JP3552685B2 - Tetrafluoroethylene polymer with excellent strength - Google Patents

Tetrafluoroethylene polymer with excellent strength Download PDF

Info

Publication number
JP3552685B2
JP3552685B2 JP2001226171A JP2001226171A JP3552685B2 JP 3552685 B2 JP3552685 B2 JP 3552685B2 JP 2001226171 A JP2001226171 A JP 2001226171A JP 2001226171 A JP2001226171 A JP 2001226171A JP 3552685 B2 JP3552685 B2 JP 3552685B2
Authority
JP
Japan
Prior art keywords
ptfe
polymerization
tetrafluoroethylene polymer
tfe
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001226171A
Other languages
Japanese (ja)
Other versions
JP2002201217A (en
Inventor
茂樹 小林
潤 星川
一雄 加藤
浩樹 神谷
浩之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001226171A priority Critical patent/JP3552685B2/en
Priority to EP20010123224 priority patent/EP1201689B1/en
Priority to DE60135894T priority patent/DE60135894D1/en
Priority to US09/970,674 priority patent/US6518381B2/en
Priority to CNB011377550A priority patent/CN100478367C/en
Publication of JP2002201217A publication Critical patent/JP2002201217A/en
Application granted granted Critical
Publication of JP3552685B2 publication Critical patent/JP3552685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強度に優れたテトラフルオロエチレン重合体(以下、PTFEという)に関する。詳しくは、ペースト押出成形後の延伸操作に好適に使用できる強度に優れたPTFEに関する。
【0002】
【従来の技術】
従来、PTFEは、テトラフルオロエチレン(以下、TFEという)を単独で重合することにより、または必要に応じて改質モノマーと共に重合することにより得られ、種々の用途に使用されている。
PTFEは、水性分散重合により製造することができ、重合体粒子が分散した水性分散液の状態で得ることもできるし、水性分散重合液を凝固、乾燥させてファインパウダーとして得ることもできる。
従来のPTFEファインパウダーは、高い溶融粘度を有しており、溶融温度では容易に流動しないため、非溶融二次加工性を有する。そのため、PTFEファインパウダーは、一般的には、PTFEファインパウダーを潤滑剤とブレンドし、潤滑化PTFEを押出し法により造形し、次いで潤滑剤を除去して得られる押出し物を、通常はPTFEの融点より高い温度で融合(燒結)させて、最終製品形状にするペースト押出し成形が行われている。
【0003】
一方、PTFEファインパウダーから得られる重要な他の製品としては、衣服、テント、分離膜等の製品用の通気性布材料が挙げられる。これらの製品は、PTFEファインパウダーをペースト押出し成形して得られる押出し物を、未燒結状態において急速に延伸させ、水蒸気は透過できるが、凝縮水は透過できない性質を付与することにより得ることができる。
米国特許第4,654,406号明細書および米国特許4,576,869号明細書には、延伸性PTFEファインパウダーの技術を改善し、17質量%の潤滑剤を添加して得られた押出し物を、10%/秒〜100%/秒の速度で少なくとも1000%延伸することにより、少なくとも75%の延伸均一性が達成されることが記載されている。
しかしながら、PTFEを延伸して得た延伸製品に対する要求物性は年々高くなっており、この改良PTFEから得た延伸製品でも、強度が充分でないという問題点を有している。
【0004】
【発明が解決しようとする課題】
本発明は、上記従来技術の状況に鑑みてなされたものであり、延伸性、フィブリル化性および非溶融二次加工性を有するPTFEであって、破断強度が高く、標準比重が小さいPTFEを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、延伸性、フィブリル化性および非溶融二次加工性を有するPTFEであって、該重合体が2.160以下の標準比重、32.0N(3.26kgf)〜49.0N(5.0kgf)の破断強度を有することを特徴とするPTFEを提供する。
ここで、標準比重とは、JIS K6935−2に従って測定した値をいう。
また、本発明は、上記PTFEにおいて、標準比重が2.157以下であるPTFEを提供する。
また、本発明は、上記PTFEにおいて、応力緩和時間が、少なくとも650秒であるPTFEを提供する。
【0006】
また、本発明は、上記PTFEにおいて、破断強度が、34.3N(3.5kgf)〜49.0N(5.0kgf)であるPTFEを提供する。
また、本発明は、上記PTFEにおいて、押出し圧力が、9.8MPa(100kgf/cm)〜19.6MPa(200kgf/cm)であるPTFEを提供する。
また、本発明は、上記PTFEにおいて、PTFEがファインパウダーであるPTFEを提供する。
また、本発明は、上記PTFEにおいて、PTFEが水性分散液の分散固体成分であるPTFEを提供する。
さらに、本発明は、 上記の特性を有するPTFEからなる多孔体およびその物品を提供する。
【0007】
【発明の実施の形態】
本発明のPTFEは、TFEの単独重合体であってもよいし、TFE以外のエチレン性不飽和基を有する含フッ素モノマーなどの改質モノマーとの共重合体であってもよい。エチレン性不飽和基を有する含フッ素モノマーとしては、例えば、ヘキサフルオロプロピレン、パーフルオロブテン−1、パーフルオロへキセン−1、パーフルオロノネン−1、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、パーフルオロ(ヘプチルビニルエーテル)、(パーフルオロメチル)エチレン、(パーフルオロブチル)エチレン、クロロトリフルオロエチレン等が挙げられる。これらの含フッ素モノマーは単独で用いてもよいし、2種以上を併用してもよい。改質モノマーは、通常1質量%以下であることが好ましく、より好ましくは0.5質量%以下である。
本発明のPTFEは、延伸性、フィブリル化性、非溶融二次加工性を有する。これらの性質は、ペースト押出し成形に通常要求される性質である。
【0008】
また、本発明のPTFEは、標準比重、破断強度が特定の範囲にあるものであり、これにより特徴付けられる。
本発明のPTFEの標準比重(以下、SSGという)は、2.160以下であり、好ましくは2.157以下である。SSGは、平均分子量の指標であり、本発明のPTFEのSSGは非常に小さい値、すなわち、平均分子量が高いといえる。SSGは、平均分子量の増大に伴い、減少する傾向がある。すなわち、本発明のPTFEは、SSG値が小さいので、その平均分子量がかなり高いものであることが予測できる。SSG値が2.160以下のPTFEは、押出し物の延伸倍率が3000%を超え、延伸均一性にも優れる。
本発明のPTFEの延伸物の破断強度は、32.0N(3.26kgf)〜49.0N(5.0kgf)の範囲であり、好ましくは34.3N(3.5kgf)〜49.0N(5.0kgf)の範囲である。これは、驚くべきことに、特開2000−143727公報記載のPTFEより高い破断強度を有している。高い破断強度ほど、耐久性等に優れるので好ましい。一方、破断強度が5.0kgfを超えるPTFEは、実質上、製造が非常に困難となる傾向がある。
また、本発明のPTFEは、押出し圧力が、9.8MPa(100kgf/cm)〜19.6MPa(200kgf/cm)であるものが好ましく、9.8MPa(100kgf/cm)〜16.7MPa(170kgf/cm)であるものがより好ましく、9.8MPa(100kgf/cm)〜15.2MPa(155kgf/cm)であるものが特に好ましい。
【0009】
本発明のPTFEは、応力緩和時間が、少なくとも650秒であるものが好ましく、少なくとも700秒であるものがより好ましく、少なくとも730秒であるものが特に好ましい。
本発明のPTFEは、水性分散重合により製造することができる。
水性分散重合は、TFE単独、またはTFEと改質モノマーとを用い、分散剤および重合開始剤を含有する水系媒体中で、行うことができる。重合温度は、通常50〜120℃の範囲であり、好ましくは60〜100℃の範囲である。重合圧力は、適宜選定すればよいが、0.5〜4.0MPaの範囲になるようにすればよく、好ましくは1.0〜2.5MPaの範囲である。
【0010】
分散剤としては、連鎖移動性の少ないアニオン系界面活性剤がより好ましく、フルオロカーボン系の界面活性剤が特に好ましい。具体例としては、XC2nCOOM(ここで、Xは水素、塩素、フッ素、(CFCFを、Mは水素、NH、アルカリ金属を、nは6〜12の整数を示す。)、C2m+1O(CF(CF)CFO)CF(CF)COOM(ここで、Mは水素、NH、アルカリ金属を、mは1〜12の整数を、pは0〜5の整数を示す。)、C2n+1SOM、C2n+1CHCHSOM等が挙げられる。パーフルオロカーボン系の界面活性剤がより好ましく、C15COONH4、17COONH、C19COONH、C1021COONH、C15COONa17COONa、C19COONa、C15COOK17COOK、C19COOK、CO(CF(CF)CFO)CF(CF)COONH等が挙げられる。これらは、単独で又は2種以上を組み合わせて用いてもよい。分散剤の量は、使用される水の質量基準で、250〜5000ppmの範囲にすることが好ましい。この範囲にすることで水性分散液の安定性が向上し、得られるPTFEの破断強度が高くなる。また、水性分散液の安定性をさらに向上するために重合中に分散剤を追加添加することも好ましい。
【0011】
重合開始剤としては定のレドックス系重合開始剤を用いるとSSGが低く、押出し圧力が低く、破断強度が大きい本発明のPTFEが得られる。特定のレドックス系重合開始剤としては、過硫酸塩、臭素酸塩等の水溶性酸化剤と亜硫酸塩やジイミン等の還元剤の組合せが挙げられる。特に、特定のレドックス系重合開始剤として、臭素酸塩と亜硫酸塩の組み合わせがより好ましく、臭素酸カリウムと亜硫酸アンモニウムの組合せが最も好ましい。臭素酸塩と亜硫酸塩を用いる場合には、どちらかをあらかじめ重合槽に仕込み、ついでもう一方を連続的または断続的に加えて重合を開始させることが好ましく、臭素酸塩をあらかじめ重合槽に仕込み、ついで亜硫酸塩を連続的または断続的に加えることがより好ましい。重合開始剤の量は、適宜選定すればよいが、水の質量基準で2〜600ppmが好ましく、臭素酸塩と亜硫酸塩の組合せの場合にはそれぞれ5〜300ppmが好ましい。また、あらかじめ臭素酸塩を重合槽に仕込む場合は、臭素酸塩濃度を高くすることにより水性分散液の安定性がさらに向上する。重合開始剤の量は、少ないほど吸熱比が小さいPTFEが得られる傾向となるので好ましい。また、重合開始剤の量は、あまりに少ないと重合速度が遅くなりすぎる傾向となり、あまりに多いと生成するPTFEのSSGが高くなる傾向となる。
【0012】
水性分散重合は、安定化助剤の存在下に実施することが好ましい。安定化助剤としては、パラフィンワックス、フッ素系オイル、フッ素系溶剤、シリコーンオイル等が好ましい。これらは、単独で又は2種以上を組み合わせて用いてもよい。特に、パラフィンワックスの存在下に行うことが好ましい。パラフィンワックスとしては、室温で液体でも、半固体でも、固体であってもよいが、炭素数12以上の飽和炭化水素が好ましい。パラフィンワックスの融点は、通常40〜65℃が好ましく、50〜65℃がより好ましい。パラフィンワックスの量は、使用される水の質量基準で0.1〜12質量%が好ましく、0.1〜8質量%がより好ましい。
水性分散重合は、通常、水系重合混合物を穏やかに撹拌することにより行われる。生成した水性分散液中のPTFE微粒子が凝集しないように撹拌条件が制御される。水性分散重合は、通常、水性分散液中のPTFE微粒子の濃度が15〜40質量%になるまで行われる。
水性分散重合は、酸を添加して酸性状態で行うことが水性分散液の安定化のために好ましい。酸としては、硫酸、塩酸、硝酸等の酸が好ましく、硝酸がより好ましい。硝酸を加えることにより水性分散液の安定性がさらに向上する。
水性分散重合によりPTFE微粒子が分散した水性分散液が得られるが、水性分散液中のPTFE微粒子の粒径は、通常0.02〜1.0μmと広い分布を有し、平均粒子径は0.1〜0.4μm程度である。
得られた水性分散重合液からPTFE微粒子を凝集し、乾燥させてPTFEファインパウダーを得る。凝集方法としては、水性分散液を高速撹拌することによってPTFE微粒子を凝集させることが好ましい。このとき、凝析剤を添加することが好ましい。凝析剤としては、炭酸アンモニウムや多価無機塩類、鉱酸類、陽イオン界面活性剤、アルコール等が好ましく、炭酸アンモニウムがより好ましい。
【0013】
凝集により湿潤状態で得られるPTFEの乾燥は、任意の温度で行うことができるが、100〜250℃の範囲で行うことが好ましく、130〜200℃の範囲で行うことが特に好ましい。乾燥によって、本発明のPTFEァインパウダーを得ることができる。このPTFEファインパウダーは、その平均粒径が100〜800μmの範囲のものが好ましく、400〜600μmの範囲のものが特に好ましい。
また、本発明は、上記の特性を有するPTFEからなる多孔体およびその物品を提供する。多孔体は、種々の方法により製造したものが挙げられるが、例えば、ペースト押出し成形後に延伸を施すことにより得られる多孔体および多孔体からなるフィルム、チューブなどが挙げられる。
ペースト押出し成形とは、PTFEファインパウダーを潤滑剤と混合して、PTFEファインパウダーに流動性を持たせてシート、チューブ等の成形物を成形するものである。潤滑剤の混合割合は、PTFEファインパウダーに流動性を持たせるように、適宜選定すればよく、通常10〜30質量%にすればよい。潤滑剤としては、ナフサ、沸点が200℃以上の石油系炭化水素が好ましく用いられる。また、延伸は、適当な速度、例えば5%/秒〜1000%/秒の速度で、適当な延伸倍率、例えば500%以上の延伸倍率になるように施せばよい。
多孔体の空孔率は特に制限ないが、通常空孔率が50〜97%の範囲が好ましく、70〜95%の範囲が特に好ましい。
多孔体で構成される物品の形状は、シート状、フィルム状、繊維状など種々の形状にすることができる。
【0014】
【実施例】
以下、実施例により本発明を具体的に説明するが、本願発明はこれらに限定されない。以下において、部は質量部を示す。例1〜4が実施例であり、例5が比較例である。
なお、実施例において、延伸性の評価、破断強度、応力緩和時間の測定は、以下に示す方法により行った。
【0015】
(1)押出し圧および延伸性の評価
室温で2時間以上放置されたPTFEのファインパウダー100gを内容量900ccのガラス瓶に入れ、アイソパーH(登録商標、エクソン社製)潤滑剤21.7gを添加し、3分間混合してPTFE混合物を得る。得られたPTFE混合物を25℃恒温槽に2時間放置した後に、リダクションレシオ(ダイスの入り口の断面積と出口の断面積の比)100、押出し速度51cm/分の条件で、25℃にて、直径2.5cm、ランド長1.1cm、導入角30°のオリフィスを通して、ペースト押出ししビードを得る。このときの押出しに要する圧力を測定し、押出し圧とする。得られたビードを230℃で30分間乾燥し、潤滑剤を除去する。次いで、ビードの長さを適当な長さに切断し、クランプ間が3.8cmまたは5.1cmのいずれかの間隔となるよう、各末端を固定し、空気循環炉中で300℃に加熱する。次いで、クランプが所定の間隔になるまで所定の速度で延伸する。この延伸方法は、押出しスピード(51cm/分)が異なることを除いて、本質的に米国特許第4,576,869号明細書に開示された方法に従っている。「延伸」とは、長さの増加であり、通常元の長さと関連して表わされる。
【0016】
(2)破断強度の測定
破断強度試験測定用のサンプルは、クランプ間隔5.1cm、延伸速度100%/秒、総延伸2400%を用い、延伸性の評価と同様にして、ビードを延伸することにより、作製する。破断強度は、延伸ビードから得られる3つのサンプル、延伸ビードの各末端から1つ(クランプの範囲においてネックダウンがあればそれを除く)、およびその中心から1つ、の最小引張り破断負荷(力)として、測定される。5.0cmのゲージ長である、ジョーにおいてサンプルを挟んで固定し、可動ジョー300mm/分のスピードで駆動させ、引張り試験機(エイアンドディ社製)を用いて、室温で測定する。
【0017】
(3)応力緩和時間の測定
応力緩和時間の測定用のサンプルは、クランプ間隔3.8cm、延伸速度1000%/秒、総延伸2400%を用い、延伸性の評価のように、ビードを延伸することにより、作製する。この延伸ビードのサンプルの両方の末端は、固定具につなげることにより、ぴんと張られた全長25cmの延伸ビードである。応力緩和時間とは、このサンプルが390℃、すなわち、米国特許第5,470,655号明細書に開示されている延長鎖形状の溶ける380℃より高い温度でオーブン中に放置した後に破断するのに要する時間である。固定具におけるサンプルは、オーブンの側部にある(覆われた)スロットを通してオーブンに挿入されるので、サンプルを配置する間に温度は下降することがなく、それゆえに米国特許第4,576,869号明細書に開示されたように回復にしばしの時間を必要としない。
【0018】
[例1]
100Lの重合槽に、パラフィンワックスの928g、超純水の55L、パーフルオロオクタン酸アンモニウムの36g、コハク酸の1g、1Nの硝酸水溶液の8ml、臭素酸カリウムの0.4gを仕込んだ。窒素パージ、脱気を行った後に、65℃に昇温した。温度が安定した後にTFEを導入し、1.9MPaの圧力とした。内容物を撹拌下に、亜硫酸アンモニウム140ppm水溶液1Lを60分連続添加して重合を開始した。重合が進行すると共にTFEが消費されて重合槽内の圧力が低下したので、圧力を一定に保つようにTFEを連続的に供給した。亜硫酸アンモニウムの添加終了後にパーフルオロオクタン酸アンモニウムの11.1質量%水溶液1Lを添加した。重合開始から270分経過した時点で、撹拌およびTFEの供給を停止し、重合槽内のTFEをパージし、ついで気相を窒素で置換した。得られた固形分28.9質量%のPTFE水性分散液を炭酸アンモニウム存在下で凝集し、湿潤状態のPTFEを分離した。得られた湿潤状態のPTFEを160℃で乾燥して、PTFEファインパウダーを得た。そして、得られたPTFEファインパウダーのSSGおよび平均粒径を測定した。また、得られたPTFEファインパウダーを前述の方法でペースト押出ししてビードを得た。この時の押出し圧力を測定した。ついでビードを延伸して得た延伸ビードの破断強度、応力緩和時間を測定した。
ついで、PTFEファインパウダー600gをガラス製のボトルに20重量%の割合で潤滑剤であるアイソパーG(Exxon社製)を加え、100rpmで30分間回転させることにより混合した。ブレンドした樹脂を室温で24時間熟成させた。この樹脂を0.2MPaの圧力を120秒間プレスして直径68mmのプレフォームを得た。このプレフォームを直径11mmのオリフィスを通して押出しを行い、押出し物を厚さ0.1mmまで圧延した。該圧延シートを長さ5cm、幅2cmの短冊状とし、300℃の温度下、100%/秒の速度で10倍に延伸した。得られたフィルムの空孔率は、90%であった。
【0019】
[例2]
100Lの重合槽に、パラフィンワックスの928g、超純水の55L、パーフルオロオクタン酸アンモニウムの36g、コハク酸の1g、1Nの硝酸水溶液の8ml、臭素酸カリウムの0.4gを仕込んだ。窒素パージ、脱気を行った後に、85℃に昇温した。温度が安定した後にTFEを導入し、1.9MPaの圧力とした。内容物を撹拌下に、亜硫酸アンモニウム140ppm水溶液1Lを60分連続添加して重合を開始した。重合が進行すると共にTFEが消費されて重合槽内の圧力が低下したので、圧力を一定に保つようにTFEを連続的に供給した。亜硫酸アンモニウムの添加終了後にパーフルオロオクタン酸アンモニウムの11.1質量%水溶液1Lを添加した。重合開始から270分経過した時点で、撹拌およびTFEの供給を停止し、重合槽内のTFEをパージし、ついで気相を窒素で置換した。得られた固形分29.6質量%のPTFE水性分散液を炭酸アンモニウム存在下で凝集し、湿潤状態のPTFEを分離した。得られた湿潤状態のPTFEを250℃で乾燥して、PTFEファインパウダーを得た。例1と同様にして、PTFEファインパウダーのSSGおよび平均粒径、ペースト押出し時の押出し圧力、延伸ビードの破断強度、応力緩和時間を測定した。
【0020】
[例3]
100Lの重合槽に、パラフィンワックスの928g、超純水の55L、パーフルオロオクタン酸アンモニウムの25g、コハク酸の1g、1Nの硝酸水溶液の8ml、臭素酸カリウムの0.4gを仕込んだ。窒素パージ、脱気を行った後に、85℃に昇温した。温度が安定した後にTFEを導入し、1.9MPaの圧力とした。内容物を撹拌下に、亜硫酸アンモニウム140ppm水溶液1Lを60分連続添加して重合を開始した。重合が進行すると共にTFEが消費されて重合槽内の圧力が低下したので、圧力を一定に保つようにTFEを連続的に供給した。亜硫酸アンモニウムの添加終了後にパーフルオロオクタン酸アンモニウムの11.1質量%水溶液1Lを添加した。重合開始から250分経過した時点で、撹拌およびTFEの供給を停止し、重合槽内のTFEをパージし、ついで気相を窒素で置換した。得られた固形分24.1質量%のPTFE水性分散液を炭酸アンモニウム存在下で凝集し、湿潤状態のPTFEを分離した。得られた湿潤状態のPTFEを140℃で乾燥して、PTFEファインパウダーを得た。例1と同様にして、PTFEファインパウダーのSSGおよび平均粒径、ペースト押出し時の押出し圧力、延伸ビードの破断強度、応力緩和時間を測定した。
【0021】
[例4]
100Lの重合槽に、パラフィンワックスの928g、超純水の55L、パーフルオロオクタン酸アンモニウムの25g、コハク酸の1g、1Nの硝酸水溶液の8ml、臭素酸カリウムの6gを仕込んだ。窒素パージ、脱気を行った後に、85℃に昇温した。温度が安定した後にTFEを導入し、1.2MPaの圧力とした。内容物を撹拌下に、亜硫酸アンモニウム300ppm水溶液0.4Lを80分連続添加して重合を開始した。重合が進行すると共にTFEが消費されて重合槽内の圧力が低下したので、圧力を一定に保つようにTFEを連続的に供給した。重合開始後60分後にパーフルオロオクタン酸アンモニウムの3.6質量%水溶液1Lを添加した。また、亜硫酸アンモニウムの添加終了後に再びパーフルオロオクタン酸アンモニウムの8.1質量%水溶液1Lを添加した。重合開始から220分経過した時点で、撹拌およびTFEの供給を停止し、重合槽内のTFEをパージし、ついで気相を窒素で置換した。得られた固形分26.0質量%のPTFE水性分散液を炭酸アンモニウム存在下で凝集し、湿潤状態のPTFEを分離した。得られた湿潤状態のPTFEを200℃で乾燥して、PTFEファインパウダーを得た。例1と同様にして、PTFEファインパウダーのSSGおよび平均粒径、ペースト押出し時の押出し圧力、延伸ビードの破断強度、応力緩和時間を測定した。
【0022】
[例5(比較例)]
100Lの重合槽に、パラフィンワックスの736g、超純水の59L、パーフルオロオクタン酸アンモニウムの33gを仕込んだ。70℃に昇温し、窒素パージ、脱気を行った後、TFEを導入し、1.9MPaの圧力とした。撹拌下に、ジコハク酸パーオキサイドの0.5質量%水溶液1Lを圧入して重合を開始した。重合の進行に伴いTFEが消費されて重合槽内の圧力が低下したので、圧力を一定に保つように重合中はTFEを連続的に供給した。重合開始から45分後から6℃/時で90℃まで昇温した。また、TFEの供給量が6.6kgとなった時点で、パーフルオロオクタン酸アンモニウムの5.6質量%水溶液1Lを添加した。重合開始から160分経過した時点で、撹拌およびTFEの供給を停止し、重合槽内のTFEをパージして重合を停止した。得られた固形分24.3質量%のPTFE水性分散液を凝集し、湿潤状態のPTFEを分離した。得られた湿潤状態のPTFEを205℃で乾燥して、PTFEファインパウダーを得た。例1と同様にして、PTFEファインパウダーのSSGおよび平均粒径、ペースト押出し時の押出し圧力、延伸ビードの破断強度、応力緩和時間を測定した。
【0023】
【表1】

Figure 0003552685
【0024】
【発明の効果】
本発明のPTFEは、標準比重が低く、破断強度が優れ、ペースト押出成形後の延伸操作に好適に使用できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tetrafluoroethylene polymer (hereinafter referred to as PTFE) having excellent strength. More specifically, the present invention relates to PTFE having excellent strength that can be suitably used for a stretching operation after paste extrusion.
[0002]
[Prior art]
Conventionally, PTFE is obtained by polymerizing tetrafluoroethylene (hereinafter, referred to as TFE) alone or, if necessary, by polymerizing with a modifying monomer, and has been used for various purposes.
PTFE can be produced by aqueous dispersion polymerization, and can be obtained in the form of an aqueous dispersion in which polymer particles are dispersed, or can be obtained as a fine powder by coagulating and drying the aqueous dispersion polymerization solution.
Conventional PTFE fine powder has high melt viscosity and does not flow easily at the melting temperature, and therefore has non-melt secondary workability. Therefore, PTFE fine powder is generally obtained by blending PTFE fine powder with a lubricant, molding the lubricated PTFE by an extrusion method, and then removing the lubricant to obtain an extruded product usually having a melting point of PTFE. Paste extrusion has been performed which fuses (sinters) at higher temperatures into the final product shape.
[0003]
On the other hand, other important products obtained from PTFE fine powder include breathable cloth materials for products such as clothes, tents and separation membranes. These products can be obtained by rapidly stretching an extruded product obtained by paste extrusion of PTFE fine powder in an unsintered state, and imparting a property that allows water vapor to pass through but not condensed water. .
U.S. Pat. Nos. 4,654,406 and 4,576,869 describe an extruded PTFE fine powder technique which is improved and obtained by adding 17% by weight of a lubricant. It is stated that stretching the article at a rate of 10% / sec to 100% / sec by at least 1000% achieves a stretch uniformity of at least 75%.
However, the required physical properties of a stretched product obtained by stretching PTFE are increasing year by year, and the stretched product obtained from the improved PTFE has a problem that the strength is not sufficient.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the state of the prior art described above, and provides PTFE having stretchability, fibrillation property and non-melt secondary workability, which has a high breaking strength and a small standard specific gravity. The purpose is to do.
[0005]
[Means for Solving the Problems]
The present invention relates to PTFE having stretchability, fibrillation property and non-melt fabrication property, wherein the polymer has a standard specific gravity of 2.160 or less, 32.0 N (3.26 kgf) to 49.0 N (5. A PTFE having a breaking strength of 0.0 kgf).
Here, the standard specific gravity refers to a value measured according to JIS K6935-2.
The present invention also provides the PTFE having a standard specific gravity of 2.157 or less.
Further, the present invention provides the PTFE, wherein the stress relaxation time is at least 650 seconds.
[0006]
The present invention also provides the PTFE having a breaking strength of 34.3 N (3.5 kgf) to 49.0 N (5.0 kgf).
Further, in the above PTFE, extrusion pressure, to provide a PTFE is 9.8MPa (100kgf / cm 2) ~19.6MPa (200kgf / cm 2).
Further, the present invention provides the PTFE, wherein the PTFE is a fine powder.
Further, the present invention provides the above PTFE, wherein the PTFE is a solid component dispersed in an aqueous dispersion.
Further, the present invention provides a porous body made of PTFE having the above-mentioned properties and an article thereof.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The PTFE of the present invention may be a homopolymer of TFE or a copolymer with a modified monomer other than TFE, such as a fluorine-containing monomer having an ethylenically unsaturated group. Examples of the fluorine-containing monomer having an ethylenically unsaturated group include hexafluoropropylene, perfluorobutene-1, perfluorohexene-1, perfluorononene-1, perfluoro (methyl vinyl ether), and perfluoro (ethyl vinyl ether) ), Perfluoro (propyl vinyl ether), perfluoro (heptyl vinyl ether), (perfluoromethyl) ethylene, (perfluorobutyl) ethylene, chlorotrifluoroethylene, and the like. These fluorinated monomers may be used alone or in combination of two or more. The amount of the modifying monomer is usually preferably 1% by mass or less, more preferably 0.5% by mass or less.
The PTFE of the present invention has stretchability, fibrillation, and non-melt secondary workability. These properties are those normally required for paste extrusion.
[0008]
The PTFE of the present invention has a standard specific gravity and a breaking strength in specific ranges, and is characterized by this.
The standard specific gravity (hereinafter, referred to as SSG) of the PTFE of the present invention is 2.160 or less, preferably 2.157 or less. SSG is an index of the average molecular weight, and the SSG of the PTFE of the present invention can be said to have a very small value, that is, a high average molecular weight. SSG tends to decrease with increasing average molecular weight. That is, since the PTFE of the present invention has a small SSG value, it can be predicted that the average molecular weight is considerably high. PTFE having an SSG value of 2.160 or less has a stretch ratio of the extruded product exceeding 3000% and is excellent in stretch uniformity.
The breaking strength of the expanded product of the PTFE of the present invention is in the range of 32.0 N (3.26 kgf) to 49.0 N (5.0 kgf), and preferably 34.3 N (3.5 kgf) to 49.0 N (5 kg). 0.0kgf). It surprisingly has a higher breaking strength than PTFE described in JP 2000-143727. Higher breaking strength is preferable because of excellent durability and the like. On the other hand, PTFE having a breaking strength exceeding 5.0 kgf tends to be extremely difficult to manufacture substantially.
Further, PTFE of the present invention, the extrusion pressure is preferably has a 9.8MPa (100kgf / cm 2) ~19.6MPa (200kgf / cm 2), 9.8MPa (100kgf / cm 2) ~16.7MPa more preferably those which are (170kgf / cm 2), those particularly preferably 9.8MPa (100kgf / cm 2) ~15.2MPa (155kgf / cm 2).
[0009]
The PTFE of the present invention preferably has a stress relaxation time of at least 650 seconds, more preferably at least 700 seconds, and particularly preferably at least 730 seconds.
The PTFE of the present invention can be produced by aqueous dispersion polymerization.
The aqueous dispersion polymerization can be carried out using TFE alone or TFE and a modifying monomer in an aqueous medium containing a dispersant and a polymerization initiator. The polymerization temperature is usually in the range of 50 to 120 ° C, preferably in the range of 60 to 100 ° C. The polymerization pressure may be appropriately selected, but may be in the range of 0.5 to 4.0 MPa, preferably in the range of 1.0 to 2.5 MPa.
[0010]
As the dispersant, an anionic surfactant having a low chain transfer property is more preferable, and a fluorocarbon surfactant is particularly preferable. As a specific example, XC n F 2n COOM (here, X represents hydrogen, chlorine, fluorine, (CF 3 ) 2 CF, M represents hydrogen, NH 4 , an alkali metal, and n represents an integer of 6 to 12. .), C m F 2m + 1 O (CF (CF 3) CF 2 O) p CF (CF 3) COOM ( wherein, M is hydrogen, NH 4, an alkali metal, m is 1 to 12 integer, p is an integer of 0~5.), C n F 2n + 1 SO 3 M, C n F 2n + 1 CH 2 CH 2 SO 3 M , and the like. Perfluorocarbon surfactants are more preferable, and C 7 F 15 COONH 4, C 8 F 17 COONH 4 , C 9 F 19 COONH 4 , C 10 F 21 COONH 4 , C 7 F 15 COONa 4 , C 8 F 17 COONa. , C 9 F 19 COONa, C 7 F 15 COOK , C 8 F 17 COOK, C 9 F 19 COOK, C 3 F 7 O (CF (CF 3 ) CF 2 O) 2 CF (CF 3 ) COONH 4 and the like. No. These may be used alone or in combination of two or more. The amount of the dispersant is preferably in the range of 250 to 5000 ppm based on the mass of water used. When the content is in this range, the stability of the aqueous dispersion is improved, and the breaking strength of the obtained PTFE is increased. It is also preferable to add a dispersant during polymerization in order to further improve the stability of the aqueous dispersion.
[0011]
As the polymerization initiator, the use of a specific redox polymerization initiator SSG is low, low extrusion pressure, PTFE of the present invention the breaking strength is large is obtained. Specific redox polymerization initiators, persulfates, and combinations of a water-soluble oxidizing agent and a sulfite or diimine such a reducing agent such as bromate. In particular, as a specific redox polymerization initiator, a combination of bromate and sulfite is more preferable, and a combination of potassium bromate and ammonium sulfite is most preferable. When using a bromate and a sulfite, it is preferable to charge one of them in a polymerization tank in advance, and then add the other continuously or intermittently to start polymerization. More preferably, the sulfite is added continuously or intermittently. The amount of the polymerization initiator may be appropriately selected, but is preferably 2 to 600 ppm based on the mass of water, and preferably 5 to 300 ppm in the case of a combination of bromate and sulfite. When the bromate is previously charged into the polymerization tank, the stability of the aqueous dispersion is further improved by increasing the bromate concentration. The smaller the amount of the polymerization initiator, the more preferable it is because PTFE having a small endothermic ratio tends to be obtained. On the other hand, if the amount of the polymerization initiator is too small, the polymerization rate tends to be too slow. If the amount is too large, the SSG of PTFE formed tends to be high.
[0012]
The aqueous dispersion polymerization is preferably carried out in the presence of a stabilizing aid. As the stabilizing aid, paraffin wax, fluorinated oil, fluorinated solvent, silicone oil and the like are preferable. These may be used alone or in combination of two or more. In particular, it is preferable to carry out in the presence of paraffin wax. The paraffin wax may be liquid, semi-solid or solid at room temperature, but is preferably a saturated hydrocarbon having 12 or more carbon atoms. Usually, the melting point of paraffin wax is preferably from 40 to 65 ° C, more preferably from 50 to 65 ° C. The amount of paraffin wax is preferably from 0.1 to 12% by mass, more preferably from 0.1 to 8% by mass, based on the mass of water used.
The aqueous dispersion polymerization is usually performed by gently stirring the aqueous polymerization mixture. The stirring conditions are controlled so that the PTFE fine particles in the generated aqueous dispersion do not aggregate. The aqueous dispersion polymerization is usually performed until the concentration of the PTFE fine particles in the aqueous dispersion becomes 15 to 40% by mass.
The aqueous dispersion polymerization is preferably performed in an acidic state by adding an acid for stabilizing the aqueous dispersion. As the acid, acids such as sulfuric acid, hydrochloric acid, and nitric acid are preferable, and nitric acid is more preferable. The addition of nitric acid further improves the stability of the aqueous dispersion.
An aqueous dispersion in which PTFE fine particles are dispersed is obtained by aqueous dispersion polymerization. The particle size of the PTFE fine particles in the aqueous dispersion has a wide distribution of usually 0.02 to 1.0 μm, and the average particle size is 0.1 to 1.0 μm. It is about 1 to 0.4 μm.
PTFE fine particles are aggregated from the obtained aqueous dispersion polymerization solution and dried to obtain a PTFE fine powder. As the aggregating method, it is preferable that the PTFE fine particles are agglomerated by stirring the aqueous dispersion at a high speed. At this time, it is preferable to add a coagulant. As the coagulant, ammonium carbonate, polyvalent inorganic salts, mineral acids, cationic surfactants, alcohols and the like are preferable, and ammonium carbonate is more preferable.
[0013]
Drying of PTFE obtained in a wet state by agglomeration can be performed at any temperature, but is preferably performed in the range of 100 to 250 ° C, particularly preferably in the range of 130 to 200 ° C. By drying, the PTFE fine powder of the present invention can be obtained. The PTFE fine powder preferably has an average particle size in the range of 100 to 800 μm, particularly preferably 400 to 600 μm.
Further, the present invention provides a porous body made of PTFE having the above-mentioned characteristics and an article thereof. Examples of the porous body include those manufactured by various methods. Examples of the porous body include a porous body obtained by performing stretching after paste extrusion molding, and a film or tube made of the porous body.
Paste extrusion molding refers to mixing PTFE fine powder with a lubricant to give PTFE fine powder fluidity to form molded articles such as sheets and tubes. The mixing ratio of the lubricant may be appropriately selected so that the PTFE fine powder has fluidity, and may be usually 10 to 30% by mass. As the lubricant, naphtha or a petroleum hydrocarbon having a boiling point of 200 ° C. or more is preferably used. The stretching may be performed at an appropriate speed, for example, at a speed of 5% / sec to 1000% / sec, so that an appropriate stretching ratio, for example, a stretching ratio of 500% or more is obtained.
The porosity of the porous body is not particularly limited, but usually the porosity is preferably in the range of 50 to 97%, and particularly preferably in the range of 70 to 95%.
The shape of the article made of the porous body can be various shapes such as a sheet shape, a film shape, and a fiber shape.
[0014]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In the following, “part” indicates “part by mass”. Examples 1 to 4 are Examples, and Example 5 is a Comparative Example.
In the examples, evaluation of stretchability, measurement of rupture strength, and measurement of stress relaxation time were performed by the following methods.
[0015]
(1) Evaluation of Extrusion Pressure and Stretchability 100 g of PTFE fine powder left at room temperature for 2 hours or more was placed in a 900 cc glass bottle, and 21.7 g of Isopar H (registered trademark, exxon) lubricant was added. Mix for 3 minutes to obtain PTFE mixture. After leaving the obtained PTFE mixture in a 25 ° C. constant temperature bath for 2 hours, at 25 ° C. under the conditions of a reduction ratio (ratio of the cross-sectional area of the entrance of the die to the cross-sectional area of the exit) of 100 and an extrusion speed of 51 cm / min. A paste extruded bead is obtained through an orifice having a diameter of 2.5 cm, a land length of 1.1 cm, and an introduction angle of 30 °. The pressure required for the extrusion at this time is measured, and is defined as the extrusion pressure. The obtained beads are dried at 230 ° C. for 30 minutes to remove the lubricant. The bead length is then cut to a suitable length, each end is fixed so that the gap between the clamps is either 3.8 cm or 5.1 cm, and heated to 300 ° C. in an air circulation furnace. . Next, the clamp is stretched at a predetermined speed until a predetermined interval is reached. This stretching method essentially follows the method disclosed in U.S. Pat. No. 4,576,869, except that the extrusion speed (51 cm / min) is different. "Stretch" is an increase in length, usually expressed in relation to the original length.
[0016]
(2) Measurement of breaking strength The sample for the breaking strength test measurement is to stretch the bead in the same manner as in the evaluation of stretchability, using a clamp interval of 5.1 cm, a stretching speed of 100% / sec, and a total stretching of 2400%. To produce. The breaking strength was the minimum tensile breaking load (force) of the three samples obtained from the stretched bead, one from each end of the stretched bead (excluding any neckdown in the range of the clamp), and one from its center. ) Is measured. A sample having a gauge length of 5.0 cm is sandwiched between jaws and fixed. The movable jaw is driven at a speed of 300 mm / min, and measured at room temperature using a tensile tester (manufactured by A & D).
[0017]
(3) Measurement of Stress Relaxation Time The sample for measuring the stress relaxation time stretches the beads as in the evaluation of stretchability using a clamp interval of 3.8 cm, a stretching speed of 1000% / sec, and a total stretching of 2400%. In this way, it is produced. Both ends of the stretch bead sample are stretch beads of 25 cm overall length that are taut by connecting to a fixture. The stress relaxation time is defined as the sample breaking after standing in an oven at 390 ° C., ie, above 380 ° C., the melting temperature of the extended chain configuration disclosed in US Pat. No. 5,470,655. It is the time required. Since the sample in the fixture is inserted into the oven through a slot (covered) on the side of the oven, the temperature does not drop during sample placement, and therefore, US Pat. No. 4,576,869. Recovery does not require much time as disclosed in the specification.
[0018]
[Example 1]
Into a 100 L polymerization tank were charged 928 g of paraffin wax, 55 L of ultrapure water, 36 g of ammonium perfluorooctanoate, 1 g of succinic acid, 8 ml of 1N aqueous nitric acid, and 0.4 g of potassium bromate. After nitrogen purging and degassing, the temperature was raised to 65 ° C. After the temperature was stabilized, TFE was introduced to a pressure of 1.9 MPa. While stirring the contents, 1 L of a 140 ppm aqueous solution of ammonium sulfite was continuously added for 60 minutes to initiate polymerization. As the polymerization proceeded, TFE was consumed and the pressure in the polymerization tank decreased, so TFE was continuously supplied to keep the pressure constant. After the completion of the addition of ammonium sulfite, 1 L of an aqueous solution of 11.1% by mass of ammonium perfluorooctanoate was added. When 270 minutes had elapsed from the start of the polymerization, the stirring and the supply of TFE were stopped, TFE in the polymerization tank was purged, and the gas phase was replaced with nitrogen. The obtained PTFE aqueous dispersion having a solid content of 28.9% by mass was aggregated in the presence of ammonium carbonate to separate wet PTFE. The obtained wet PTFE was dried at 160 ° C. to obtain a PTFE fine powder. Then, the SSG and average particle size of the obtained PTFE fine powder were measured. Also, the obtained PTFE fine powder was paste-extruded by the method described above to obtain a bead. The extrusion pressure at this time was measured. Then, the breaking strength and the stress relaxation time of the stretched bead obtained by stretching the bead were measured.
Then, 600 g of PTFE fine powder was added to a glass bottle at a ratio of 20% by weight with Isopar G (manufactured by Exxon), which was a lubricant, and mixed by rotating at 100 rpm for 30 minutes. The blended resin was aged at room temperature for 24 hours. This resin was pressed at a pressure of 0.2 MPa for 120 seconds to obtain a preform having a diameter of 68 mm. The preform was extruded through an orifice having a diameter of 11 mm, and the extruded product was rolled to a thickness of 0.1 mm. The rolled sheet was formed into a strip having a length of 5 cm and a width of 2 cm, and stretched 10 times at a temperature of 300 ° C. at a rate of 100% / sec. The porosity of the obtained film was 90%.
[0019]
[Example 2]
Into a 100 L polymerization tank were charged 928 g of paraffin wax, 55 L of ultrapure water, 36 g of ammonium perfluorooctanoate, 1 g of succinic acid, 8 ml of 1N aqueous nitric acid, and 0.4 g of potassium bromate. After nitrogen purging and degassing, the temperature was raised to 85 ° C. After the temperature was stabilized, TFE was introduced to a pressure of 1.9 MPa. While stirring the contents, 1 L of a 140 ppm aqueous solution of ammonium sulfite was continuously added for 60 minutes to initiate polymerization. As the polymerization proceeded, TFE was consumed and the pressure in the polymerization tank decreased, so TFE was continuously supplied to keep the pressure constant. After the completion of the addition of ammonium sulfite, 1 L of an aqueous solution of 11.1% by mass of ammonium perfluorooctanoate was added. When 270 minutes had elapsed from the start of the polymerization, the stirring and the supply of TFE were stopped, TFE in the polymerization tank was purged, and the gas phase was replaced with nitrogen. The obtained PTFE aqueous dispersion having a solid content of 29.6% by mass was aggregated in the presence of ammonium carbonate to separate wet PTFE. The obtained wet PTFE was dried at 250 ° C. to obtain a PTFE fine powder. In the same manner as in Example 1, the SSG and the average particle size of the PTFE fine powder, the extrusion pressure during paste extrusion, the breaking strength of the stretched bead, and the stress relaxation time were measured.
[0020]
[Example 3]
A 100 L polymerization tank was charged with 928 g of paraffin wax, 55 L of ultrapure water, 25 g of ammonium perfluorooctanoate, 1 g of succinic acid, 8 ml of 1N nitric acid aqueous solution, and 0.4 g of potassium bromate. After nitrogen purging and degassing, the temperature was raised to 85 ° C. After the temperature was stabilized, TFE was introduced to a pressure of 1.9 MPa. While stirring the contents, 1 L of a 140 ppm aqueous solution of ammonium sulfite was continuously added for 60 minutes to initiate polymerization. As the polymerization proceeded, TFE was consumed and the pressure in the polymerization tank decreased, so TFE was continuously supplied to keep the pressure constant. After the completion of the addition of ammonium sulfite, 1 L of an aqueous solution of 11.1% by mass of ammonium perfluorooctanoate was added. When 250 minutes had elapsed from the start of the polymerization, stirring and supply of TFE were stopped, TFE in the polymerization tank was purged, and then the gas phase was replaced with nitrogen. The obtained PTFE aqueous dispersion having a solid content of 24.1% by mass was aggregated in the presence of ammonium carbonate to separate wet PTFE. The obtained wet PTFE was dried at 140 ° C. to obtain a PTFE fine powder. In the same manner as in Example 1, the SSG and the average particle size of the PTFE fine powder, the extrusion pressure during paste extrusion, the breaking strength of the stretched bead, and the stress relaxation time were measured.
[0021]
[Example 4]
Into a 100 L polymerization tank were charged 928 g of paraffin wax, 55 L of ultrapure water, 25 g of ammonium perfluorooctanoate, 1 g of succinic acid, 8 ml of 1N nitric acid aqueous solution, and 6 g of potassium bromate. After nitrogen purging and degassing, the temperature was raised to 85 ° C. After the temperature was stabilized, TFE was introduced to a pressure of 1.2 MPa. While stirring the contents, 0.4 L of a 300 ppm aqueous solution of ammonium sulfite was continuously added for 80 minutes to initiate polymerization. As the polymerization proceeded, TFE was consumed and the pressure in the polymerization tank decreased, so TFE was continuously supplied to keep the pressure constant. 60 minutes after the start of the polymerization, 1 L of a 3.6% by mass aqueous solution of ammonium perfluorooctanoate was added. After the completion of the addition of ammonium sulfite, 1 L of an 8.1% by mass aqueous solution of ammonium perfluorooctanoate was added again. At 220 minutes after the start of the polymerization, the stirring and the supply of TFE were stopped, the TFE in the polymerization tank was purged, and then the gas phase was replaced with nitrogen. The obtained PTFE aqueous dispersion having a solid content of 26.0% by mass was aggregated in the presence of ammonium carbonate to separate wet PTFE. The obtained wet PTFE was dried at 200 ° C. to obtain a PTFE fine powder. In the same manner as in Example 1, the SSG and the average particle size of the PTFE fine powder, the extrusion pressure during paste extrusion, the breaking strength of the stretched bead, and the stress relaxation time were measured.
[0022]
[Example 5 (Comparative Example)]
A 100 L polymerization tank was charged with 736 g of paraffin wax, 59 L of ultrapure water, and 33 g of ammonium perfluorooctanoate. After the temperature was raised to 70 ° C., nitrogen purge and degassing were performed, TFE was introduced to a pressure of 1.9 MPa. Under stirring, 1 L of a 0.5% by mass aqueous solution of disuccinic acid peroxide was injected to initiate polymerization. Since TFE was consumed as the polymerization progressed and the pressure in the polymerization tank decreased, TFE was continuously supplied during the polymerization so as to keep the pressure constant. After 45 minutes from the start of the polymerization, the temperature was raised to 90 ° C. at 6 ° C./hour. When the supply amount of TFE reached 6.6 kg, 1 L of a 5.6% by mass aqueous solution of ammonium perfluorooctanoate was added. When 160 minutes had elapsed from the start of the polymerization, the stirring and the supply of TFE were stopped, and TFE in the polymerization tank was purged to stop the polymerization. The obtained PTFE aqueous dispersion having a solid content of 24.3% by mass was aggregated to separate wet PTFE. The obtained wet PTFE was dried at 205 ° C. to obtain a PTFE fine powder. In the same manner as in Example 1, the SSG and the average particle size of the PTFE fine powder, the extrusion pressure during paste extrusion, the breaking strength of the stretched bead, and the stress relaxation time were measured.
[0023]
[Table 1]
Figure 0003552685
[0024]
【The invention's effect】
The PTFE of the present invention has a low standard specific gravity and excellent breaking strength, and can be suitably used for a stretching operation after paste extrusion.

Claims (8)

延伸性、フィブリル化性および非溶融二次加工性を有するテトラフルオロエチレン重合体であって、該重合体が2.160以下の標準比重、32.0N(3.26kgf)〜49.0N(5.0kgf)の破断強度を有することを特徴とするテトラフルオロエチレン重合体。A tetrafluoroethylene polymer having stretchability, fibrillation property and non-melt fabrication property, wherein the polymer has a standard specific gravity of 2.160 or less, 32.0 N (3.26 kgf) to 49.0 N (5 A tetrafluoroethylene polymer having a breaking strength of 0.0 kgf). 標準比重が2.157以下である請求項1に記載のテトラフルオロエチレン重合体。The tetrafluoroethylene polymer according to claim 1, having a standard specific gravity of 2.157 or less. 応力緩和時間が、少なくとも650秒である請求項1または2に記載のテトラフルオロエチレン重合体。3. The tetrafluoroethylene polymer according to claim 1, wherein the stress relaxation time is at least 650 seconds. 破断強度が、34.3N(3.5kgf)〜49.0N(5.0kgf)である請求項1〜3のいずれかに記載のテトラフルオロエチレン重合体。The tetrafluoroethylene polymer according to any one of claims 1 to 3, having a breaking strength of 34.3 N (3.5 kgf) to 49.0 N (5.0 kgf). 押出し圧力が、9.8MPa(100kgf/cm)〜19.6MPa(200kgf/cm)である請求項1〜4のいずれかに記載のテトラフルオロエチレン重合体。Extrusion pressure, 9.8MPa (100kgf / cm 2) ~19.6MPa (200kgf / cm 2) tetrafluoroethylene polymer according to any one of claims 1 to 4 is. テトラフルオロエチレン重合体がファインパウダーである請求項1〜5のいずれかに記載のテトラフルオロエチレン重合体。The tetrafluoroethylene polymer according to any one of claims 1 to 5, wherein the tetrafluoroethylene polymer is a fine powder. テトラフルオロエチレン重合体が水性分散液の分散固体成分である請求項1〜5のいずれかに記載のテトラフルオロエチレン重合体。The tetrafluoroethylene polymer according to any one of claims 1 to 5, wherein the tetrafluoroethylene polymer is a dispersed solid component of the aqueous dispersion. 請求項1〜5のテトラフルオロエチレン重合体からなる多孔体およびその物品。A porous body comprising the tetrafluoroethylene polymer according to claim 1 and an article thereof.
JP2001226171A 2000-10-30 2001-07-26 Tetrafluoroethylene polymer with excellent strength Expired - Fee Related JP3552685B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001226171A JP3552685B2 (en) 2000-10-30 2001-07-26 Tetrafluoroethylene polymer with excellent strength
EP20010123224 EP1201689B1 (en) 2000-10-30 2001-10-02 Tetrafluoroethylene polymer for stretching
DE60135894T DE60135894D1 (en) 2000-10-30 2001-10-02 Tetrafluoroethylene polymer for elongation
US09/970,674 US6518381B2 (en) 2000-10-30 2001-10-05 Tetrafluoroethylene polymer for stretching
CNB011377550A CN100478367C (en) 2000-10-30 2001-10-30 Tetrafluoroethylene polymer for expansion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000331277 2000-10-30
JP2000-331277 2000-10-30
JP2001226171A JP3552685B2 (en) 2000-10-30 2001-07-26 Tetrafluoroethylene polymer with excellent strength

Publications (2)

Publication Number Publication Date
JP2002201217A JP2002201217A (en) 2002-07-19
JP3552685B2 true JP3552685B2 (en) 2004-08-11

Family

ID=26603074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226171A Expired - Fee Related JP3552685B2 (en) 2000-10-30 2001-07-26 Tetrafluoroethylene polymer with excellent strength

Country Status (1)

Country Link
JP (1) JP3552685B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113950A1 (en) 2009-03-30 2010-10-07 ダイキン工業株式会社 Polytetrafluoroethylene and method for producing same

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951970B2 (en) * 2003-12-22 2012-06-13 ダイキン工業株式会社 Non-melt processable polytetrafluoroethylene and its fine powder
US20060051568A1 (en) * 2004-09-09 2006-03-09 O'brien William G Composite membranes of high homogeneity
KR20080015441A (en) 2005-05-12 2008-02-19 닛토덴코 가부시키가이샤 Method for producing of polytetrafluoroethylene particle aggregate and method for producing polytetrafluoroethylene molded article
JP5082212B2 (en) * 2005-08-11 2012-11-28 ダイキン工業株式会社 Method for producing fluoroelastomer
EP2011804B1 (en) 2006-04-13 2013-01-16 Daikin Industries, Ltd. Tetrafluoroethylene polymer and aqueous dispersion thereof
CN101437877B (en) 2006-05-01 2011-12-07 日东电工株式会社 Process for production of polytetrafluoroethylene sheet, and process for production of polytetrafluoroethylene seal tape
JP4800906B2 (en) * 2006-11-15 2011-10-26 日東電工株式会社 Method for producing polytetrafluoroethylene-containing solid and method for producing polytetrafluoroethylene molded article
JP4846533B2 (en) * 2006-11-15 2011-12-28 日東電工株式会社 Method for producing polytetrafluoroethylene porous body
JP5122113B2 (en) * 2006-11-15 2013-01-16 日東電工株式会社 Method for producing polytetrafluoroethylene tube
US9707504B2 (en) 2012-04-20 2017-07-18 Daikin Industries, Ltd. Composition having PTFE as main component, mixed powder, material for molding, filtering medium for filter, air filter unit, and a method for manufacturing a porous membrane
WO2015060364A1 (en) 2013-10-23 2015-04-30 ダイキン工業株式会社 Embossed filter medium for air filter, filter pack, air filter unit, and production method for embossed filter medium for air filter
JP5823601B2 (en) 2013-11-29 2015-11-25 旭化成イーマテリアルズ株式会社 Polymer electrolyte membrane
WO2015080289A1 (en) 2013-11-29 2015-06-04 ダイキン工業株式会社 Modified polytetrafluoroethylene fine powder and uniaxially oriented porous body
KR20160091386A (en) 2013-11-29 2016-08-02 아사히 가세이 가부시키가이샤 Polymer electrolyte membrane
JP5862751B2 (en) * 2013-11-29 2016-02-16 ダイキン工業株式会社 Porous body, polymer electrolyte membrane, filter medium for filter and filter unit
EP3075768A4 (en) 2013-11-29 2017-06-21 Daikin Industries, Ltd. Biaxially-oriented porous film
JP6673230B2 (en) 2017-01-12 2020-03-25 ダイキン工業株式会社 Air filter media
US11851519B2 (en) 2017-08-10 2023-12-26 Daikin Industries, Ltd. Method for producing purified polytetrafluoroethylene aqueous dispersion liquid, method for producing modified polytetrafluoroethylene powder, method for producing polytetrafluoroethylene molded body, and composition
JP6974784B2 (en) 2018-03-01 2021-12-01 ダイキン工業株式会社 Fluoropolymer manufacturing method
JP6816746B2 (en) 2018-07-20 2021-01-20 ダイキン工業株式会社 Air filter Filter media, filter pack, and air filter unit
US20210221992A1 (en) 2018-07-23 2021-07-22 Daikin Industries, Ltd. Polytetrafluoroethylene and stretched body
WO2020067182A1 (en) 2018-09-28 2020-04-02 ダイキン工業株式会社 Filter medium for air filter, filter pack, air filter unit, and manufacturing methods therefor
CN116836340A (en) 2018-11-19 2023-10-03 大金工业株式会社 Process for producing modified polytetrafluoroethylene and composition
CN117417612A (en) 2018-11-19 2024-01-19 大金工业株式会社 Composition and stretched body
JP6825685B2 (en) 2018-12-10 2021-02-03 ダイキン工業株式会社 Tetrafluoroethylene polymer, air filter filter media, filter pack, and air filter unit
CN113366034B (en) 2019-02-01 2022-11-11 大金工业株式会社 Method for producing polytetrafluoroethylene
US20220119556A1 (en) 2019-02-07 2022-04-21 Daikin Industries, Ltd. Composition, stretched body and method of manufacturing thereof
JP7201948B2 (en) 2019-07-23 2023-01-11 ダイキン工業株式会社 Method for producing fluoropolymer, polytetrafluoroethylene composition and polytetrafluoroethylene powder
CN114729071A (en) 2019-11-19 2022-07-08 大金工业株式会社 Process for producing polytetrafluoroethylene
CN116457376A (en) 2020-11-19 2023-07-18 大金工业株式会社 Method for producing polytetrafluoroethylene and polytetrafluoroethylene-containing composition
JP7181480B2 (en) 2021-02-04 2022-12-01 ダイキン工業株式会社 Air filter medium, method for manufacturing air filter medium, filter medium for mask, and filter medium for pleated mask
EP4342921A1 (en) 2021-05-19 2024-03-27 Daikin Industries, Ltd. Method for producing fluoropolymer, method for producing polytetrafluoroethylene, and composition
JP7219412B2 (en) 2021-06-04 2023-02-08 ダイキン工業株式会社 Air filter medium, pleated filter medium, air filter unit, mask filter medium, and method for regenerating air filter medium
WO2024154777A1 (en) 2023-01-18 2024-07-25 ダイキン工業株式会社 Mixture for electrochemical device, mixture sheet for electrochemical device, electrode, and electrochemical device
JP2024102026A (en) 2023-01-18 2024-07-30 ダイキン工業株式会社 Tetrafluoroethylene polymer composition, binder for electrochemical device, electrode mixture, electrode, and secondary battery
JP2024102028A (en) 2023-01-18 2024-07-30 ダイキン工業株式会社 Mixture for electrochemical device, mixture sheet for electrochemical device, electrode, and electrochemical device
JP2024102029A (en) 2023-01-18 2024-07-30 ダイキン工業株式会社 Tetrafluoroethylene polymer composition, binder for electrochemical device, electrode mixture, electrode, and secondary battery
WO2024154809A1 (en) 2023-01-18 2024-07-25 ダイキン工業株式会社 Fluoropolymer composition, binder for electrochemical device, electrode mixture, electrode, and secondary battery
WO2024154804A1 (en) 2023-01-18 2024-07-25 ダイキン工業株式会社 Polytetrafluoroethylene composition
JP2024102037A (en) 2023-01-18 2024-07-30 ダイキン工業株式会社 Tetrafluoroethylene-based polymer composition, binder for electrochemical device, electrode mixture, electrode, and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113950A1 (en) 2009-03-30 2010-10-07 ダイキン工業株式会社 Polytetrafluoroethylene and method for producing same
JP2014240502A (en) * 2009-03-30 2014-12-25 ダイキン工業株式会社 Polytetrafluoroethylene and method for producing the same

Also Published As

Publication number Publication date
JP2002201217A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
JP3552685B2 (en) Tetrafluoroethylene polymer with excellent strength
US6518381B2 (en) Tetrafluoroethylene polymer for stretching
JP6194964B2 (en) Polytetrafluoroethylene and method for producing the same
JP5444712B2 (en) Tetrafluoroethylene polymer and aqueous dispersion thereof
TWI586689B (en) Modified polytetrafluoroethylene powder and uniaxially stretched porous body
JP7031680B2 (en) Method for producing modified polytetrafluoroethylene, molded product, stretched porous body
JP7088202B2 (en) Method for producing modified polytetrafluoroethylene, method for producing modified polytetrafluoroethylene powder, method for producing stretched porous body
JP7031679B2 (en) Method for producing modified polytetrafluoroethylene, molded product, stretched porous body
JP3552686B2 (en) Porous film made of tetrafluoroethylene polymer for stretching
JP3669172B2 (en) Tetrafluoroethylene copolymer, production method thereof and use thereof
JP5108171B2 (en) Method for polymerizing tetrafluoroethylene
JP4042390B2 (en) Method for producing tetrafluoroethylene polymer having excellent strength
US20030065115A1 (en) Process for producing a tetrafluoroethylene polymer
RU2271367C2 (en) Stretchable tetrafluoroethylene polymer
RU2783025C2 (en) Modified polytetrafluorethylene, molded product and method for production of stretched porous material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Ref document number: 3552685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees