JP3552035B2 - A molding method in which the adiabatic compression of the inner wall of a plastic injection mold immediately raises the temperature and immediately raises the temperature and injects. - Google Patents

A molding method in which the adiabatic compression of the inner wall of a plastic injection mold immediately raises the temperature and immediately raises the temperature and injects. Download PDF

Info

Publication number
JP3552035B2
JP3552035B2 JP2000079080A JP2000079080A JP3552035B2 JP 3552035 B2 JP3552035 B2 JP 3552035B2 JP 2000079080 A JP2000079080 A JP 2000079080A JP 2000079080 A JP2000079080 A JP 2000079080A JP 3552035 B2 JP3552035 B2 JP 3552035B2
Authority
JP
Japan
Prior art keywords
mold
temperature
resin
pressure
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000079080A
Other languages
Japanese (ja)
Other versions
JP2001225374A (en
Inventor
修 浜田
Original Assignee
株式会社システムリソーセズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社システムリソーセズ filed Critical 株式会社システムリソーセズ
Priority to JP2000079080A priority Critical patent/JP3552035B2/en
Publication of JP2001225374A publication Critical patent/JP2001225374A/en
Application granted granted Critical
Publication of JP3552035B2 publication Critical patent/JP3552035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックの射出成形の際の、特に薄肉成形用金型内での樹脂の固化及び流動に関するものである。
【0002】
【従来の技術】
熱可塑性樹脂の射出成形において、成形機内における溶融した樹脂の温度は一般的に200℃以上であり、それに対して金型の温度は100℃以下のものが多い。従って、射出された樹脂が金型内の流動経路を進むにつれて、樹脂の表面が金型内壁で冷却され固化し流路を狭くし、流動性を悪化させ、種々の成形不良発生の原因となっている。特に薄肉成形の場合において成形の困難さを増している。
【0003】
【発明が解決しようとする課題】
本来ならば、射出成形前の金型温度は樹脂温度に近い方が射出成形において樹脂は固化しにくくなり、流動性は向上する。そして射出成形された後に金型を冷却し、樹脂を固化することが成形の順序である。しかしこの順序に従うと、成形サイクルが非常に長くなり、その経済性は全く損なわれる。従って、現状では予め冷却された金型に樹脂を射出している。
本発明は、成形サイクルを延ばさずに成形し、しかも特に薄肉成形時に問題になる、樹脂の流動性を劣化させることなく、樹脂を高速で金型に充填させ、前述の欠点を解決しようとするものである。
【0004】
【課題を解決するための手段】
本発明は、射出直前の密閉された金型内部2a、2bと、金型外部に置かれた大気の圧縮室10を耐圧及び耐熱ホースで継ぎ、圧縮室内10のプレッシャーによって圧縮室内10の大気を金型内に送りこんで圧縮し金型内に断熱圧縮を発生させて、金型の樹脂流動経路2a及びキャビティ2bの薄表層部分を、瞬時に200℃以上に高温化し、問題を解決している。
【0005】
【発明の実施の形態】
金型内の細小の空間2a、2bと金型外部の空気圧縮室10を継ぐには、耐熱耐圧ホース5を用いて金型の接続口と圧縮室の接続口とを連通し、金型内接続口から金型内に穿った孔3a、自動バルブ3を経て金型内ランナー2aの末端に通孔する。しかしランナ2aの末端からは樹脂が射出されたとき、そこから圧縮空気の管路側3aへ樹脂の逆流があってはならない。又、樹脂が射出されたと同時に金型内の圧縮空気が排気される弁が必要である。更に、圧縮空気を製造する圧縮室10には、プレッシャー8が作動中は圧縮室10と大気を遮断する弁が必要であり、プレッシャーは圧縮動作の作動端で停止する機能が付加されていなければならない。又、圧縮室10と大気を遮断する電磁バルブ7は金型内に樹脂が射出完了した時点でバルブ開になり、大気に開放される。
尚、圧縮される気体は、窒素ガスでもかまわない。
【0006】
【実施例】
以下、添付図面に従って一実施例を説明する。図1は射出成形機の射出ノズルの先端1が金型2のノズル受面にタッチされ、射出直前の準備に入っている。2aは樹脂が流動する経路、通称スプル、ランナ、ゲートであり、2bはキャビティ、2cはキャビティの端末に設けられたエアーベント(通気性焼結ベントを含む)であり、排気孔2dに継がれている。本発明の目的は、2a及び2bの壁面薄表層部分を断熱圧縮によって、瞬時に高温化することである。従って、金型の密室化は重要であり、排気孔2dは非通電時「閉」の電磁バルブ4によって閉ざされている。
【0007】
図1における、圧縮室10は、非通電時「開」の電磁バルブ7によって開放されているが、金型の型締め動作が終了した時点でリミットスイッチもしくは射出成形機の電気出力によって通電され「閉」の状態になり、圧縮室10の密室化は完了する。
金型2と圧縮室10は、耐圧耐熱ホース5によって継がれている。これら各電磁バルブ4、7及びプレッシャー8の動作順序は射出成形機の型締完了の出力信号から出発するが、型締完了をリミットスイッチからの検知で電気信号に代えてもかまわない。
【0008】
装置を構成する機能部品の各動作順序を一覧表にして下記のように表記する。

Figure 0003552035
【0009】
図1における、2a、2b、2c、2d及び3a、5の総体積に対して、圧縮室10の体積の比率は1対10以上とする。これは断熱圧縮のポリトロープ曲線(機械工学便覧)から引用したもので、0℃の空気を瞬時に1/10に圧縮すると気体温度は200℃以上に上昇する。例えば20℃の空気を1/10に圧縮した場合の断熱圧縮のポリトロープ変化は、下記の数式によって算出される。
Figure 0003552035
しかし、断熱圧縮によって金型内を292℃にしても、熱は金型内壁から内部へ伝導し降温するので、金型内に断熱圧縮を発生させたら、間髪を入れず溶融樹脂を金型内に射出することが重要で、その時間差は0.1秒以下である。
又プレッシャー8の駆動源は、油圧及び電動モーターから選択できるが、上述の圧縮比1対10を金型の大きさ及び空気の温度による圧縮比への変化に対応させるには、ACサーボモーターの使用による制御を最適とする。
【0010】
図2は、自動バルブ3(実用新案登録第3067775号)の明細を示す図面である。3は、射出された樹脂の流動圧によって、空気の管路2aと3aを自動的に遮断する自動弁で、3aの管路を自動的に遮断密閉する。この3の働きで、ランナの樹脂流動長を最小限に止める。即ち、圧縮室から空気は3aから3に入り、3cの両サイドの空間から2aに入る。又、樹脂が射出されたとき、樹脂は2aから3に入り、射出の圧力によって3cを後退させ、3の固定端面に当って3cは停止し、3aへの樹脂の流入を遮断する。そして射出が完了し、金型が開き、スプル、ランナ、ゲートである2aが金型から取り出されたとき、3と3cとの間を埋めた樹脂は、2aに付属して型外に排除され、3bのコイルスプリングに押し戻されて3cは自動的に原点復帰する。かくして、圧縮空気の入路と樹脂の流失遮断は確保される。
【0011】
本発明の一実施例は上述の如く、金型と圧縮室を耐圧耐熱ホースで継ぎ、金型内2a、2bに断熱圧縮を発生させる方法である。
【0012】
【発明の効果】
上述したように、金型内の樹脂流動経路2a、2bの内壁の薄表層部の温度を、射出する直前に金型内において断熱圧縮を発生させることによって、瞬時に溶融樹脂の温度近くに高めると、金型内2a、2bにおける樹脂の流動性は向上し、尚且つ、金型への転写性も向上するので、薄肉成形と分類される成形分野において、特にその効果はあらわれる。又、この方法で金型内の薄表層部分を瞬時に高温化しても、成形品の冷却時間に影響を与えることはない。そして、本発明による効果を容易ならしめる要因は、金型内2a、2bに圧縮室10の空気を送り込むプレッシャー8のストローク操作の駆動源としてACサーボモータを使用した場合、金型の大きさ及び空気の温度による圧縮比への変化に対応させるにはACサーボモータの使用による制御を最適とすることである。
【図面の簡単な説明】
【図1】本発明の装置の構成を示す断面図である。
【図2】
樹脂の流動を遮断する自動バルブの組立図である。
【符号の説明】
1 射出成形機のノズル先端部
2 金型の型板(固定側及び可動側)
2a 樹脂の流動経路(スプル、ランナ)
2b キャビティ
2c エアベント
2d 排気孔
3 自動バルブ本体
3a 圧縮空気注入孔
3b コイルばね
3c スライド駒(樹脂遮断弁)
4 電磁弁
5 耐圧耐熱ホース
6 圧縮室ハウジング
7 電磁弁
8 プレッシャー
9 プレスロッド
10 圧縮室[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to solidification and flow of a resin during injection molding of a plastic, particularly in a thin-wall molding die.
[0002]
[Prior art]
In injection molding of a thermoplastic resin, the temperature of a molten resin in a molding machine is generally 200 ° C. or higher, while the temperature of a mold is 100 ° C. or lower in many cases. Therefore, as the injected resin proceeds along the flow path in the mold, the surface of the resin is cooled and solidified by the inner wall of the mold, narrowing the flow path, deteriorating the flowability, and causing various molding defects. ing. Particularly in the case of thin-wall molding, molding difficulty is increasing.
[0003]
[Problems to be solved by the invention]
Originally, if the mold temperature before injection molding is closer to the resin temperature, the resin is less likely to be solidified during injection molding, and the fluidity is improved. After the injection molding, the mold is cooled and the resin is solidified. However, if this sequence is followed, the molding cycle becomes very long and its economics are totally impaired. Therefore, at present, the resin is injected into a pre-cooled mold.
The present invention is intended to solve the above-mentioned drawbacks by molding the resin at a high speed without forming a molding cycle and extending the molding cycle, and without deteriorating the fluidity of the resin, which is a problem particularly in thin-wall molding. Things.
[0004]
[Means for Solving the Problems]
The present invention is sealed inside the mold 2a injection immediately before and 2b, the compression chamber 10 of air placed in the mold external joint in a pressure and heat-resistant hose 5, the compression chamber 10 by the pressure 8 in the compression chamber 10 The atmosphere is sent into the mold and compressed to generate adiabatic compression in the mold, and the thin surface layer portion of the resin flow path 2a and the cavity 2b of the mold is instantaneously heated to 200 ° C. or higher to solve the problem. ing.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to connect the small spaces 2a and 2b in the mold and the air compression chamber 10 outside the mold, the connection port of the mold and the connection port of the compression chamber are connected by using a heat-resistant pressure-resistant hose 5, and the inside of the mold is connected. Through the hole 3a drilled in the mold from the connection port and the automatic valve 3, it passes through the end of the runner 2a in the mold. However, when the resin is injected from the end of the runner 2a , there must be no backflow of the resin from there to the pipeline side 3a of the compressed air. Further, a valve 4 for discharging the compressed air in the mold at the same time when the resin is injected is required. Further, the compression chamber 10 for producing compressed air requires a valve 7 for shutting off the air from the compression chamber 10 while the pressure 8 is operating, and the pressure 8 is provided with a function of stopping at the operating end of the compression operation. There must be. The electromagnetic valve 7 that shuts off the compression chamber 10 from the atmosphere is opened when the resin is completely injected into the mold, and is opened to the atmosphere.
The gas to be compressed may be nitrogen gas.
[0006]
【Example】
Hereinafter, an embodiment will be described with reference to the accompanying drawings. In FIG. 1, the tip 1 of the injection nozzle of the injection molding machine is touched on the nozzle receiving surface of the mold 2 and preparations are made immediately before injection. 2a is a path through which the resin flows, so-called sprue, runner, and gate, 2b is a cavity, 2c is an air vent (including a permeable sintered vent) provided at the end of the cavity, and is connected to an exhaust hole 2d. ing. An object of the present invention is to instantaneously raise the temperature of the thin surface layer portions 2a and 2b by adiabatic compression. Therefore, it is important to make the mold tightly closed, and the exhaust hole 2d is closed by the electromagnetic valve 4 which is "closed" when not energized.
[0007]
In FIG. 1, the compression chamber 10 is opened by the electromagnetic valve 7 which is “open” when not energized, but is energized by a limit switch or an electric output of an injection molding machine when the mold closing operation of the mold is completed. In this state, the compression chamber 10 is closed.
The mold 2 and the compression chamber 10 are connected by a pressure-resistant heat-resistant hose 5. The operation sequence of the electromagnetic valves 4, 7 and the pressure 8 starts from the output signal of the completion of the mold clamping of the injection molding machine. However, the completion of the mold clamping may be replaced by an electric signal upon detection from a limit switch.
[0008]
Each operation order of the functional components constituting the apparatus is listed as below and described as follows.
Figure 0003552035
[0009]
The ratio of the volume of the compression chamber 10 to the total volume of 2a, 2b, 2c, 2d, 3a, and 5 in FIG. This is quoted from the polytropic curve of adiabatic compression (Handbook of Mechanical Engineering). When air at 0 ° C. is instantaneously compressed to 1/10, the gas temperature rises to 200 ° C. or more. For example, a polytropic change in adiabatic compression when air at 20 ° C. is compressed to 1/10 is calculated by the following equation.
Figure 0003552035
However, even in the 292 ° C. to the mold by adiabatic compression, so that heat is conducted to the inside from the inner wall of the mold cooling, When to generate adiabatic compression in the mold, the molten resin in a mold without a missing a beat Is important, and the time difference is 0.1 second or less.
The drive source of the pressure 8 can be selected from a hydraulic pressure and an electric motor. In order to make the above-mentioned compression ratio of 1:10 correspond to the change in the compression ratio due to the size of the mold and the temperature of the air, it is necessary to use an AC servo motor. Optimize control by use.
[0010]
FIG. 2 is a drawing showing the details of the automatic valve 3 (utility model registration No. 3067775). An automatic valve 3 automatically shuts off the air ducts 2a and 3a by the flow pressure of the injected resin, and automatically shuts off and seals the duct 3a. The action of this 3, to minimize the resin flow length of the runner. That is, air from the compression chamber enters 3 from 3a and enters 2a from the space on both sides of 3c. Further, when the resin is injected, the resin enters 3 from 2a, and 3c is retreated by the injection pressure, and 3c stops upon hitting the fixed end surface of 3 to block the flow of the resin into 3a. When the injection is completed and the mold is opened and the sprue, runner and gate 2a are taken out of the mold, the resin filled between 3 and 3c is removed from the mold attached to 2a. 3c is automatically returned to the origin by being pushed back by the coil spring 3b. In this way, the passage of the compressed air and the cutoff of the resin are ensured.
[0011]
As described above, one embodiment of the present invention is a method in which the mold and the compression chamber are connected by the pressure-resistant heat-resistant hose 5 to generate adiabatic compression in the molds 2a and 2b .
[0012]
【The invention's effect】
As described above, the temperature of the thin surface portion of the inner wall of the resin flow paths 2a and 2b in the mold is instantaneously increased to a temperature close to the temperature of the molten resin by generating adiabatic compression in the mold immediately before injection. In addition, since the fluidity of the resin in the molds 2a and 2b is improved, and the transferability to the mold is also improved, the effect is particularly exhibited in the molding field classified as thin-wall molding. Further, even if a high temperature the thin surface layer of the mold instantly in this way, not affect, cooling time of the molded article. Factors that facilitate the effect of the present invention are the size of the mold and the size of the mold when an AC servomotor is used as a drive source for the stroke operation of the pressure 8 for feeding the air in the compression chamber 10 into the molds 2a and 2b. In order to cope with the change in the compression ratio due to the temperature of the air, it is necessary to optimize the control by using an AC servomotor.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a configuration of an apparatus of the present invention.
FIG. 2
It is an assembly drawing of the automatic valve which shuts off the flow of resin.
[Explanation of symbols]
1 Nozzle tip of injection molding machine 2 Mold plate (fixed side and movable side)
2a Flow path of resin (sprue, runner)
2b Cavity 2c Air vent 2d Exhaust hole 3 Automatic valve body 3a Compressed air injection hole 3b Coil spring 3c Slide piece (resin shutoff valve)
Reference Signs List 4 solenoid valve 5 pressure-resistant heat-resistant hose 6 compression chamber housing 7 solenoid valve 8 pressure 9 press rod 10 compression chamber

Claims (2)

密閉された金型内における、樹脂の流動経路の金型内壁の薄表層部分を、射出直前に金型外部に設置された空気圧縮室内の空気を、プレッシャーの圧力で金型内に送り込み、金型内に断熱圧縮を発生させて瞬時に高温化し、続いて射出された樹脂の固化をふせぎ、樹脂の流動性を高めることを特徴とする射出成形方法In the closed mold, the thin surface layer of the inner wall of the mold in the flow path of the resin, the air in the air compression chamber installed outside the mold immediately before injection , is sent into the mold by pressure of pressure, Injection molding method characterized by generating adiabatic compression in the mold to instantaneously raise the temperature and subsequently preventing the solidification of the injected resin and increasing the fluidity of the resin 空気圧縮室内のプレッシャーの運動量を、ACサーボモータの有する制御機能を用いて、圧縮比率を任意に変更調節しうるようにした請求項1記載の射出成形方法。 2. The injection molding method according to claim 1 , wherein the compression ratio can be arbitrarily changed and adjusted by using the control function of the AC servomotor for the momentum of the pressure in the air compression chamber .
JP2000079080A 2000-02-16 2000-02-16 A molding method in which the adiabatic compression of the inner wall of a plastic injection mold immediately raises the temperature and immediately raises the temperature and injects. Expired - Fee Related JP3552035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079080A JP3552035B2 (en) 2000-02-16 2000-02-16 A molding method in which the adiabatic compression of the inner wall of a plastic injection mold immediately raises the temperature and immediately raises the temperature and injects.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079080A JP3552035B2 (en) 2000-02-16 2000-02-16 A molding method in which the adiabatic compression of the inner wall of a plastic injection mold immediately raises the temperature and immediately raises the temperature and injects.

Publications (2)

Publication Number Publication Date
JP2001225374A JP2001225374A (en) 2001-08-21
JP3552035B2 true JP3552035B2 (en) 2004-08-11

Family

ID=18596385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079080A Expired - Fee Related JP3552035B2 (en) 2000-02-16 2000-02-16 A molding method in which the adiabatic compression of the inner wall of a plastic injection mold immediately raises the temperature and immediately raises the temperature and injects.

Country Status (1)

Country Link
JP (1) JP3552035B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703890B2 (en) * 2001-05-25 2011-06-15 株式会社日本製鋼所 Molding mold heating apparatus and heating method

Also Published As

Publication number Publication date
JP2001225374A (en) 2001-08-21

Similar Documents

Publication Publication Date Title
JP3552035B2 (en) A molding method in which the adiabatic compression of the inner wall of a plastic injection mold immediately raises the temperature and immediately raises the temperature and injects.
JPH0872109A (en) Method and device for injection molding synthetic resin molded article
JP2010046876A (en) Injection molding system and its method
CN203495224U (en) Self-locking nozzle for injection molding machine
CN103464753A (en) Self-locking-type nozzle for injection moulding machine
JPS6152780B2 (en)
CN202357368U (en) Mould with cooling structure
CN213052682U (en) High vacuum die casting die
JPS60240425A (en) Resin leakage preventing device for multiple molding die
KR20080007945A (en) Gas breathing device of plastic mold
JP3725791B2 (en) Powder release agent coating method and mold
JPH02192869A (en) Die casting method
JP3564336B2 (en) Injection molding equipment
JPS59136213A (en) Cooling method of resin molding die
JPH04129715A (en) Vacuum forming metal die device and seal pressure control method in vacuum formation in mold cavity
CN214982895U (en) Cavity pressure equalizing type injection mold
JP3418495B2 (en) Injection molding method
JPS585238A (en) Fan gate type hot-runner mold
KR20190033470A (en) Die casting machine
JPS5914185Y2 (en) Resin molding equipment
JP3481520B2 (en) Injection molding nozzle
JPH04238009A (en) Controlling method of injection molder
JP2003071881A (en) Mold for injection molding
JP2002225096A (en) Vacuumizing mold structure
JPS5823559A (en) Non-porous vacuum die casting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees