JP3552802B2 - Polypropylene resin composition - Google Patents

Polypropylene resin composition Download PDF

Info

Publication number
JP3552802B2
JP3552802B2 JP20364295A JP20364295A JP3552802B2 JP 3552802 B2 JP3552802 B2 JP 3552802B2 JP 20364295 A JP20364295 A JP 20364295A JP 20364295 A JP20364295 A JP 20364295A JP 3552802 B2 JP3552802 B2 JP 3552802B2
Authority
JP
Japan
Prior art keywords
weight
group
olefin
polymerization
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20364295A
Other languages
Japanese (ja)
Other versions
JPH0987447A (en
Inventor
彰博 大坪
和幸 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20364295A priority Critical patent/JP3552802B2/en
Publication of JPH0987447A publication Critical patent/JPH0987447A/en
Application granted granted Critical
Publication of JP3552802B2 publication Critical patent/JP3552802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、特に電気・電子部品、包装材料分野、機械部品、エンジニリアリングプラスチック代替品等に好適に用いられる、剛性および低温耐衝撃性などの機械的強度ならびに耐熱性に優れる樹脂組成物に関する。
【0002】
【従来の技術】
ポリプロピレンは、一般に安価であり、かつその特長である軽量性、透明性、機械的強度、耐熱性、耐薬品性などの性質を生かし、機械部品、電気・電子部品などの工業材料、各種包装材料などに広く利用されている。
近年、製品の高機能化あるいはコスト低減化に伴い、これらの材料に対する特性向上が強く要望されている。
ポリプロピレンの剛性、耐衝撃性、耐熱性などを改良する方法として、例えばエチレンブロック共重合体にエチレン−プロピレンゴムを配合する方法(昭60−3420号公報など)、あるいはメタロセン系触媒を用いて重合して得られるエチレン−α−オレフィン共重合体を配合する方法(例えば、特開昭62−121709公報、特公平6−104700公報、特開平6−192500公報等)などが提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記方法では、いずれも特性の一部を改良するものではあるが、耐熱性、剛性および低温耐衝撃性についてはいまだ不十分である。
本発明は、かかる状況に鑑みてなされたものであり、剛性、耐熱性、低温耐衝撃性などのバランスに優れるポリプロピレン系樹脂組成物を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、鋭意研究を重ねた結果、特定のプロピレン系樹脂に特定のエチレン−α−オレフィンランダム共重合体および無機充填剤を配合することにより上記目的を達成しうることを見い出し、この知見に基づいて本発明を完成するに至った。
【0005】
すなわち本発明は、(A)下記(i)ないし(iv)の性状を有するプロピレン系樹脂 40〜90重量%、
(i)25℃におけるキシレン抽出不溶部が99.0重量%以上
(ii)アイソタクチックペンタッド分率が98.5%以上
(iii)アイソタクチック平均連鎖長が500以上
(iv)カラム分別法による各フラクションのアイソタクチック平均連鎖長が800以上のものの合計量が10重量%以上
(B)エチレンと炭素数3〜12のα−オレフィンからなる共重合体で、α−オレフィンの含有量が30〜80重量%であり、かつ下記(v)〜(vii)の性状を有するエチレン−α−オレフィンランダム共重合体 5〜40重量%および
(v )固体粘弾性測定により得られる損失正接(tanδ)の最大値(Y)とα−オレフィン含有量が下記式を満足する
Y≧0.024X−0.32
(式中、Xはα−オレフィンの重量%を表し、30≦X≦80である)
(vi)ガラス転移点が−20℃以下
(vii )X線回折により測定される結晶化度が5%以下
(C)無機充填剤 5〜50重量%(ただし、(A)+(B)+(C)=100重量%)からなるポリプロピレン系樹脂組成物を提供するものである。
以下、本発明を具体的に説明する。
【0006】
本発明における(A)プロピレン系樹脂は、プロピレン単独重合体およびプロピレンと他のα−オレフィンとのランダムあるいはブロック共重合体である。
α−オレフィンとしては、エチレン、1−ブテン、4−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン等の炭素数12までのものが挙げられる。
本発明の(A)成分としては、さらに下記(i)〜(iv) の性状を有することが必要である。
(i)25℃におけるキシレン抽出不溶部が99.0重量%以上
(ii)アイソタクチックペンタッド分率が98.5%以上
(iii)アイソタクチック平均連鎖長 500以上
(iv)カラム分別法による各フラクションのアイソタクチック平均連鎖長が800以上のものの合計量が10重量%以上
【0007】
(i )25℃におけるキシレン抽出不溶部(以下「XI」という)とは、ポリマーを135℃のオルトキシレンにいったん溶解した後、25℃に冷却した際、析出するポリマーの割合を表すもので、本発明においてはXIが99.0重量%以上であり、99.5重量%以上が好ましく、特に99.7重量%以上が好適である。XIが99.0重量%未満では剛性および耐熱性に劣る。
【0008】
また、(ii)アイソタクチックペンタッド分率(以下「IP」という)は、98.5%以上である必要があり、99.0%以上が好ましく、特に99.5%以上が好適である。IPが98.5%未満では剛性および耐熱性に劣るので好ましくない。
なお、IPとは、同位体炭素による核磁気共鳴(13C−NMR)を使用して測定されるポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック分率である。その測定法は、A.Zambelli;Macromolecules,,925(1973)、同,,687(1975)および同,13,267(1980)に記載された方法に従った。
【0009】
また、(iii )アイソタクチック平均連鎖長(以下Nという)は500以上、好ましくは700以上、特に好ましくは800以上である必要がある。Nが500未満では、剛性および耐熱性に劣る。
なお、Nとは、ポリプロピレン分子内のメチル基のアイソタクチック部分の平均的な長さを表わすものであり、その測定方法は、J.C.Randll;Polymer Sequence Distribution, Academic Press,New York 1977,chapter2に記載されている方法に拠った。
【0010】
具体的には、ポリプロピレンを1,2,4−トリクロロベンゼン/重水素化ベンゼンの混合溶媒にポリマー濃度が10重量%となるように温度130℃に加温して溶解する。この溶液を10mmφのガラス製試料管に入れ、IPと同様の方法で13C−NMRスペクトルを測定する。このスペクトル図の例を図1に示す。図1のaは、ポリプロピレンにおけるメチル基領域のスペクトルであり、bはそのスペクトルの拡大図である。スペクトルは、ペンタッド単位すなわち隣接するメチル基5個をひとつの単位として測定され、メチル基のアイソタクチシティー(構造的にはmmmm,mmmrなどの10種類がある)によって吸収ピークが異なる。図1bに吸収ピークとアイソタクチシティーとの対応を示す。
【0011】
一方、重合理論としてShan−Nong ZHUなど;Polymer Journal,Vol.15,No.12,p859−868(1983)に記載された2サイトモデルがある。すなわち、重合時の活性種が触媒側とポリマー末端の2種類あるとするものであり、触媒側は触媒支配重合、もう一方は末端支配重合と呼ばれるものである(詳細については、古川淳二;高分子のエッセンスとトピックス2、「高分子合成」、P73(株)化学同人発行(1986)に記載されている)。
【0012】
上記文献によると、結局、2サイトモデルは、
α:触媒支配重合(エナンチオモルフィック過程)による重合末端にD体およびL体が付加する確率、すなわちアイソタクチック連鎖中の乱れの程度の指標
σ:末端支配重合(ベルヌーイ過程)により重合末端と同じものが付加するメソ体ができる確率
ω:αサイトの割合
としてペンタッド単位でのアイソタクチシティーの異なる10種類のアイソタクチック強度を理論的に計算できる。
そして、前記NMRによる測定強度と、上記理論強度とが一致するようにα、σおよびωを最小自乗法で求め、次式により各ペンタッド単位を求める。
【0013】
【表1】

Figure 0003552802
【0014】
次に、前述J.C.Randallの文献に記載された平均連鎖長(N)の定義式;N=メソ体の連鎖数/メソ体のユニット数
に当てはめ、具体的には次式により求めることができる。
N=1+(A +A +A )/0.5(A +A +A +A
【0015】
さらに、(iv)カラム分別法による各フラクションのアイソタクチック平均連鎖長(以下「N 」という)が800以上のものの合計量は、全体の10重量%以上であることが必要であり、好ましくは30重量%以上、特に好ましくは50重量%である。N が800以上であるものの合計量が10重量%未満では剛性および耐熱性の改良効果に乏しい。
【0016】
ここで、カラム分別法とは、前記キシレン抽出不溶部をパラキシレンに温度130℃で溶解後、セライトを加え、10℃/時間の降温速度で温度30℃まで下げ、セライトに付着させ、次に、スラリー状セライトをカラムに充填し、パラキシレンを展開液として温度30℃から2.5℃毎に段階的に温度を上昇し、ポリプロピレンをフラクション別に分取する方法である。詳細については、Masahiro Kakugo et al;Macromolecules,Vol.21,p314−319(1988)に記載されている。分取したポリプロピレンのN は、上記Nの測定法を用いて測定される。
【0017】
本発明の(A)成分の好ましい例としては、例えばマグネシウム化合物、チタン化合物、ハロゲン含有化合物および電子供与性化合物を必須成分とする固体触媒を、更に、一般式:TiXa・Yb(式中、XはCl,Br,Iのハロゲン原子を、Yは電子供与性化合物を、aは3もしくは4を、bは3以下の整数をそれぞれ表わす)で示されるチタン化合物で処理後、ハロゲン含有化合物で洗浄し、更に炭化水素で洗浄して得られる改良固体触媒成分を用いて重合して得られるプロピレン系重合体が挙げられる。
【0018】
なお、本発明における(A)成分がプロピレンブロック共重合体(以下「BPP」という)の場合は、第1段の反応で得られるプロピレン重合体ブロックが、上記(i )ないし(iv)の物性を満足する必要がある。具体的には第1段の反応終了後、サンプリングを行いそのプロピレン重合体ブロックについて上記方法で物性を評価できる。
【0019】
本発明に用いるBPP中に占めるプロピレンと他のα−オレフィンとの共重合体ゴム成分の共重合割合は、通常5〜25重量%であり、該ゴム成分中のプロピレン含有量は、通常30〜65重量%のものが用いられる。
本発明における(A)成分のメルトフローレート(JIS K7210 表1、条件14に準拠して測定、以下「MFR」という)は、特に制限するものではないが、剛性と耐衝撃性とのバランスから通常0.1〜300g/10分であり、好ましくは0.5〜100g/10分のものが用いられる。
これらのプロピレン系樹脂は1種でもよく、2種以上を併用してもよい。
【0020】
本発明の樹脂組成物中に占める(A)成分の組成割合は40〜90重量%であり、43〜87重量%が好ましく、特に45〜85重量%が好適である。(A)成分が40重量%未満では剛性および耐熱性が低下する。一方、90重量%を超えると耐衝撃性に劣るので好ましくない。
【0021】
また、本発明における(B)成分は、エチレンと炭素数3〜12のα−オレフィンとのランダム共重合体である。α−オレフィンとしてはプロピレン、1−ブテン、1−ヘキセンが好ましく、中でも1−ブテンが特に好ましい。
本発明の(B)成分中に占める、α−オレフィンの含有量は30〜80重量%であり、好ましくは33〜77重量%、特に好ましくは、36〜74重量%である。α−オレフィン含有量が30重量%未満では、耐衝撃性が劣り好ましくない。一方、80重量%を超えると、剛性、耐熱性が劣り好ましくない。
なお、α−オレフィン含有量は、H.N.Cheng;Macromolecules,Vol.17,p1950−1955(1984)、E.T.Hsieh et al;ibid.,Vol.15.p353−360(1982)等に報告されている13C−NMRによる方法で測定される。
【0022】
さらに、本発明においては、(B)成分が下記(v )ないし(vii )の性状を有することが必要である。
(v )固体粘弾性測定により得られる損失正接(tanδ)の最大値(Y)とα−オレフィン含有量(X)が下記式を満足する
Y≧0.024X−0.32
(式中、Xはα−オレフィンの重量%を表し、30≦X≦80である)
(vi)ガラス転移点が−20℃以下
(vii )X線回折により測定される結晶化度が5%以下
【0023】
(v )損失正接(tanδ)の最大値Yは、固体粘弾性装置を用いて高分子材料の動的粘弾性を測定したときに得られる温度−損失正接(tanδ)曲線のピーク値である。動的粘弾性は、振動数で振動するひずみ(応力)を与える測定法であり、固体粘弾性測定装置に関しては「プラスチック試験ハンドブック」第212〜223頁(日刊工業新聞社1969年発行)に記載されている。具体的には、樹脂をプレス成形法にて、温度170℃で5分間加圧保持後、温度30℃で5分間加圧冷却し、厚み0.2mmのサンプルを作成する。次に、湿度50%、温度23℃の恒温室に24時間以上放置後、50mm×2mmに試験片を切り出し、測定装置として(株)東洋ボールドウィン社製RHEOVIBRON DDV−II−EPを用い、初期試料長40mm、測定周波数110Hz、動的測定変位0.16mm、測定温度−150〜150℃、昇温速度2℃/分にて測定を行う。本発明の(B)成分の温度−tanδ曲線の例を図2に示す。
上記式は、好ましくはY≧0.024X−0.22であり、さらに好ましくはY≧0.024X−0.12である。
【0024】
また、(vi)ガラス転移点(以下「Tg」という)は上記固体粘弾性測定装置により得られるtanδピーク曲線のピーク温度である。該Tgは−20℃以下であり、好ましくは−23℃以下、特に好ましくは−26℃以下である。
【0025】
また、(vii)X線回折により測定される結晶化度(以下「Xc」という)は5%以下であり、好ましくは3%以下である。
なお、結晶化度はプレス成形法にて、温度170℃で5分間加圧保持後、温度30℃で5分間加圧冷却して得た、厚さ1mmのサンプルを湿度50%、温度23℃の恒温室に48時間以上放置後、理学電機社製RU−200を用いX線回折法により求めた。
【0026】
本発明における(B)成分を得るための触媒の例としては、下記成分(a),(b)および(d)、または成分(a),(b),(c)および(d)からなる触媒を用いて重合することにより得ることができる。
(a)表面に水酸基を持つ固体と、以下の一般式(1)で表される化合物を反応させて得られた担体
MR (1)
(式中、Mは周期律表第13族の元素であり、R 、R 、R は各々同一でも異なっていてもよく、水素、炭素数1〜20の炭化水素基、アルコキシド基もしくはハロゲンである)
(b)周期律表第4、5または6族遷移金属を含有する有機化合物
(c)下記の一般式(2)または(2’)で示される、ヘテロ原子含有化合物
AL (2)
AL (2’)
(式中、Aは孤立電子対を持つ元素、L 、L 、L は各々同一でも異なっていてもよく、炭素数1〜20の炭化水素基あるいはケイ素含有炭化水素基もしくはアルコキシド基である)
【0027】
(d)有機アルミニウム化合物
本発明の(a)成分に用いる表面に水酸基を持つ固体としては、無機酸化物、無機塩化物、無機水酸化物、有機高分子化合物であり、実質上表面等に水酸基を持つものを用いることが出来る。具体的には、シリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、ジルコニア、カルシア等の表面等に水酸基を持つ無機酸化物、塩化ナトリウム、塩化マグネシウム、塩化カリウム、塩化カルシウム等の無機塩化物、またはポリビニルアルコール等の水酸基を持つ高分子化合物の群から選ばれる1種または2種以上を使用することができる。これらの化合物は、平均粒子径が5〜200μm、比表面積が100〜1000m /gの微粒子であることが好ましい。さらに、吸着水を除き、水酸基数を制御するために熱処理を行う。例えばシリカの熱処理時間は2〜24時間、通常4〜8時間である。水酸基含有量は熱処理温度により異なり、150℃で処理した場合、水酸基は約5個/nm 、600℃で処理した場合1個/nm 程度となる。400〜600℃で処理したシリカ、アルミナもしくはシリカ−アルミナの群の1種もしくは2種以上を使用することが好ましい。
【0028】
本発明における一般式(1)で表される化合物(以下「第13族化合物」という。)は
MR (1)
であって、Mは周期律表第13族の元素であり、このうち好ましいのはホウ素、アルミニウムであり、特に好ましいのはホウ素である。R 、R 、R は各々同一でも異なっていてもよく、水素、炭素数1〜20の炭化水素基もしくはアルコキシド基またはハロゲンであってもよい。
第13族化合物の具体例としては、トリメチルホウ素、トリエチルホウ素、トリプロピルホウ素、トリブチルホウ素、トリフェニルホウ素、トリス(ペンタフルオロフェニル)ホウ素などがあり、詳細は特願平6−277133号に記載されている。
【0029】
本発明における水酸基を持つ固体と第13族化合物の反応は、種々の方法で行うことができ、非溶媒系で反応することも可能であるが、一般には有機溶媒中で行われる。使用する有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の脂肪族炭化水素、メチルシクロペンタン、シクロペンタン、シクロオクタン等の脂環族炭化水素ベンゼン、トルエン、キシレン、クメン、シメン等の芳香族炭化水素等を用いることができる。
【0030】
水酸基を持つ固体と第13族化合物を反応させる条件としては本発明の効果が認められる限り任意であるが、一般的には次の条件が望ましい。
反応温度条件は通常−70℃〜120℃であり、好ましくは0℃〜100℃である。反応時間は濃度、温度等の条件により一概に規定できないが、第13族化合物と水酸基との反応は十分にさせることが好ましく、最低5分間以上が好ましい。
水酸基を持つ固体と第13族化合物の反応量比は特に制限はないが、水酸基数に対する第13族化合物が等当量以上であることが好ましい。
反応生成物である担体は反応液より分離し、未反応の第13族化合物は洗浄により取り除かねばならない。洗浄溶媒としては上記有機溶媒を用いることができる。洗浄温度は−30℃〜120℃であり、好ましくは0℃〜100℃である。洗浄は洗液中に第13族化合物が実質的に検出されないことが好ましい。洗浄終了後、担体は乾燥するかもしくは有機溶媒存在下で使用することができる。
【0031】
本発明における(b)周期律表第4、5または6族遷移金属を含有する有機化合物としては下記一般式(3)で示す化合物が挙げられる。
Figure 0003552802
(式中、Meは周期律表第4、5、6族遷移金属であり、(C )、(C )はシクロペンタジエニルまたは置換シクロペンタジエニルであり、R およびR は同一でも異なっていてもよく、水素または炭素数1〜20のアルキル、アルケニル、アリール、アルキルアリールまたはアリールアルキル基、アルキルシリル基、シリルアルキル基であり、もしくは2つの隣接する炭素原子が結合して環を作っていてもよい。R は炭素数1〜20のアルキレン基、−GeR −、−SiR −、−O−、−S−、−NR −、−PR −であり、R は炭素数1〜20のアルキレン基、−GeR −、−SiR −、−O−、−S−、−NR −、−PR −または−OR 、−NR 、−PR (R 、R は水素または炭素数1〜20のアルキル基、アルケニル基、アリール基、アルキルアリール基、アリールアルキル基などの炭化水素基あるいはハロゲン化アルキル基またはハロゲン化アリール基)であって、R は(C )環2個と結合しており、R は(C )とMeに結合している。Qはアリール基、アルキル基、アルケニル基、アルキルアリール基またはアリールアルキル基、アルキルシリル基から選ばれ、1〜20の炭素原子を持つ炭化水素基またはハロゲンであり、同じでも異なってもよい。Q’は炭素数1〜20のアルキリデンラジカルであり、sは0または1、pは0、1、または2、sはpが0のときは0、m並びにnはsが1のとき4であり、sが0のとき5である。)
【0032】
具体例としては、ジメチルシリレンビス(2−メチルベンゾインデニル)−ジルコニウムジクロリド、ジエチルシリレンビス(2−メチルインデニル)−ジルコニウムジクロリドなどが挙げられ、詳細な例示は特願平6−277133号に記載されている。
【0033】
本発明における(c)ヘテロ原子含有化合物は、下記一般式(2)または(2’)で示される。
AL (2)
AL (2’)
(式中、Aは孤立電子対を有する元素、L 、L 、L は各々同一でも異なっていてもよく、炭素数1〜20の炭化水素基、トリメチルシリル基、トリメチルシリルフェニル基などのケイ素含有炭化水素基、または炭素数1〜20のアルコキシド基である)
Aの具体例としては、窒素、酸素、硫黄、リン等が挙げられる。
ヘテロ原子含有化合物は担体に担持してもよく、また重合時に添加してもよい。ヘテロ原子含有物質の具体例としては、例えばエーテル類;チオエーテル類;トリメチルアミン、トリエチルアミン、トリブチルアミン、トリイソブチルアミン、トリフェニルアミン、アニリン、ピリジン、ビピリジン、フェナントロリン、N,N−ジメチルアミン、N,N−ジエチルアニリン等のアミン類;トリメチルフォスフィン、トリエチルフォスフィン、トリフェニルフォスフィン等のフォスフィンを挙げることができ、好ましいものとしては、N,N−ジメチルアニリン、N,N−ジエチルアニリンである。
【0034】
本発明において使用される(d)有機アルミニウム化合物としては、下記の一般式で表わせる化合物が挙げられる。
AlR
(Rはアルキル基、Xはハロゲンを意味し、n,mは個数を意味し、n+m=3である)
具体的には、トリエチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムジクロライド等があげられるが、好ましくはトリイソブチルアルミニウム、トリエチルアルミニウムである。
【0035】
本発明のオレフィン重合用触媒は、前記成分(a)、(b)、(c)、(d)のうち(a)、(b)、(d)のみを用いても良いが(c)成分を用いることにより高い重合活性が得られる。各成分の接触方法に特に制限はなく、例えば
▲1▼不活性溶媒中で各成分を混合する方法
▲2▼不活性溶媒中で、担体(a)と成分(c)を接触させ、不活性溶媒で洗浄後、成分(b)、(d)と混合する方法
などの方法によることができる。
【0036】
本発明のエチレン−α−オレフィンランダム共重合体の重合は、公知の連続式、回分式の方法いずれの方法でも得ることができ、重合反応器の形態に特に制限はない。上記プロピレン−α−オレフィンランダム共重合体は、ヘキサン、ヘプタン、燈油等の不活性炭化水素またはプロピレンのような液化α−オレフィン溶媒存在下でのスラリー法や無溶媒下の気相重合法で、重合温度が室温〜130℃の範囲で行われる。好ましくは、50〜90℃の範囲で行われる。重合圧力は2〜50Kg/cm の範囲で行われる。重合に際しては公知の手段、例えば温度、圧力の選定、あるいは水素の導入により分子量調節を行うことができる。
【0037】
重合工程における反応器は、当該技術分野で一般に用いられるものが適宜使用できる。例えば、撹拌槽型反応器、流動床型反応器、循環式反応器を用いて、重合操作を連続式、半回分式、回分式のいずれかの方法で行うことができる。
得られたエチレン−α−オレフィンランダム共重合体スラリーまたは粉末は、必要に応じ、アルコールや水等で不活性化または残触媒の除去を行った後、乾燥し、添加剤と溶融混合し供される。
【0038】
本発明における(B)成分のMFRは特に制限するものではないが、剛性と耐衝撃性のバランスから0.1〜50g/分のものが好適に使用される。
本発明の樹脂組成物中に占める(B)成分の組成割合は5〜40重量%であり、8〜37重量%が好ましく、特に10〜35重量%が好適である。(B)成分が5重量%未満では耐衝撃性に劣る、一方、40重量%を超えると剛性および耐熱性が低下するので好ましくない。
【0039】
本発明における(C)無機充填剤は従来公知の各種充填剤が使用できる。その例としては、例えばタルク、マイカ、グラスファイバー、カーボンファイバー、ワラストナイト、ケイ酸カルシウム、ケイ酸アルミニウム、炭酸カルシウム、チタン酸カルシウム、ホウ酸アルミニウム、硫酸マグネシウム、カーボンブラック等が挙げられる。これらの中でも、タルク、マイカおよび炭酸カルシウムが好ましい。
本発明の樹脂組成物中に占める(C)成分の組成割合は5〜50重量%であり、8〜48重量%が好ましく、特に10〜40重量%が好適である。(C)成分が5重量%未満では剛性および耐熱性の改良効果が劣る。一方、50重量%を超えると耐衝撃性の低下およびブリードアウトによる金型汚染を起こすので好ましくない。
本発明における樹脂組成物のMFRは0.5〜300g/10分が好ましく、1〜150g/10分が好適である。
【0040】
本発明の樹脂組成物は上記(A)〜(C)成分ならびに必要に応じて周知の他の添加剤をヘンシェルミキサー等でドライブレンドした後、混練機等により溶融混練して製造することができる。このような混練機としては単軸押出機、2軸押出機、ニーダーおよびバンバリーミキサーといった公知のものが使用可能である。混練の温度は通常120〜300℃の範囲であり、好ましくは150〜250℃の範囲である。
【0041】
本発明の樹脂組成物に配合する添加剤としては、熱可塑性樹脂に慣用の添加剤(例えば、酸化防止剤、耐候性安定剤、帯電防止剤、滑剤、ブロックキング防止剤、防曇剤、造核剤、染料、顔料、オイル、ワックス等)を本発明の目的を損なわない範囲で適宜量配合できる。
例えば、このような添加剤の例としては、酸化防止剤として2,5−ジ−t−ブチルハイドロキノン、2,6−ジ−t−ブチル−p−クレゾール、4,4’−チオビス−(6−t−ブチルフェノール)、2,2−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、オクタデシル3−(3’,5’−ジ−t−ブチル−1’−ヒドロキシフェニル)プロピオネート、テトラキス[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、4,4’−チオビス−(6−ブチルフェノール)、紫外線吸収剤としてはエチル−2−シアノ−3、3−ジフェニルアクリレート、2−(2’−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−ヒドロキシ−4−オクトキシベンゾフェノン、可塑剤としてフタル酸ジメチル、フタル酸ジエチル、ワックス、流動パラフィン、りん酸エステル、帯電防止剤としてはペンタエリスリットモノステアレート、ソルビタンモノパルミテート、硫酸化オレイン酸、ポリエチレンオキシド、カーボンワックス、滑剤としてエチレンビスステアロアミド、ブチルステアレート等、造核剤として、カルボン酸の金属塩、ジベンジリデンソルビトール誘導体、フォスフェート金属塩などが挙げられる。
【0042】
具体例としては、安息香酸ナトリウム、アジピン酸アルミニウム、p−t−ブチル安息香酸アルミニウム塩、チォフェネカルボン酸ナトリウム、1,3,2,4−ジベンジリデンソルビトール、1,3,2,4−ジ−(p−メチルベンジリデン)ソルビトール、1,3,−pクロルベンジリデン−2,4−p−メチルベンジリデンソルビトール、ナトリウム−ビス−(4−t−ブチルフェニル)フオスフェート、カリウム−ビス−(4−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−メチレンビス(4,6−ジ−t−ブチルフェニル)フォスフェ−トなどが挙げられる。着色剤としてカーボンブラック、フタロシアニン、キナクリドン、インドリン、アゾ系顔料、酸化チタン、ベンガラ等である。又、他の多くの高分子化合物も本発明の作用効果が阻害されない程度にブレンドすることもできる。
【0043】
本発明のポリプロピレン系樹脂組成物、は公知の溶融成形法及び圧縮成形法により射出成形体、フィルム、シート、チューブ、ボトルなどに成形でき、単体での使用及び他の材料と積層し積層体としても使用できる。
【0044】
【実施例】
以下、本発明を実施例によりさらに詳しく説明する。
なお、物性は下記の測定法を用いた。
(1)MFR
JIS K7210に準拠し、表1条件14で測定した。
(2)曲げ弾性率
JIS K7203に準拠した。
(3)アイゾット衝撃強度
JIS K7110に準拠し、ノッチ付きで温度23℃および−30℃にて測定した。
(4)荷重たわみ温度
JIS K7207B法に準拠し、荷重4.6kgで測定した。
また、使用したポリプロピレン系樹脂の製造例を以下に示す。
【0045】
▲1▼固体触媒の調製
無水塩化マグネシウム56.8g(597mmol)を、無水エタノール100g(174mmol)、出光興産社製ワセリンオイル(CP15N)500mlおよび信越シリコーン社製シリコーン油(KF96)500mlからなる混合液に窒素雰囲気下、120℃で完全溶解した。この混合物を特殊機化工業社製TKホモミキサーを用いて120℃、3000回転/分で3分間撹拌した。次いで、撹拌を維持しながら、2リットルの無水ヘプタン中に0℃以下を維持するように冷却しながら移送した。得られた白色固体は無水ヘプタンで十分洗浄し、室温下で真空乾燥した。
【0046】
得られた白色固体30gを無水ヘプタン200ml中に懸濁させ、0℃で撹拌しながら四塩化チタン500ml(4.5mol)を1時間かけて滴下した。次に、加熱を始めて40℃になったところでフタル酸ジイソブチル4.96g(17.8mmol)を加え、100℃まで約1時間で昇温させた。100℃で2時間反応した後、熱時ろ過にて固体部分を採取した。得られた固体部分に四塩化チタン500ml(4.5mol)を加え、撹拌下120℃で1時間反応した後、再度熱時ろ過にて固体触媒を採取し、60℃のヘキサン1リットルで7回、さらに室温のヘキサン1リットルで3回洗浄した。
【0047】
▲2▼TiCl [C (COOiC ]の調製
四塩化チタン19g(100mmol)を含むヘキサン1リットルの溶液に、フタル酸ジイソブチル27.8g(100mmol)を、0℃を維持しながら約30分間で滴下した。滴下終了後、40℃に昇温し30分間反応させた。反応終了後、固体部分を採取しヘキサン500mlで5回洗浄し目的物を得た。
【0048】
▲3▼重合触媒成分の調製
上記▲1▼で得られた固体触媒20gをトルエン300mlに懸濁させ、25℃で上記▲2▼で得られたTiCl [C (COOiC ]5.2g(11mmol)で1時間処理して担持させた。担持終了後、熱時ろ過にて固体部分を採取し、トルエン300mlと四塩化チタン10ml(90mmol)に再懸濁させ、90℃で1時間撹拌洗浄し、熱時ろ過にて固体部分を採取し、その後、この反応物を90℃のトルエン500mlで5回、室温のヘキサン500mlで3回洗浄した。
【0049】
予備重合
窒素雰囲気下、内容積3リットルのオートクレーブ中に、n−ヘプタン500ml、トリエチルアルミニウム6.0g(53mmol)、ジシクロペンチルジメトキシシラン3.9g(17mmol)、および上記▲3▼で得られた重合触媒成分10gを投入し、0〜5℃の温度範囲で5分間撹拌した。次に、重合触媒1gあたり10gのプロピレンが重合するようにプロピレンをオートクレーブ中に供給し、0〜5℃の温度範囲で1時間予備重合した。得られた予備重合固体触媒成分は、n−ヘプタンで500mlで3回洗浄を行い、以下の本重合に使用した。
【0050】
本重合
窒素雰囲気下、内容積60リットルの撹拌機付きオートクレーブに上記の方法で調製された予備重合固体触媒成分2.0g、トリエチルアルミニウム11.4g(100mmol)、ジシクロペンチルジメトキシシラン6.84g(30mmol)を入れ、温度70℃でプロピレンを圧入し1時間重合を行った。その後、未反応のプロピレンおよび水素を除去し重合を終結させた。その結果、MFRが35.3g/10分であるポリプロピレン(以下「PP1」という)を得た。
【0051】
また、上記PP1と同様、▲1▼〜▲3▼の触媒調製および予備重合を行った後、次の本重合を行った。
・第1段重合:ホモポリプロピレンの重合
窒素雰囲気下、内容積60リットルの撹拌機付きオートクレーブに前記方法で調製された予備重合固体触媒2.0g、トリエチルアルミニウム11.4g、ジシクロペンチルジメトキシシラン6.84gを投入し、次いでプロピレン、水素を装入し70℃に加温し1時間重合を行った。1時間経過後、未反応のプロピレンを除去し反応を終結した。反応終了後、反応生成物をサンプリングした。
・第2段重合:プロピレン−エチレン共重合体の重合
次に、エチレン/プロピレンの混合比を調製すると同時に水素を供給し、温度70℃で40分間反応した。反応後未反応ガスを除去し、MFRが29.2g/10分、ゴム成分含有量が14.5重量%であり、かつゴム成分中のプロピレン含有量が42.1重量%である共重合体(以下「BPP1」という)を得た。
【0052】
また、比較例用として東ソー・アクゾ社製AA型三塩化チタン、ジエチルアルミニウムクロライドを触媒成分として用い、重合時の水素濃度を調製して、MFRが32.2g/10分であるポリプロピレン(以下「PP2という」)を得た。さらに、比較例用として上記▲1▼〜▲3▼の操作のうち、▲1▼のみの操作を行った触媒を用いて予備重合および、BPP1と同様の本重合を行ってMFRが31.3g/10分、ゴム成分含有量が15.2重量%であり、かつゴム成分中のプロピレン含有量が40.8重量%である共重合体(以下「BPP2」という)を得た。
【0053】
以上のポリプロピレン(BPP1およびBPP2については、第1段重合後サンプリングしたもの)について、XI,IP,NおよびN を測定した。その結果を表2に示す。
【0054】
なお、IPの測定条件は次のとおりである。
Figure 0003552802
【0055】
【表2】
Figure 0003552802
【0056】
次に、使用したエチレン−α−オレフィン共重合体の製造例を以下に示す。
ホウ素担持無機担体の調製
シリカを窒素気流中600℃にて4時間焼成した。該シリカの表面水酸基数は2個/nm であった。該シリカ20gに300mlのトリス(テトラフルオロフェニル)ボランのイソパラフィン溶液を加え室温で1時間反応させた。反応物をヘキサン洗浄後、乾燥した。得られた個体にトルエン300mlと、N,N−ジメチルアニリン2.4mlを加え室温で3時間反応させた。反応物をトルエン洗浄後、乾燥し、ホウ素担持シリカを調整した。
【0057】
エチレン−α−オレフィン共重合体の重合
窒素雰囲気下、内容積60リットルの撹拌機付きオートクレーブに、20℃にて精製トルエン18リットルとトリイソブチルアルミニウムの1.0Mトルエン溶液40ml、1−ブテン60molおよびエチレンをその分圧が7kg/cm になるように仕込み、十分に撹拌した。続いて、ジメチルシリレンビス(2−メチル−ベンゾインデニル)ジルコニウムジクロリドの1mmol/lトルエン溶液20mlと上記ホウ素担持無機担体1gおよびトリイソブチルアルミニウムの1.0Mトルエン溶液10mlを接触混合した後、窒素でオートクレーブに圧入し、エチレンをその分圧が7kg/cm2を維持するように連続的に供給しながら20℃で1時間重合した。その後メタノールをオートクレーブに圧入し重合を停止させ、得られた溶液を大量のメタノール中に投入し、析出した重合体を70℃で一昼夜減圧乾燥した。その結果、MFRが0.8g/10分であり、かつ1−ブテン含有量が40重量%のエチレン−1−ブテンランダム共重合体(以下「EOR1」という)を得た。
【0058】
同様にして、重合時のエチレン、1−ブテンの装入量を調製し、MFRが1.3g/10分でありかつ1−ブテン含有量が53重量%であるエチレン−1−ブテンランダム共重合体(以下「EOR2」という)を得た。
また、EOR1と同じ触媒系による重合方法において、1−ブテンをプロピレンに代えることで、MFRが0.9g/10であり、かつプロピレン含有量が34重量%であるエチレン−プロピレンランダム共重合体(以下「EOR3」という)を得た。
【0059】
また、比較用として次の3種類のエチレン−α−オレフィンランダム共重合体を用いた。EOR1と同じ触媒系によるエチレン−α−オレフィン共重合体の重合方法において、MFRが1.2であり、かつ1−ブテン含量が19重量%のエチレン−1−ブテン共重合体(以下「EORa」という)およびMFRが2.0であり、かつ1−ブテン含有量が92重量%のエチレン−1−ブテンランダム共重合体(以下「EORb」という)を得た。PP2の製造に使用したTi系固体触媒を用いて重合を行い、MFRが1.5でありかつ1−ブテン含量が51重量%のエチレン−1−ブテン共重合体(以下「EORc」という)を用いた。
【0060】
以上のエチレン−α−オレフィン共重合体について損失正接(tanδ)の最大値(Y)、TgおよびX線回折による結晶化度を測定した。その結果を表3に示す。
なお、損失正接(tanδ)の測定条件は以下のとおりである。
Figure 0003552802
【0061】
【表3】
Figure 0003552802
【0062】
また、充填剤としてタルク(林化成社製「エンスタルク」)、炭酸カルシウム(白石カルシウム社製「スタビゴット15−A」)およびマイカ(山口雲母社製「AB32」)を用いた。
【0063】
実施例1〜8、比較例1〜6
表4に種類および配合量が示されている(A)成分、(B)成分および(C)成分を川田製作所製スーパーミキサー(SMV20型)を用いて混合し、ナカタニ機械社製二軸押出機(AS30型)を用いてペレット化した。得られた各ペレットを東芝機械社製射出成形機(IS−170FII)を用いて、温度220℃、金型冷却温度50℃で各試験片を作製した。得られた試験片を相対湿度50%、温度23℃の恒温室に2日放置後、曲げ弾性率、アイゾット衝撃強度(ノッチ付き)、荷重たわみ温度を測定した。得られた結果を表4に示す。
【0064】
【表4】
Figure 0003552802
【0065】
【発明の効果】
本発明の樹脂組成物は、剛性および低温耐衝撃性などの機械的強度ならびに耐熱性に優れるので、電気・電子部品、包装材料分野、機械部品、エンジニアリングプラスチック代替品等に有用である。
【図面の簡単な説明】
【図1】本発明のポリプロピレンのメチル領域における核磁気共鳴スペクトルの例である。
【図2】本発明のエチレン−1−ブテンランダム共重合体の温度−tanδ曲線の例である。[0001]
[Industrial applications]
The present invention relates to a resin composition having excellent mechanical strength such as rigidity and low-temperature impact resistance and heat resistance, which is suitably used particularly for electric / electronic parts, packaging materials, mechanical parts, and alternatives to engineering plastics. .
[0002]
[Prior art]
Polypropylene is generally inexpensive and takes advantage of its characteristics such as light weight, transparency, mechanical strength, heat resistance, chemical resistance, etc., and is used for industrial materials such as mechanical parts, electric and electronic parts, and various packaging materials. Widely used for such.
In recent years, with the enhancement of functions and cost reduction of products, there is a strong demand for improved properties of these materials.
As a method for improving the rigidity, impact resistance, heat resistance and the like of polypropylene, for example, a method of blending an ethylene-propylene rubber with an ethylene block copolymer (eg, Japanese Patent Application Laid-Open No. 60-3420), or polymerization using a metallocene catalyst (For example, Japanese Patent Application Laid-Open Nos. 62-121709, 6-104700, and 6-192500) have been proposed.
[0003]
[Problems to be solved by the invention]
However, although all of the above methods improve some of the properties, they are still insufficient in heat resistance, rigidity and low-temperature impact resistance.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a polypropylene-based resin composition having an excellent balance of rigidity, heat resistance, low-temperature impact resistance, and the like.
[0004]
[Means for Solving the Problems]
The present inventors have conducted extensive studies and found that the above object can be achieved by blending a specific ethylene-α-olefin random copolymer and an inorganic filler with a specific propylene-based resin. The present invention has been completed based on the findings.
[0005]
That is, the present invention provides (A) 40 to 90% by weight of a propylene-based resin having the following properties (i) to (iv):
(I) 99.0% by weight or more of the insoluble portion of xylene extraction at 25 ° C.
(Ii) Isotactic pentad fraction of 98.5% or more
(Iii) Isotactic average chain length of 500 or more
(Iv) The total amount of fractions having an average isotactic chain length of 800 or more by column fractionation is 10% by weight or more.
(B) a copolymer comprising ethylene and an α-olefin having 3 to 12 carbon atoms, wherein the content of the α-olefin is 30 to 80% by weight and ethylene having the following properties (v) to (vii): -Α-olefin random copolymer 5 to 40% by weight and
(V) The maximum value (Y) of the loss tangent (tan δ) obtained by the solid viscoelasticity measurement and the α-olefin content satisfy the following formula.
Y ≧ 0.024X−0.32
(Wherein, X represents the weight percentage of α-olefin, and 30 ≦ X ≦ 80)
(Vi) a glass transition point of -20 ° C or less
(Vii) Crystallinity measured by X-ray diffraction of 5% or less
(C) Inorganic filler The present invention provides a polypropylene resin composition comprising 5 to 50% by weight (however, (A) + (B) + (C) = 100% by weight).
Hereinafter, the present invention will be described specifically.
[0006]
The propylene resin (A) in the present invention is a propylene homopolymer or a random or block copolymer of propylene and another α-olefin.
Examples of the α-olefin include those having up to 12 carbon atoms, such as ethylene, 1-butene, 4-methyl-1-pentene, 1-octene, 1-decene, and 1-dodecene.
The component (A) of the present invention must further have the following properties (i) to (iv).
(I) 99.0% by weight or more of the insoluble portion of xylene extraction at 25 ° C.
(Ii) Isotactic pentad fraction of 98.5% or more
(Iii) Isotactic average chain length of 500 or more
(Iv) The total amount of fractions having an average isotactic chain length of 800 or more by column fractionation is 10% by weight or more.
[0007]
(I) The xylene-extracted insoluble portion at 25 ° C. (hereinafter referred to as “XI”) represents the proportion of the polymer that precipitates when the polymer is once dissolved in ortho-xylene at 135 ° C. and then cooled to 25 ° C. In the present invention, XI is 99.0% by weight or more, preferably 99.5% by weight or more, and particularly preferably 99.7% by weight or more. When XI is less than 99.0% by weight, rigidity and heat resistance are poor.
[0008]
Further, (ii) the isotactic pentad fraction (hereinafter, referred to as “IP”) needs to be 98.5% or more, preferably 99.0% or more, and particularly preferably 99.5% or more. . If the IP is less than 98.5%, the rigidity and the heat resistance are poor, which is not preferable.
It should be noted that IP refers to nuclear magnetic resonance (CO) using isotope carbon.ThirteenIt is an isotactic fraction in pentad units in a polypropylene molecular chain measured using C-NMR). The measuring method is described in A. Zambellli; Macromolecules,6925 (1973);8, 687 (1975) and ibid.Thirteen, 267 (1980).
[0009]
Further, (iii) the average isotactic chain length (hereinafter referred to as N) needs to be 500 or more, preferably 700 or more, and particularly preferably 800 or more. When N is less than 500, rigidity and heat resistance are poor.
Note that N represents the average length of the isotactic portion of the methyl group in the polypropylene molecule. C. Randll; Polymer Sequence Distribution, Academic Press, New York 1977, chapter 2.
[0010]
Specifically, polypropylene is dissolved in a mixed solvent of 1,2,4-trichlorobenzene / deuterated benzene at a temperature of 130 ° C. so that the polymer concentration becomes 10% by weight. This solution is placed in a glass sample tube of 10 mmφ, and the same method as IP is used.ThirteenMeasure the C-NMR spectrum. FIG. 1 shows an example of this spectrum diagram. FIG. 1A is a spectrum of a methyl group region in polypropylene, and FIG. 1B is an enlarged view of the spectrum. The spectrum is measured using a pentad unit, that is, five adjacent methyl groups as one unit, and the absorption peak varies depending on the isotacticity of the methyl group (there are ten structural types such as mmmm and mmmr). FIG. 1b shows the correspondence between the absorption peak and the isotacticity.
[0011]
On the other hand, as a polymerization theory, Shan-Nong ZHU and the like; Polymer Journal, Vol. 15, No. 12, p859-868 (1983). In other words, it is assumed that there are two types of active species at the time of polymerization: a catalyst side and a polymer terminal, and the catalyst side is called a catalyst controlled polymerization and the other is a terminal controlled polymerization (for details, see Junji Furukawa; Molecular Essence and Topics 2, “Polymer Synthesis”, described in P73 Co., Ltd. (1986)).
[0012]
According to the above literature, the two-site model is eventually
α: Probability that D-form and L-form are added to the polymerization terminal by catalyst-controlled polymerization (enantiomorphic process), that is, an index of the degree of disorder in the isotactic chain.
σ: Probability of forming a meso-form to which the same one as the polymerization terminal is added by terminal dominant polymerization (Bernoulli process)
ω: α site ratio
As a result, ten types of isotactic intensities having different isotacticities in pentad units can be theoretically calculated.
Then, α, σ, and ω are determined by the least squares method so that the measured intensity by the NMR and the theoretical intensity match, and each pentad unit is determined by the following equation.
[0013]
[Table 1]
Figure 0003552802
[0014]
Next, the aforementioned J.I. C. Definition formula of average chain length (N) described in Randall's literature; N = number of meso-linked units / number of meso-linked units
And specifically, it can be obtained by the following equation.
N = 1 + (A1  + A2  + A3  ) /0.5 (A4  + A5  + A6  + A7  )
[0015]
Furthermore, (iv) the average isotactic chain length of each fraction (hereinafter referred to as “Nf  ) Is 800 or more, it is necessary that the total amount is 10% by weight or more, preferably 30% by weight or more, particularly preferably 50% by weight. Nf  If the total amount is less than 10% by weight, the effect of improving rigidity and heat resistance is poor.
[0016]
Here, the column fractionation method means that the xylene-extracted insoluble portion is dissolved in para-xylene at a temperature of 130 ° C., celite is added, the temperature is lowered to a temperature of 30 ° C. at a rate of 10 ° C./hour, and adhered to the celite In this method, the column is filled with slurry-like celite, the temperature is gradually increased from 30 ° C. to 2.5 ° C. using para-xylene as a developing solution, and polypropylene is fractionated. For more information, see Masahiro Kakugo et al; Macromolecules, Vol. 21, p314-319 (1988). N of fractionated polypropylenef  Is measured using the method for measuring N described above.
[0017]
As a preferred example of the component (A) of the present invention, for example, a solid catalyst containing magnesium compound, titanium compound, halogen-containing compound and electron-donating compound as essential components, and a general formula: TiXa.Yb (where X is Is a halogen atom of Cl, Br, I, Y is an electron donating compound, a is 3 or 4, and b is an integer of 3 or less), and then washed with a halogen-containing compound. And a propylene polymer obtained by polymerization using an improved solid catalyst component obtained by washing with a hydrocarbon.
[0018]
When the component (A) in the present invention is a propylene block copolymer (hereinafter referred to as “BPP”), the propylene polymer block obtained by the first-stage reaction has the physical properties described in (i) to (iv) above. Needs to be satisfied. Specifically, after the completion of the first-stage reaction, sampling is performed, and the physical properties of the propylene polymer block can be evaluated by the above method.
[0019]
The copolymerization ratio of the copolymer rubber component of propylene and other α-olefin in the BPP used in the present invention is usually 5 to 25% by weight, and the propylene content in the rubber component is usually 30 to 30% by weight. 65% by weight is used.
The melt flow rate of the component (A) in the present invention (measured in accordance with JIS K7210, Table 1, condition 14, hereinafter referred to as "MFR") is not particularly limited, but is based on the balance between rigidity and impact resistance. Usually, it is 0.1 to 300 g / 10 min, preferably 0.5 to 100 g / 10 min.
These propylene resins may be used alone or in combination of two or more.
[0020]
The composition ratio of the component (A) in the resin composition of the present invention is 40 to 90% by weight, preferably 43 to 87% by weight, and particularly preferably 45 to 85% by weight. If the component (A) is less than 40% by weight, rigidity and heat resistance are reduced. On the other hand, when the content exceeds 90% by weight, the impact resistance is inferior.
[0021]
The component (B) in the present invention is a random copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms. As the α-olefin, propylene, 1-butene and 1-hexene are preferable, and 1-butene is particularly preferable.
The content of the α-olefin in the component (B) of the present invention is 30 to 80% by weight, preferably 33 to 77% by weight, and particularly preferably 36 to 74% by weight. If the α-olefin content is less than 30% by weight, the impact resistance is poor, which is not preferable. On the other hand, if it exceeds 80% by weight, rigidity and heat resistance are inferior, which is not preferable.
The α-olefin content is determined by H. N. Cheng; Macromolecules, Vol. 17, pp. 1950-1955 (1984); T. Hsieh et al; ibid. , Vol. 15. p353-360 (1982)ThirteenIt is measured by a method based on C-NMR.
[0022]
Further, in the present invention, it is necessary that the component (B) has the following properties (v) to (vii).
(V) The maximum value (Y) of the loss tangent (tan δ) obtained by the solid viscoelasticity measurement and the α-olefin content (X) satisfy the following expression.
Y ≧ 0.024X−0.32
(Wherein, X represents the weight percentage of α-olefin, and 30 ≦ X ≦ 80)
(Vi) a glass transition point of -20 ° C or less
(Vii) Crystallinity measured by X-ray diffraction of 5% or less
[0023]
(V) The maximum value Y of the loss tangent (tan δ) is a peak value of a temperature-loss tangent (tan δ) curve obtained when the dynamic viscoelasticity of the polymer material is measured using a solid viscoelasticity device. The dynamic viscoelasticity is a measuring method for giving a strain (stress) vibrating at a frequency. The solid viscoelasticity measuring device is described in “Plastic Test Handbook”, pp. 212-223 (published by Nikkan Kogyo Shimbun, 1969). Have been. Specifically, the resin is pressurized and held at a temperature of 170 ° C. for 5 minutes by a press molding method, and then pressurized and cooled at a temperature of 30 ° C. for 5 minutes to prepare a sample having a thickness of 0.2 mm. Next, after leaving for 24 hours or more in a constant temperature room at a humidity of 50% and a temperature of 23 ° C., a test piece was cut out to a size of 50 mm × 2 mm. The measurement is performed at a length of 40 mm, a measurement frequency of 110 Hz, a dynamic measurement displacement of 0.16 mm, a measurement temperature of −150 to 150 ° C., and a heating rate of 2 ° C./min. FIG. 2 shows an example of the temperature-tan δ curve of the component (B) of the present invention.
In the above formula, Y ≧ 0.024X−0.22 is preferable, and Y ≧ 0.024X−0.12 is more preferable.
[0024]
Further, (vi) the glass transition point (hereinafter referred to as “Tg”) is a peak temperature of a tan δ peak curve obtained by the above-mentioned solid viscoelasticity measuring apparatus. The Tg is -20C or less, preferably -23C or less, particularly preferably -26C or less.
[0025]
The crystallinity (hereinafter referred to as “Xc”) measured by (vii) X-ray diffraction is 5% or less, preferably 3% or less.
The degree of crystallinity was determined by press molding at a temperature of 170 ° C. for 5 minutes and then pressurized and cooled at a temperature of 30 ° C. for 5 minutes to obtain a 1 mm thick sample at a humidity of 50% and a temperature of 23 ° C. Was left in a constant temperature chamber for 48 hours or more, and then determined by an X-ray diffraction method using RU-200 manufactured by Rigaku Corporation.
[0026]
Examples of the catalyst for obtaining the component (B) in the present invention include the following components (a), (b) and (d) or components (a), (b), (c) and (d). It can be obtained by polymerization using a catalyst.
(A) a carrier obtained by reacting a solid having a hydroxyl group on the surface with a compound represented by the following general formula (1)
MR1  R2  R3            (1)
(Wherein, M is an element belonging to Group 13 of the periodic table;1  , R2  , R3  May be the same or different and each is hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxide group or a halogen)
(B) Organic compounds containing transition metals of Groups 4, 5, or 6 of the Periodic Table
(C) a heteroatom-containing compound represented by the following general formula (2) or (2 ')
AL1  L2              (2)
AL1  L2  L3          (2 ')
(Where A is an element having a lone pair of electrons, L1  , L2  , L3  May be the same or different, and each represents a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group or an alkoxide group.
[0027]
(D) Organoaluminum compound
The solid having a hydroxyl group on the surface used for the component (a) of the present invention is an inorganic oxide, an inorganic chloride, an inorganic hydroxide, or an organic polymer compound, and a substance having a hydroxyl group on the surface or the like is used. Can be done. Specifically, an inorganic oxide having a hydroxyl group on the surface of silica, alumina, silica-alumina, magnesia, titania, zirconia, calcia, etc., an inorganic chloride such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride, or One or more selected from the group of polymer compounds having a hydroxyl group such as polyvinyl alcohol can be used. These compounds have an average particle diameter of 5 to 200 μm and a specific surface area of 100 to 1000 m.2  / G of fine particles. Further, heat treatment is performed to remove the adsorbed water and control the number of hydroxyl groups. For example, the heat treatment time of silica is 2 to 24 hours, usually 4 to 8 hours. The hydroxyl group content varies depending on the heat treatment temperature. When treated at 150 ° C., the number of hydroxyl groups is about 5 / nm.2  1 / nm when treated at 600 ° C2  About. It is preferred to use one or more of the group of silica, alumina or silica-alumina treated at 400-600 ° C.
[0028]
In the present invention, the compound represented by the general formula (1) (hereinafter, referred to as “group 13 compound”) is used.
MR1  R2  R3            (1)
Wherein M is an element belonging to Group 13 of the periodic table, of which boron and aluminum are preferable, and boron is particularly preferable. R1  , R2  , R3  May be the same or different, and may be hydrogen, a hydrocarbon group or alkoxide group having 1 to 20 carbon atoms, or halogen.
Specific examples of the Group 13 compound include trimethylboron, triethylboron, tripropylboron, tributylboron, triphenylboron, tris (pentafluorophenyl) boron, and the like. Details are described in Japanese Patent Application No. 6-277133. ing.
[0029]
The reaction between the solid having a hydroxyl group and the Group 13 compound in the present invention can be carried out by various methods, and it is possible to carry out the reaction in a non-solvent system, but it is generally carried out in an organic solvent. Examples of the organic solvent used include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, and decane; alicyclic hydrocarbons such as methylcyclopentane, cyclopentane, and cyclooctane; benzene; toluene; xylene; cumene; And the like.
[0030]
The conditions for reacting the solid having a hydroxyl group with the Group 13 compound are arbitrary as long as the effects of the present invention are recognized, but generally the following conditions are desirable.
The reaction temperature condition is usually -70 ° C to 120 ° C, preferably 0 ° C to 100 ° C. Although the reaction time cannot be specified unconditionally depending on conditions such as concentration and temperature, it is preferable that the reaction between the Group 13 compound and the hydroxyl group is sufficient, and it is preferable that the reaction time be at least 5 minutes or more.
The ratio of the reaction amount between the solid having a hydroxyl group and the Group 13 compound is not particularly limited, but it is preferable that the Group 13 compound be equal to or more than the number of hydroxyl groups.
The support, which is a reaction product, is separated from the reaction solution, and the unreacted Group 13 compound must be removed by washing. The above-mentioned organic solvents can be used as the washing solvent. The washing temperature is from -30C to 120C, preferably from 0C to 100C. In the washing, it is preferable that the Group 13 compound is not substantially detected in the washing solution. After washing, the carrier can be dried or used in the presence of an organic solvent.
[0031]
Examples of the organic compound (b) containing a transition metal belonging to Group 4, 5, or 6 of the periodic table in the present invention include a compound represented by the following general formula (3).
Figure 0003552802
(In the formula, Me is a transition metal belonging to Groups 4, 5, and 6 of the periodic table, and (C5  R4 m), (C5  R5 n) Is cyclopentadienyl or substituted cyclopentadienyl;4  And R5  May be the same or different and are hydrogen or an alkyl, alkenyl, aryl, alkylaryl or arylalkyl group having 1 to 20 carbon atoms, an alkylsilyl group, a silylalkyl group, or two adjacent carbon atoms You may have made a ring. R6  Is an alkylene group having 1 to 20 carbon atoms, -GeR8  R9  -, -SiR8  R9  -, -O-, -S-, -NR8  -, -PR8  -And R7  Is an alkylene group having 1 to 20 carbon atoms, -GeR8  R9  -, -SiR8  R9  -, -O-, -S-, -NR8  -, -PR8  -Or -OR8  , -NR8  R9  , -PR8  R9  (R8  , R9  Is hydrogen or a hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group, an alkylaryl group, an arylalkyl group, or a halogenated alkyl group or a halogenated aryl group having 1 to 20 carbon atoms;6  Is (C5  R4 m) Is bonded to two rings,7  Is (C5  R4 m) And Me. Q is selected from an aryl group, an alkyl group, an alkenyl group, an alkylaryl group or an arylalkyl group, and an alkylsilyl group, and is a hydrocarbon group having 1 to 20 carbon atoms or halogen, which may be the same or different. Q ′ is an alkylidene radical having 1 to 20 carbon atoms, s is 0 or 1, p is 0, 1, or 2, s is 0 when p is 0, m and n are 4 when p is 1. Yes, 5 when s is 0. )
[0032]
Specific examples include dimethylsilylenebis (2-methylbenzoindenyl) -zirconium dichloride, diethylsilylenebis (2-methylindenyl) -zirconium dichloride, and the like. A detailed example is described in Japanese Patent Application No. 6-277133. Has been described.
[0033]
The hetero atom-containing compound (c) in the present invention is represented by the following general formula (2) or (2 ').
AL1  L2              (2)
AL1  L2  L3          (2 ')
(Where A is an element having a lone pair of electrons, L1  , L2  , L3  May be the same or different, and each represents a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group such as a trimethylsilyl group or a trimethylsilylphenyl group, or an alkoxide group having 1 to 20 carbon atoms.)
Specific examples of A include nitrogen, oxygen, sulfur, phosphorus and the like.
The hetero atom-containing compound may be supported on a carrier or may be added during polymerization. Specific examples of the hetero atom-containing substance include, for example, ethers; thioethers; trimethylamine, triethylamine, tributylamine, triisobutylamine, triphenylamine, aniline, pyridine, bipyridine, phenanthroline, N, N-dimethylamine, N, N Amines such as -diethylaniline; and phosphines such as trimethylphosphine, triethylphosphine and triphenylphosphine, and preferred are N, N-dimethylaniline and N, N-diethylaniline.
[0034]
Examples of the organoaluminum compound (d) used in the present invention include compounds represented by the following general formula.
AlRn  Xm
(R is an alkyl group, X is a halogen, n and m are numbers, and n + m = 3)
Specific examples include triethylaluminum, tripropylaluminum, tributylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminumchloride, and ethylaluminumdichloride. Of these, triisobutylaluminum and triethylaluminum are preferred.
[0035]
The catalyst for olefin polymerization of the present invention may use only the components (a), (b) and (d) among the components (a), (b), (c) and (d), but the component (c) By using, a high polymerization activity can be obtained. There is no particular limitation on the method of contacting each component, for example,
(1) Method of mixing each component in an inert solvent
{Circle around (2)} A method in which the carrier (a) is brought into contact with the component (c) in an inert solvent, washed with the inert solvent, and then mixed with the components (b) and (d).
And so on.
[0036]
The polymerization of the ethylene-α-olefin random copolymer of the present invention can be obtained by any of the known continuous or batch methods, and the form of the polymerization reactor is not particularly limited. The propylene-α-olefin random copolymer is a hexane, a heptane, a slurry method in the presence of a liquefied α-olefin solvent such as propylene or an inert hydrocarbon such as kerosene, or a gas phase polymerization method without a solvent, The polymerization is carried out at a temperature ranging from room temperature to 130 ° C. Preferably, it is performed in the range of 50 to 90 ° C. Polymerization pressure is 2 to 50 kg / cm2  Is performed in the range of In the polymerization, the molecular weight can be adjusted by known means, for example, selection of temperature and pressure, or introduction of hydrogen.
[0037]
As the reactor in the polymerization step, those generally used in the art can be appropriately used. For example, using a stirred tank reactor, a fluidized bed reactor, or a circulation reactor, the polymerization operation can be performed by any of a continuous system, a semi-batch system, and a batch system.
The obtained ethylene-α-olefin random copolymer slurry or powder is, if necessary, deactivated with alcohol or water or the like to remove the remaining catalyst, dried, melt-mixed with an additive, and provided. You.
[0038]
Although the MFR of the component (B) in the present invention is not particularly limited, a material having a balance of rigidity and impact resistance of 0.1 to 50 g / min is preferably used.
The composition ratio of the component (B) in the resin composition of the present invention is 5 to 40% by weight, preferably 8 to 37% by weight, and particularly preferably 10 to 35% by weight. If the component (B) is less than 5% by weight, the impact resistance is inferior.
[0039]
Various conventionally known fillers can be used as the inorganic filler (C) in the present invention. Examples thereof include talc, mica, glass fiber, carbon fiber, wollastonite, calcium silicate, aluminum silicate, calcium carbonate, calcium titanate, aluminum borate, magnesium sulfate, and carbon black. Of these, talc, mica and calcium carbonate are preferred.
The composition ratio of the component (C) in the resin composition of the present invention is 5 to 50% by weight, preferably 8 to 48% by weight, and particularly preferably 10 to 40% by weight. If the amount of the component (C) is less than 5% by weight, the effect of improving rigidity and heat resistance is poor. On the other hand, when the content exceeds 50% by weight, the impact resistance is reduced and the mold is contaminated by bleed-out, which is not preferable.
The MFR of the resin composition in the present invention is preferably from 0.5 to 300 g / 10 minutes, and more preferably from 1 to 150 g / 10 minutes.
[0040]
The resin composition of the present invention can be produced by dry-blending the above-mentioned components (A) to (C) and, if necessary, other known additives with a Henschel mixer or the like, and then melt-kneading with a kneader or the like. . Known kneaders such as a single screw extruder, a twin screw extruder, a kneader and a Banbury mixer can be used. The kneading temperature is usually in the range of 120 to 300C, preferably in the range of 150 to 250C.
[0041]
As additives to be added to the resin composition of the present invention, additives commonly used for thermoplastic resins (for example, antioxidants, weathering stabilizers, antistatic agents, lubricants, antiblocking agents, antifogging agents, Nucleating agents, dyes, pigments, oils, waxes, etc.) can be added in an appropriate amount within a range not to impair the purpose of the present invention.
For example, examples of such additives include 2,5-di-t-butylhydroquinone, 2,6-di-t-butyl-p-cresol, and 4,4′-thiobis- (6 -T-butylphenol), 2,2-methylene-bis (4-methyl-6-t-butylphenol), octadecyl 3- (3 ', 5'-di-t-butyl-1'-hydroxyphenyl) propionate, tetrakis [3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate] methane, 4,4'-thiobis- (6-butylphenol), and as an ultraviolet absorber ethyl-2-cyano- 3,3-diphenyl acrylate, 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2-hydroxy-4-octoxybenzophenone, a plasticizer and Dimethyl phthalate, diethyl phthalate, wax, liquid paraffin, phosphate ester, pentaerythritol monostearate, sorbitan monopalmitate, sulfated oleic acid, polyethylene oxide, carbon wax as antistatic agent, ethylene wax as lubricant Examples of nucleating agents such as stearoamide and butyl stearate include metal salts of carboxylic acids, dibenzylidene sorbitol derivatives, and phosphate metal salts.
[0042]
Specific examples include sodium benzoate, aluminum adipate, aluminum pt-butyl benzoate, sodium thiophenecarboxylate, 1,3,2,4-dibenzylidene sorbitol, 1,3,2,4-diethyl -(P-methylbenzylidene) sorbitol, 1,3, -p-chlorobenzylidene-2,4-p-methylbenzylidenesorbitol, sodium-bis- (4-t-butylphenyl) phosphoate, potassium-bis- (4-t -Butylphenyl) phosphate, sodium-2,2'-ethylidene-bis (4,6-di-t-butylphenyl) phosphate, sodium-2,2'-methylenebis (4,6-di-t-butyl) Phenyl) phosphate and the like. Colorants include carbon black, phthalocyanine, quinacridone, indoline, azo pigments, titanium oxide, red iron oxide and the like. Many other high molecular compounds can also be blended to such an extent that the effects of the present invention are not impaired.
[0043]
The polypropylene-based resin composition of the present invention can be molded into injection molded articles, films, sheets, tubes, bottles, and the like by known melt molding and compression molding methods, and can be used alone or laminated with other materials to form a laminate. Can also be used.
[0044]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
The physical properties were measured by the following methods.
(1) MFR
Based on JIS K7210, it was measured under condition 14 in Table 1.
(2) Flexural modulus
It conformed to JIS K7203.
(3) Izod impact strength
According to JIS K7110, the measurement was performed at a temperature of 23 ° C. and −30 ° C. with a notch.
(4) Deflection temperature under load
The measurement was performed under a load of 4.6 kg in accordance with the JIS K7207B method.
In addition, a production example of the used polypropylene resin is shown below.
[0045]
(1) Preparation of solid catalyst
A mixture of 56.8 g (597 mmol) of anhydrous magnesium chloride, 100 g (174 mmol) of absolute ethanol, 500 ml of petrolatum oil (CP15N) manufactured by Idemitsu Kosan Co., Ltd. and 500 ml of silicone oil (KF96) manufactured by Shin-Etsu Silicone Co., Ltd. was heated at 120 ° C. under a nitrogen atmosphere. Completely dissolved. This mixture was stirred for 3 minutes at 3,000 rpm at 120 ° C. using a TK homomixer manufactured by Tokushu Kika Kogyo Co., Ltd. It was then transferred into 2 liters of anhydrous heptane with cooling so as to maintain the temperature at 0 ° C. or lower while maintaining stirring. The obtained white solid was sufficiently washed with anhydrous heptane and dried under vacuum at room temperature.
[0046]
30 g of the obtained white solid was suspended in 200 ml of anhydrous heptane, and 500 ml (4.5 mol) of titanium tetrachloride was added dropwise over 1 hour while stirring at 0 ° C. Next, when heating was started and the temperature reached 40 ° C., 4.96 g (17.8 mmol) of diisobutyl phthalate was added, and the temperature was raised to 100 ° C. in about 1 hour. After reacting at 100 ° C. for 2 hours, a solid portion was collected by hot filtration. 500 ml (4.5 mol) of titanium tetrachloride was added to the obtained solid portion, and the mixture was reacted at 120 ° C. for 1 hour with stirring. Then, the solid catalyst was collected again by hot filtration, and then 7 times with 1 liter of hexane at 60 ° C. Then, it was washed three times with 1 liter of hexane at room temperature.
[0047]
(2) TiCl4  [C6  H4  (COOiC4  H9  )2  Preparation of
To a solution of 19 g (100 mmol) of titanium tetrachloride in 1 liter of hexane, 27.8 g (100 mmol) of diisobutyl phthalate was added dropwise over about 30 minutes while maintaining 0 ° C. After completion of the dropwise addition, the temperature was raised to 40 ° C., and the reaction was performed for 30 minutes. After completion of the reaction, a solid portion was collected and washed five times with 500 ml of hexane to obtain a desired product.
[0048]
(3) Preparation of polymerization catalyst component
20 g of the solid catalyst obtained in the above (1) is suspended in 300 ml of toluene, and the TiCl obtained in the above (2) is suspended at 25 ° C.4  [C6  H4  (COOiC4  H9  )2  And treated with 5.2 g (11 mmol) for 1 hour. After the loading, the solid portion was collected by hot filtration, resuspended in 300 ml of toluene and 10 ml (90 mmol) of titanium tetrachloride, washed with stirring at 90 ° C. for 1 hour, and collected by hot filtration. The reaction was then washed five times with 500 ml of toluene at 90 ° C. and three times with 500 ml of hexane at room temperature.
[0049]
Prepolymerization
In a 3 liter autoclave under a nitrogen atmosphere, 500 ml of n-heptane, 6.0 g (53 mmol) of triethylaluminum, 3.9 g (17 mmol) of dicyclopentyldimethoxysilane, and the polymerization catalyst component obtained in (3) above 10 g was added, and the mixture was stirred for 5 minutes in a temperature range of 0 to 5 ° C. Next, propylene was supplied into the autoclave so that 10 g of propylene was polymerized per 1 g of the polymerization catalyst, and prepolymerized for 1 hour in a temperature range of 0 to 5 ° C. The obtained prepolymerized solid catalyst component was washed three times with 500 ml of n-heptane and used for the following main polymerization.
[0050]
Main polymerization
Under a nitrogen atmosphere, 2.0 g of the prepolymerized solid catalyst component prepared as described above, 11.4 g (100 mmol) of triethylaluminum, and 6.84 g (30 mmol) of dicyclopentyldimethoxysilane prepared in the above manner were placed in a 60-liter autoclave equipped with a stirrer. Then, propylene was injected at a temperature of 70 ° C., and polymerization was carried out for 1 hour. Thereafter, unreacted propylene and hydrogen were removed to terminate the polymerization. As a result, polypropylene having an MFR of 35.3 g / 10 minutes (hereinafter referred to as “PP1”) was obtained.
[0051]
Further, in the same manner as in PP1, the catalyst preparation and prepolymerization of (1) to (3) were performed, and then the following main polymerization was performed.
・ First-stage polymerization: polymerization of homopolypropylene
Under a nitrogen atmosphere, 2.0 g of the prepolymerized solid catalyst prepared as described above, 11.4 g of triethylaluminum, and 6.84 g of dicyclopentyldimethoxysilane were charged into a 60-liter autoclave with a stirrer, and then propylene and hydrogen were added. The reactor was charged and heated to 70 ° C. to perform polymerization for 1 hour. After one hour, unreacted propylene was removed to terminate the reaction. After completion of the reaction, a reaction product was sampled.
-Second stage polymerization: polymerization of propylene-ethylene copolymer
Next, hydrogen was supplied at the same time as adjusting the mixing ratio of ethylene / propylene, and the mixture was reacted at a temperature of 70 ° C. for 40 minutes. After the reaction, unreacted gas is removed, and a copolymer having an MFR of 29.2 g / 10 minutes, a rubber component content of 14.5% by weight, and a propylene content of 42.1% by weight in the rubber component (Hereinafter referred to as “BPP1”).
[0052]
For comparative examples, AA type titanium trichloride manufactured by Tosoh Akzo Co., Ltd. and diethylaluminum chloride were used as catalyst components, and the hydrogen concentration at the time of polymerization was adjusted to obtain a polypropylene having an MFR of 32.2 g / 10 minutes (hereinafter referred to as “ PP2 "). Further, for the comparative example, the prepolymerization was carried out using the catalyst obtained by performing only the operation (1) among the operations (1) to (3), and the main polymerization was carried out in the same manner as in the case of BPP1, and the MFR was 31.3 g. For 10 minutes, a copolymer having a rubber component content of 15.2% by weight and a propylene content of 40.8% by weight in the rubber component (hereinafter referred to as "BPP2") was obtained.
[0053]
For the above polypropylene (BPP1 and BPP2 were sampled after the first stage polymerization), XI, IP, N and Nf  Was measured. Table 2 shows the results.
[0054]
In addition, the measurement conditions of IP are as follows.
Figure 0003552802
[0055]
[Table 2]
Figure 0003552802
[0056]
Next, a production example of the used ethylene-α-olefin copolymer is shown below.
Preparation of boron-supported inorganic carrier
The silica was calcined at 600 ° C. for 4 hours in a nitrogen stream. The number of surface hydroxyl groups of the silica is 2 / nm2  Met. To 20 g of the silica, 300 ml of an isoparaffin solution of tris (tetrafluorophenyl) borane was added and reacted at room temperature for 1 hour. The reaction product was washed with hexane and then dried. To the obtained solid, 300 ml of toluene and 2.4 ml of N, N-dimethylaniline were added and reacted at room temperature for 3 hours. The reaction product was washed with toluene and then dried to prepare boron-supported silica.
[0057]
Polymerization of ethylene-α-olefin copolymer
In a nitrogen atmosphere, 18 liters of purified toluene, 40 ml of a 1.0 M toluene solution of triisobutylaluminum, 60 mol of 1-butene and ethylene were placed in an autoclave with a stirrer having an inner volume of 60 liters at 20 ° C. at a partial pressure of 7 kg / cm.2  And stirred thoroughly. Subsequently, 20 ml of a 1 mmol / l toluene solution of dimethylsilylenebis (2-methyl-benzoindenyl) zirconium dichloride, 1 g of the above inorganic carrier carrying boron and 10 ml of a 1.0 M toluene solution of triisobutylaluminum were contact-mixed, and then mixed with nitrogen. The mixture was injected into an autoclave and polymerized at 20 ° C. for 1 hour while continuously supplying ethylene so that its partial pressure was maintained at 7 kg / cm 2. Thereafter, methanol was injected into the autoclave to stop the polymerization, and the obtained solution was poured into a large amount of methanol, and the precipitated polymer was dried under reduced pressure at 70 ° C. overnight. As a result, an ethylene-1-butene random copolymer (hereinafter, referred to as “EOR1”) having an MFR of 0.8 g / 10 min and a 1-butene content of 40% by weight was obtained.
[0058]
Similarly, the amounts of ethylene and 1-butene charged at the time of polymerization were adjusted, and ethylene-1-butene random copolymer having an MFR of 1.3 g / 10 min and a 1-butene content of 53% by weight was prepared. A combined product (hereinafter referred to as “EOR2”) was obtained.
In the polymerization method using the same catalyst system as EOR1, by replacing 1-butene with propylene, an ethylene-propylene random copolymer having an MFR of 0.9 g / 10 and a propylene content of 34% by weight ( Hereinafter, referred to as “EOR3”).
[0059]
For comparison, the following three kinds of ethylene-α-olefin random copolymers were used. In a polymerization method of an ethylene-α-olefin copolymer using the same catalyst system as EOR1, an ethylene-1-butene copolymer having an MFR of 1.2 and a 1-butene content of 19% by weight (hereinafter “EORa”) ) And an ethylene-1-butene random copolymer (hereinafter referred to as “EORb”) having an MFR of 2.0 and a 1-butene content of 92% by weight. Polymerization was carried out using the Ti-based solid catalyst used for the production of PP2, and an ethylene-1-butene copolymer having an MFR of 1.5 and a 1-butene content of 51% by weight (hereinafter referred to as “EORc”) was obtained. Using.
[0060]
For the above ethylene-α-olefin copolymer, the maximum value (Y) of loss tangent (tan δ), Tg, and crystallinity by X-ray diffraction were measured. Table 3 shows the results.
The measurement conditions for the loss tangent (tan δ) are as follows.
Figure 0003552802
[0061]
[Table 3]
Figure 0003552802
[0062]
In addition, talc (“Enstarc” manufactured by Hayashi Kasei Co., Ltd.), calcium carbonate (“Stabigot 15-A” manufactured by Shiraishi Calcium Co., Ltd.) and mica (“AB32” manufactured by Mika Yamaguchi) were used as fillers.
[0063]
Examples 1 to 8, Comparative Examples 1 to 6
The components (A), (B) and (C) whose types and amounts are shown in Table 4 were mixed using a super mixer (Model SMV20) manufactured by Kawada Seisakusho, and a twin screw extruder manufactured by Nakatanani Machine Co., Ltd. (AS30 type). Using an injection molding machine (IS-170FII) manufactured by Toshiba Machine Co., each of the obtained pellets was used to prepare each test piece at a temperature of 220 ° C and a mold cooling temperature of 50 ° C. After the obtained test piece was left in a constant temperature room at a relative humidity of 50% and a temperature of 23 ° C. for 2 days, the flexural modulus, Izod impact strength (with notch), and load deflection temperature were measured. Table 4 shows the obtained results.
[0064]
[Table 4]
Figure 0003552802
[0065]
【The invention's effect】
The resin composition of the present invention is excellent in mechanical strength such as rigidity and low-temperature impact resistance and heat resistance, and thus is useful for electric / electronic parts, packaging materials, mechanical parts, engineering plastic substitutes, and the like.
[Brief description of the drawings]
FIG. 1 is an example of a nuclear magnetic resonance spectrum in the methyl region of the polypropylene of the present invention.
FIG. 2 is an example of a temperature-tan δ curve of the ethylene-1-butene random copolymer of the present invention.

Claims (4)

(A)下記(i)ないし(iv)の性状を有するプロピレン系樹脂 40〜90重量%、
(i)25℃におけるキシレン抽出不溶部が99.0重量%以上
(ii)アイソタクチックペンタッド分率が98.5%以上
(iii)アイソタクチック平均連鎖長が500以上
(iv)カラム分別法による各フラクションのアイソタクチック平均連鎖長が800以上のものの合計量が10重量%以上
(B)エチレンと炭素数3〜12のα−オレフィンからなる共重合体で、α−オレフィンの含有量が30〜80重量%であり、かつ下記(v)〜(vii)の性状を有するエチレン−α−オレフィンランダム共重合体 5〜40重量%および
(v )固体粘弾性測定により得られる損失正接(tanδ)の最大値(Y)とα−オレフィン含有量が下記式を満足する
Y≧0.024X−0.32
(式中、Xはα−オレフィンの重量%を表し、30≦X≦80である)
(vi)ガラス転移点が−20℃以下
(vii )X線回折により測定される結晶化度が5%以下
(C)無機充填剤 5〜50重量%(ただし、(A)+(B)+(C)=100重量%)からなるポリプロピレン系樹脂組成物。
(A) 40 to 90% by weight of a propylene-based resin having the following properties (i) to (iv):
(I) The xylene extraction-insoluble portion at 25 ° C. is 99.0% by weight or more. (Ii) Isotactic pentad fraction is 98.5% or more. (Iii) Isotactic average chain length is 500 or more. (Iv) Column fractionation. (B) a copolymer comprising ethylene and an α-olefin having 3 to 12 carbon atoms, wherein the fraction of the fractions having an average isotactic chain length of 800 or more by the method is not less than 10% by weight. Is 30 to 80% by weight, and 5 to 40% by weight of an ethylene-α-olefin random copolymer having the following properties (v) to (vii) and (v) a loss tangent ( tan δ) and the α-olefin content satisfies the following formula: Y ≧ 0.024X−0.32
(Wherein, X represents the weight percentage of α-olefin, and 30 ≦ X ≦ 80)
(Vi) The glass transition point is -20 ° C or less (vii) The crystallinity measured by X-ray diffraction is 5% or less (C) The inorganic filler is 5 to 50% by weight (however, (A) + (B) + (C) = 100% by weight).
上記(B)成分が、下記成分(a),(b)および(d)、または成分(a),(b),(c)および(d)からなる触媒を用いて重合して得られるものである請求項1記載のポリプロピレン系樹脂組成物。
(a)表面に水酸基を持つ固体と、下記一般式(1)で表される化合物を反応させて得られる担体
MR (1)
(式中、Mは周期律表第13族の元素であり、R 、R 、R は各々同一でも異なっていてもよく、水素、炭素数1〜20の炭化水素基、アルコキシド基もしくはハロゲンである)
(b)周期律表第4、5または6族遷移金属を含有する有機化合物
(c)下記の一般式(2)または(2’)で示される、ヘテロ原子含有化合物
AL (2)
AL (2’)
(式中、Aは孤立電子対を持つ元素、L 、L 、L は各々同一でも異なっていてもよく、炭素数1〜20の炭化水素基あるいはケイ素含有炭化水素基もしくはアルコキシド基である)
(d)有機アルミニウム化合物
The above component (B) is obtained by polymerization using a catalyst comprising the following components (a), (b) and (d), or components (a), (b), (c) and (d). The polypropylene resin composition according to claim 1, which is:
(A) Carrier MR 1 R 2 R 3 (1) obtained by reacting a solid having a hydroxyl group on the surface with a compound represented by the following general formula (1)
(In the formula, M is an element belonging to Group 13 of the periodic table, and R 1 , R 2 , and R 3 may be the same or different, and may be hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxide group, or Is halogen)
(B) Organic compound containing a transition metal belonging to Group 4, 5 or 6 of the periodic table (c) Heteroatom-containing compound AL 1 L 2 (2) represented by the following general formula (2) or (2 ′)
AL 1 L 2 L 3 (2 ')
(Wherein, A is an element having a lone electron pair, L 1 , L 2 , and L 3 may be the same or different, and each represents a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group, or an alkoxide group. is there)
(D) Organoaluminum compound
上記(B)成分のα−オレフィンが1−ブテンである請求項1または請求項2記載のポリプロピレン系樹脂組成物。The polypropylene resin composition according to claim 1 or 2, wherein the α-olefin of the component (B) is 1-butene. 上記(C)充填剤がタルク、マイカまたは炭酸カルシウムである請求項1〜3のいずれか1項に記載のポリプロピレン系樹脂組成物。The polypropylene resin composition according to any one of claims 1 to 3, wherein the filler (C) is talc, mica, or calcium carbonate.
JP20364295A 1995-07-17 1995-08-09 Polypropylene resin composition Expired - Fee Related JP3552802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20364295A JP3552802B2 (en) 1995-07-17 1995-08-09 Polypropylene resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18036995 1995-07-17
JP7-180369 1995-07-17
JP20364295A JP3552802B2 (en) 1995-07-17 1995-08-09 Polypropylene resin composition

Publications (2)

Publication Number Publication Date
JPH0987447A JPH0987447A (en) 1997-03-31
JP3552802B2 true JP3552802B2 (en) 2004-08-11

Family

ID=26499916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20364295A Expired - Fee Related JP3552802B2 (en) 1995-07-17 1995-08-09 Polypropylene resin composition

Country Status (1)

Country Link
JP (1) JP3552802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544609B1 (en) * 2000-07-12 2003-04-08 Alcoa Closure Systems International, Inc. Stiff and impact resistant compositions containing poly(propylene) or poly(ethylene/propylene) and calcium carbonate for closures

Also Published As

Publication number Publication date
JPH0987447A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
KR100372473B1 (en) Propylene Block Copolymer and Method for Making the Same
EP1829903B1 (en) Propylene polymer, composition containing the polymer, and molded objects obtained from these
KR0149062B1 (en) Propylene polymer composition
JP6017089B2 (en) Olefin resin, process for producing the same, and propylene resin composition
JP6258496B2 (en) Propylene resin composition
JP2839840B2 (en) Propylene resin composition
WO1995031490A1 (en) Propylene polymer, process for producing the same, composition thereof, polymerization catalyst component, and process for producing the same
KR100338875B1 (en) Propylene block copolymers, processes for their preparation and resin compositions comprising them
JP2003147158A (en) Polypropylene resin composition
JP3552801B2 (en) Polypropylene resin composition
JP6564289B2 (en) Olefinic resin, production method and composition thereof, and molded article
JP4705699B2 (en) Propylene resin composition
JP3497080B2 (en) Method for producing catalyst component for polymerization of propylene polymer
JPH09157492A (en) Thermoplastic resin composition
JP3552802B2 (en) Polypropylene resin composition
JP2003147157A (en) Polypropylene resin composition
JP2005139282A (en) Propylene-ethylene block copolymer
JP3578519B2 (en) Ethylene-α-olefin random copolymer and method for producing the same
US5314957A (en) Molded article of crosslinked polyolefin and method for preparing it
JPH09183874A (en) Production of polypropylene resin composition
JP6615554B2 (en) Olefin-based resin, production method and composition thereof, and molded article
JP2680741B2 (en) Propylene ethylene copolymer
JPH03162428A (en) Production of thermoplastic elastomer
JPH07292022A (en) Propylene polymer, its production and its composition
JP2845624B2 (en) Propylene-based polymer, its production method and composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees