるもので、耐熱金属よりなり、その外側端側には内部に向かって径が広がるようにテーパーを形成する段部38aが形成され、該段部38aには耐熱性の透明フィルムよりなる遮閉カバー42が収容されるとともに、遮閉カバー42の外側から段部38a内に弾力性を有するC型のスナップリング43が係脱(挿脱)自在に挿入され、遮閉カバー42は炉体36,37内を上記スナップリング43の係脱により開閉可能に密閉し且つ外部より芯体39内の試料を透視観察可能に保持するものである。
【0025】
また前記炉体36,37の外周の少なくとも2ヶ所以上には、これらの軸心方向に沿った止め溝44が形成され、該各止め溝44内にはセットボルト46が挿通され、炉体36,37を両側からボルト締着することにより、電気炉を着脱自在に一体固定するようになっている。そして電気炉17は、炉体ホルダ16を上方より貫通し、その先端が両側の止めリング18側のボルト孔38bにねじ込まれるボルト47により、炉体ホルダ16に着脱自在に取り付けられる。
【0026】
炉体ホルダ16をχサークル13側に取り付けているホルダ軸14は、周壁に多数の冷却孔14aを穿設した金属製の冷却管からなり、その内部には耐熱性絶縁管15aを外装したヒーター回路15bが挿通されている。また炉体ホルダ16の周面には、温度センサー(熱電対)40の配線がボルト48によってビス止めされる止め孔16aが設けられている。
【0027】
図5は本発明の電気炉を用いたχ軸制御による鉱物りX線回析用電気炉システム図で、電気炉17は、図1に示すχ円型の自動4軸X線回折装置Aに装着でき、χ軸角変化により温度補正が可能である。本電気炉システムはノート型パソコン51を使用して、温度調節器52の制御をRS−232Cを介して行い、またχ軸の角度データを4軸自動X線回折装置Aの角度表示回路からインターフェース回路53を介して取り込んでいる。即ち4軸自動X線回折装置が運転中常にχ軸角の変化を監視して、リアルタイムでχ軸角に対応した設定温度を温度調節器52に自動的にセットできるシステムである。56は直流電源,57は制御コンピューターである。
【0028】
電気抵抗炉の宿命は炉の形状に起因する熱的煙突効果によって、χ軸角の変化に伴い炉内の温度が変化することである。結晶位置での温度変化は、χ軸角の変化に伴い炉内の温度が変化することである。結晶位置での温度変化は、χ軸角0度を基準にして±100度まで変化させた時に、結晶温度を900℃で測定する場合、最大で15℃程である。この結晶温度を維持するための温度調節器52の設定温度を、χ軸角を変数とした9次曲線の方程式として近似化した。この近似化されたデータを使用して温度調節器の制御を行うとχ軸角の変化に対して最大で2℃以下に抑えられた。この近似化によって補正された制御機構は結晶温度の安定化に非常に有効であることを示している。本電気炉システムは1000℃を上限位置として使用しているが、発熱体の部分の内径を小さくすることで1200℃程度まで可能である。
【0029】
【発明の効果】
以上のように構成される本発明の電気炉によれば、芯体の加熱効率が良く且つ試料挿入用中空部が外周より均一に加熱されるので温度及び温度データが安定し、正確な解析値が得られるという利点がある。
また炉体及び炉体からのヒーターの着脱が容易で、ヒーター交換作業が簡単で且つ能率的である。
【図面の簡単な説明】
【図1】4軸X線回折装置の要部を示す全体斜視図。
【図2】電気炉の分解斜視図。
【図3】電気炉の断面図。
【図4】(A),(B)は芯体の側面図及び底面図。
【図5】χ軸制御電気炉システム図。
【符号の説明】
17 電気炉
36,37 炉体
36d,37d 芯体収容部
36e 配線溝
39a 中空部
39b 試料挿脱孔
39c ヒーター溝
41 ヒーター
[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric furnace for X-ray diffraction mainly used for analyzing crystal structures of minerals and other substances.
[0002]
[Prior art]
Conventionally, in the X-ray diffraction method for analyzing the crystal structures of other substances of minerals, a χ-circle automatic 4-axis X-ray diffractometer has been used. change in order to obtain the instantaneous temperature (phase transition point), the mounted compact electric furnace for heating the sample, by varying the angle of the X-ray irradiation beam against the sample and the detector of the electric furnace, each axis The crystal structure is analyzed by detecting the angle of X-rays and the amount of X-rays during diffraction.
[0003]
In a conventional electric furnace, a heating core for heating the sample in the furnace is formed by winding a resistance wire around a sintered body (ceramic) formed in a horseshoe shape, and using a heat-resistant material such as zirconia cement. What is molded with a molding material is used.
[0004]
[Problems to be solved by the invention]
However, since the conventional core is heated by inserting the sample supported by the goniometer head into the horseshoe shape, irradiation of the sample with X-rays is not hindered by surrounding obstacles and the field of view of the monitoring mirror is hindered. Although there is an advantage, there is a difference in heating temperature between the inside of the horseshoe shape and the open end side, so the temperature of the sample is unstable, it does not match the set temperature, and the diffraction data is not accurate There was a drawback that it could not be obtained.
[0005]
Further, since the conventional core is inserted and fixed in the cylindrical furnace through the shut-shaped holder, there is a problem that the heater replacement operation is complicated and inefficient.
[0006]
[Means for Solving the Problems]
A first feature of the electric furnace according to the present invention for solving the above problems is that the electric furnace 17 in which the core body 39 provided with the heater 41 is housed in the furnace bodies 36 and 37 by closing the core body 39 from the outside, A hollow portion 39a into which the cores 36 and 37 are inserted so that the sample can be inserted and removed therein is formed, and heaters 41 provided on the core 39 on the outer periphery of the core housings 36d and 37d in the furnaces 36 and 37, respectively. The terminal side is formed in a tubular or ring-like shape in which a wiring groove 36e for housing the wiring from the front end side of the furnace bodies 36, 37 toward the base end side is formed .
[0007]
Similarly, a second feature is that a spiral heater groove 39c is formed in the peripheral wall of the core body 39, and a hole 39b for inserting and removing a sample is formed at the center of the hollow portion 39a on the peripheral wall, avoiding the position of the heater groove 39c. It is in the point formed toward.
[0008]
[Action]
In the electric furnace 17 of the present invention configured as described above, the heater 41 wired to the core 39 heats the entire core 39 by energization, and the center position of the ring where the sample is located is uniformly heated from the outer periphery. Therefore, the sample and its atmosphere form a uniform temperature in all directions, the temperature change is stable, and accurate data can be obtained.
[0009]
Further, since the heater 41 is wound and wired so as to be embedded in the spiral heater groove 39c of the core body 39, the heating efficiency of the core body 39 is good, accurate control is easily performed, and the heater 41 is formed on the peripheral wall thereof. A sample can be inserted at a more accurate position than the sample insertion hole 39b without hindering heating.
[0010]
Further, since both ends of the heater 41 wound around the ring-shaped core body 39 are wired from the distal end side of the furnace body support to the base end side and surround the core body 39, heater wiring is easy. The heating effect in the center direction by the heater terminal portion is also enhanced.
[0011]
【Example】
FIG. 1 shows a 4 circular automatic four-axis X-ray diffractometer A equipped with an electric furnace of the present invention, in which a box-shaped main body case 2 installed on a base 1 having a plate shape has a disk. Table 3 and the ω table 6 are arranged so as to overlap each other with the 2θ axis 7 and the ω axis 8 positioned substantially vertically in the form of a straight line. The 2θ table 3 and the ω table 6 constitute movable tables that are driven reversibly by approximately 180 ° in the horizontal direction, and each movable table is individually rotated by a driving device in the main body case 2.
[0012]
A box-shaped drive case 9 is fixedly mounted on the ω table 6, and a circular ω circle 12 centered on a horizontal χ axis 11 is fixed on the drive case 9. Installed. In the ω circle 12, a χ circle 13 driven reversibly in a clockwise or counterclockwise direction around the intersection of the 11 axis 11 and the ω axis 8 is supported concentrically with the ω circle 12. Have been.
[0013]
The inner circumference of the ω circle 12 is formed by a horizontal boss-shaped body via a holder shaft 14 and a furnace body holder 16 such that the center thereof is always located at the intersection of the χ axis 11 and the ω axis 8. A furnace 17 is additionally provided, and is configured to rotate integrally with the circle 13.
[0014]
A well-known goniometer head 18 for removably inserting a sample into the electric furnace 17 is attached to the electric furnace tip side position in the circle 13, and the goniometer head 18 is mounted together with the holder shaft 14. It is always on the φ axis 19 and rotates integrally with the χ circle.
[0015]
The base 1 or separately, the X-ray generator 21 and the irradiation device 22 corresponding to the center height position of the ω circle 12, and an X-ray that forms an X-ray beam and irradiates the electric furnace 17 with the X-ray. An X-ray detector 26 is provided on the outer periphery of the ω table 3 via an L-shaped frame 24, and the amount of X-rays applied to the sample in the electric furnace 17 is correspondingly provided. Is detected.
[0016]
Also, the X-ray generator 21 of the present body case 2 has an upper end are the tower frame 27 is erected located on ω circle 12, on the tower frame 27, air for actuating the device A mounting section 28 for piping and electric wiring is placed, and a monitoring mirror 32 is attached to the lower surface of the section via movable arms 29 and 31 so that the angle and the position can be adjusted. The state of the sample in the electric furnace 17 is monitored by the monitoring mirror 32. 33 is a cooling fan for the holder shaft 14, and 34 and 34 are cooling nozzles for blowing air for cooling the periphery of the electric furnace 17.
[0017]
FIG. 2 shows the electric furnace 17 and a mounting structure thereof. The electric furnace 17 includes a pair of housing-like furnace bodies 36 and 37 which are fitted to each other, and the furnace bodies 36 and 37 are made of natural pyroxene (pyrolite). (Filite) is calcined at about 950 ° C. for about 4 hours after cutting and formed, and naturally radiates heat and has heat resistance and heat insulation.
[0018]
Each of the furnace bodies 36 and 37 has a sleeve or housing shape having a circular cross-section provided with transparent holes 36a and 37a at the central portion, and the outer surface thereof has a mortar-shaped inclined surface for securing a transparent visual field from the outside. On the outer peripheral edge, stepped portions 36b and 37b for fitting a later-described stop ring 38 are formed, and on the upper and lower outer peripheral surfaces, parallel cutout surfaces 36c and 37c are formed.
[0019]
A circular core housing portion 36d is formed inside the fitting portion side of the male furnace body 36, and a ring-shaped wiring groove 36e on the heater terminal side is recessed on the outer peripheral wall end surface. A fitting step 36f is formed on the outer periphery. Two notch holes 36g are provided in the upper peripheral wall of the wiring groove 36e to lead the heater terminal to the outside.
[0020]
On the other hand, on the fitting portion side of the female furnace body 37, a stepped core body receiving portion 37d which is connected to the core body receiving portion 36d at the time of fitting is formed. A step 37e into which the part 36f is inserted and fitted is formed at the end of the inner peripheral surface. The upper peripheral wall of the step portion 37e is provided with a heater introduction notch 37f corresponding to the two heater introduction notches 36g on the male furnace body 36 described above. Further, insertion / removal holes 36h for inserting / removing the tip of the goniometer head 18 in the fitted state are formed in lower peripheral walls of the furnace bodies 36 and 37.
[0021]
For the pair of furnace bodies 36 and 37, a ring-shaped or cylindrical core body 39 whose central portion forms a hollow portion 39a is accommodated in the core body accommodating portions 36d and 37d. It is made of the same material as the bodies 36 and 37 and formed by the same method. The tip of the goniometer head 18 is inserted into the lower part of the peripheral wall so as to be freely inserted into and removed from the lower part of the peripheral wall. A sample insertion / removal hole 39b is formed. A heater groove 39c for embedding and wiring a heater 41 made of platinum resistance wire is formed on the peripheral wall of the core body 39, and the heater groove 39c is formed so as to avoid the above-described sample insertion / removal hole 39b. The insertion / removal hole 39b is formed such that the start end and the end end are opened.
[0022]
Further, a temperature sensor 40 composed of a thermocouple is inserted into the electric furnace 17 in which the core body 39 is accommodated and the furnace bodies 36 and 37 are fitted as shown in FIG. The circuit 45 of the sensor 40 is provided between the peripheral wall of the male furnace body 36 and the core body 39, between the small diameter circuit holes 36i, 39d penetrating avoiding the heater 41 and the heater groove 39c and the furnace bodies 36, 37. The wiring is inserted through.
[0023]
The heater 41 is wound around the core body 39 while being embedded along the spiral groove from the start end side to the end end side of the heater groove 39c as shown in the figure, and the input end and the output end side of the heater groove 39c are sample inserted. It is folded back at the position of the hole 39b to form an arc-shaped portion 41a, and is folded upward. It is led out through 36g and 37f. The heater 41 embedded and wired in the core body 39 is covered with a heat-resistant mold material such as zirconia cement from the outer periphery thereof, so that the entire core body 39 can be uniformly and efficiently heated.
[0024]
As described above, the retaining ring 38 is fitted to the steps 36d and 37d of the furnace bodies 36 and 37, and is made of a heat-resistant metal. Is formed, and a shielding cover 42 made of a heat-resistant transparent film is accommodated in the step 38a, and a resilient C is provided inside the step 38a from outside the shielding cover 42. A snap ring 43 of a mold is inserted so as to be freely disengageable (insertable). The sample is held so as to be able to be viewed through.
[0025]
At least two or more locations on the outer periphery of the furnace bodies 36 and 37 are formed with stop grooves 44 extending in the axial direction thereof. , 37 are bolted from both sides, so that the electric furnace is detachably and integrally fixed. The electric furnace 17 penetrates through the furnace body holder 16 from above, and its tip is detachably attached to the furnace body holder 16 by a bolt 47 screwed into a bolt hole 38b on the side of the stop ring 18 on both sides.
[0026]
The holder shaft 14 on which the furnace body holder 16 is mounted on the side of the circle 13 is formed of a metal cooling pipe having a large number of cooling holes 14a formed in the peripheral wall, and a heater having a heat-resistant insulating pipe 15a inside. The circuit 15b is inserted. Further, on the peripheral surface of the furnace body holder 16, a stop hole 16 a is provided in which the wiring of the temperature sensor (thermocouple) 40 is screwed with a bolt 48.
[0027]
FIG. 5 is an electric furnace system diagram for X-ray diffraction of minerals by χ-axis control using the electric furnace of the present invention. The electric furnace 17 is an automatic four-axis X-ray diffractometer A of χ circular type shown in FIG. Can be mounted, and temperature correction is possible by changing the χ axis angle. The electric furnace system uses a notebook computer 51 to control the temperature controller 52 via RS-232C, and to interface χ-axis angle data from the angle display circuit of the 4-axis automatic X-ray diffractometer A. It is taken in via the circuit 53. That is, this is a system in which the 4-axis automatic X-ray diffraction apparatus constantly monitors the change in the χ-axis angle during operation, and automatically sets the set temperature corresponding to the χ-axis angle in the temperature controller 52 in real time. 56 is a DC power supply and 57 is a control computer.
[0028]
The fate of an electric resistance furnace is that the temperature inside the furnace changes as the χ axis angle changes due to the thermal chimney effect caused by the furnace shape. The temperature change at the crystal position means that the temperature in the furnace changes with the change of the χ-axis angle. The temperature change at the crystal position is about 15 ° C. at the maximum when the crystal temperature is measured at 900 ° C. when the χ-axis angle is changed to ± 100 ° with reference to 0 °. The set temperature of the temperature controller 52 for maintaining the crystal temperature was approximated as a ninth-order curve equation using the χ-axis angle as a variable. When the temperature controller was controlled using the approximated data, the maximum temperature was suppressed to 2 ° C. or less with respect to the change in the χ-axis angle. It is shown that the control mechanism corrected by this approximation is very effective for stabilizing the crystal temperature. Although the present electric furnace system uses 1000 ° C. as the upper limit position, it can be up to about 1200 ° C. by reducing the inner diameter of the heating element.
[0029]
【The invention's effect】
According to the electric furnace of the present invention configured as described above, the heating efficiency of the core body is good, and the sample insertion hollow portion is uniformly heated from the outer periphery, so that the temperature and the temperature data are stable, and the accurate analysis value is obtained. Is obtained.
Also, the heater body and the heater can be easily attached to and detached from the furnace body, and the heater replacement operation is simple and efficient.
[Brief description of the drawings]
FIG. 1 is an overall perspective view showing a main part of a four-axis X-ray diffraction apparatus.
FIG. 2 is an exploded perspective view of the electric furnace.
FIG. 3 is a sectional view of an electric furnace.
4A and 4B are a side view and a bottom view of a core body.
FIG. 5 is a diagram of a shaft control electric furnace system.
[Explanation of symbols]
17 Electric furnace 36, 37 Furnace body 36d, 37d Core body accommodating part 36e Wiring groove 39a Hollow part 39b Sample insertion / removal hole 39c Heater groove 41 Heater

Claims (2)

ヒーター(41)を配線装備した芯体(39)を外部より遮閉して炉体(36)(37)内に収容した電気炉(17)において、上記芯体(36)(37)を内部に試料を挿脱自在に挿入する中空部(39a)を形成し、炉体(36)(37)内の芯体収容部(36d)(37d)の外周に芯体(39)に装備したヒーター(41)の端子側を炉体(36)(37)の先端側より基端部側に向かって配線収容する配線溝(36e)を形成してなる筒状又はリング状に形成してなるX線回折用電気炉。In an electric furnace (17) housed in a furnace body (36) (37) with a core body (39) equipped with a heater (41) wired and closed from the outside, the core body (36) (37) is A hollow portion (39a) for removably inserting a sample into the core body (39), and a heater mounted on the core body (39) on the outer periphery of the core body accommodating portions (36d) (37d) in the furnace bodies (36) (37). The terminal side of (41) is formed in a tubular shape or a ring shape in which a wiring groove (36e) is formed from the front end side of the furnace body (36) (37) toward the base end side to form a wiring groove (36e). Electric furnace for X-ray diffraction. 芯体(39)の周壁にらせん状のヒーター溝(39c)を形成するとともに、該周壁にはヒーター溝(39c)位置を避けて、試料挿脱用の孔(39b)を中空部(39a)の中心に向かって形成した請求項1のX線回折用電気炉。A spiral heater groove (39c) is formed in the peripheral wall of the core body (39), and a hole for sample insertion / removal (39a) is formed in the peripheral wall avoiding the position of the heater groove (39c). 2. The electric furnace for X-ray diffraction according to claim 1, wherein the electric furnace is formed toward the center of the substrate.
JP24469994A 1994-09-05 1994-09-13 Electric furnace for X-ray diffraction Expired - Fee Related JP3553154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24469994A JP3553154B2 (en) 1994-09-05 1994-09-13 Electric furnace for X-ray diffraction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-235943 1994-09-05
JP23594394 1994-09-05
JP24469994A JP3553154B2 (en) 1994-09-05 1994-09-13 Electric furnace for X-ray diffraction

Publications (2)

Publication Number Publication Date
JPH08128972A JPH08128972A (en) 1996-05-21
JP3553154B2 true JP3553154B2 (en) 2004-08-11

Family

ID=26532407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24469994A Expired - Fee Related JP3553154B2 (en) 1994-09-05 1994-09-13 Electric furnace for X-ray diffraction

Country Status (1)

Country Link
JP (1) JP3553154B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058233A (en) * 2006-09-01 2008-03-13 Sumitomo Electric Ind Ltd X-ray diffraction device
JP5361005B2 (en) * 2010-12-20 2013-12-04 株式会社リガク X-ray diffraction / thermal analysis simultaneous measurement system
KR101750745B1 (en) 2016-01-22 2017-06-27 한국과학기술연구원 Furnace for transmission mode x-ray diffractometer and transmission mode x-ray diffractometer using therof

Also Published As

Publication number Publication date
JPH08128972A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
TW559905B (en) Vertical chemical vapor deposition system cross-reference to related applications
CN101762661B (en) Chromatographic column box and gas chromatographer thereof
JP3553154B2 (en) Electric furnace for X-ray diffraction
KR20210000980A (en) Aerosol generating apparatus
JP3926167B2 (en) Arc melting equipment
CN211263247U (en) Corrosion-resistant in-situ high-temperature miniature diffractometer
CN109114982A (en) A kind of high temperature sample-melting stove
CN208887370U (en) A kind of high temperature sample-melting stove
CN106409602B (en) The register and method for regulating temperature of temperature controller
EP3133362A1 (en) Heat treatment device
TWM604384U (en) Ambient temperature controlling device
KR20090076656A (en) Electric furnace for refractoriness measurement
JPH11218504A (en) Sample high-temperature device and x-ray apparatus using it
CN219351918U (en) Electrical heating equipment is used in laboratory
CN215517364U (en) Incubator capable of being used for different biological indicators simultaneously
CN203778095U (en) Uniform heating device for experimental beaker
JP5517086B2 (en) MAS probe device for solid-state NMR
JPH05256486A (en) Clean bench
JPH0517143Y2 (en)
JPH07174749A (en) Constant temperature bath
CN211854174U (en) Temperature controller and radiator
JPH0216440A (en) Sample heating furnace for single-crystal x-ray diffracting device
JP2004225921A (en) Temperature sensor for microwave oven and microwave oven
JP2001324176A (en) Blast temperature control vessel
JP2006022355A (en) Film deposition apparatus having heating means on correction plate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees