JP3551732B2 - Stator for rotating electric machine - Google Patents

Stator for rotating electric machine Download PDF

Info

Publication number
JP3551732B2
JP3551732B2 JP32268497A JP32268497A JP3551732B2 JP 3551732 B2 JP3551732 B2 JP 3551732B2 JP 32268497 A JP32268497 A JP 32268497A JP 32268497 A JP32268497 A JP 32268497A JP 3551732 B2 JP3551732 B2 JP 3551732B2
Authority
JP
Japan
Prior art keywords
stator
electric machine
teeth
deformation pressure
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32268497A
Other languages
Japanese (ja)
Other versions
JPH11155263A (en
Inventor
俊幸 安島
文男 田島
博 片山
良一 長沼
和彦 河上
登行 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32268497A priority Critical patent/JP3551732B2/en
Publication of JPH11155263A publication Critical patent/JPH11155263A/en
Application granted granted Critical
Publication of JP3551732B2 publication Critical patent/JP3551732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回転電機用固定子に係り、特にディスク駆動用ブラシレス電動機等に好適な回転電機用固定子に関する。
【0002】
【従来の技術】
一般に事務機器用ディスク駆動用電動機は小スペース,省エネルギーの観点等から小型軽量で高効率であることが望まれる。このためには、永久磁石を利用したブラシレス電動機が最適である。特に、上記ブラシレス電動機の小型機の分野において、固定子巻線の多くは特開平7−298522 号公報にあるように固定子鉄心歯部に集中して巻装する集中巻方式が採用されている。
【0003】
上記従来例には、積層鉄心を円周方向で磁極毎に分割し、巻線後環状に結合して固定子鉄心を形成することが開示されている。
【0004】
また、特開昭62−203527号公報にはスロットを解放状態にして巻線し、その後鉄心歯部に設けられた貫通窓部(変形圧吸収空間)を圧縮変形してコイルを保持した点が開示されている。
【0005】
【発明が解決しようとする課題】
上記前者の従来技術によれば、固定子コイルは周方向に分割された固定子鉄心歯部に集中して巻装することによって固定子コイルのコイルエンド部も短く、かつコイルの占積率するので、電動機の体格を小さくすることができる利点がある。しかし、積層して分割した固定子鉄心歯部を環状にするため内外周部を溶接している。
【0006】
従って、第1には取り扱い部品点数が多く、構成が複雑になる。第2には分割された固定子鉄心歯部に直接固定子巻線を巻回しているため、コイル巻回に要する時間が長く、かつコイルを整列に巻回するのが困難である。さらには隣の固定子巻線間の隙間によって占積率が低下するなど、必ずしも小型軽量化,製作容易とは言えない等の問題点があった。
【0007】
また、後者の従来技術によれば、コイルの線積率が上がるので高出力,高効率化が期待できるが単に歯部のコイル係止片を巻線後に設けただけであるため小型軽量化にはつながらない。
【0008】
本発明の目的は小型軽量で、高効率が達成可能な回転電機の固定子を提供するにある。
【0009】
本発明の目的は小型にして、巻線占積率の高い積層鉄心を備えた回転電機の固定子を提供するにある。
【0010】
【課題を解決するための手段】
本発明は、歯部の内周部もしくは外周部に位置する継鉄部につなぎ片をもって環状に複数個の歯部を配列した鉄心素形鋼板、該素形鋼板を積層して形成した素形積層鉄心の歯部にコイルを巻装し、その後該積層鉄心を外周方向から所定の外径寸法まで圧縮変形して固定子鉄心とすることにより達成される。
【0011】
本発明の好ましくは、圧縮変形圧を歯部の根本部に形成した変形圧吸収空間により吸収することにより達成される。
【0012】
本発明の好ましくは、圧縮変形圧を歯部の外周継鉄部に形成した変形圧吸収空間により吸収することにより達成される。
【0013】
本発明は、積層されて形成された素形積層鉄心のスロットを解放状態にしてコイルを施し、その後外周方向から圧縮変形させて固定子鉄心とすることにより達成される。
【0014】
【発明の実施の形態】
第1の実施例
図1は本発明の第1の実施例における回転電機用固定子の積層鉄心成形状態図及び固定子コイル巻線状態図を示すもので、特に集中巻線型に有効な外転型電動機用固定子鉄心の構造である。
【0015】
固定子鉄心は図1に示すように、内周継鉄部11に放射状に複数個の歯部12を形成した積層鉄心1と、前記歯部12にそれぞれ巻装される固定子コイル2とから構成され、それぞれの歯部12は数ミリのスロット空隙gを介して環状に配列されている。
【0016】
前記積層鉄心1の原形である素形積層鉄心1Aの鋼板1枚1枚は磁性鋼板(例えば35S210)を図2のように打ち抜き或いはエッチング加工で形成したものが用いられる。即ち鉄心の素形鋼板は図2に示すように内周継鉄部11とそれぞれの歯部12間に変形圧吸収空間3が形成されるように歯部の根本部13から延びるつなぎ片14が設けられている。一方、反つなぎ片側は開口端4とし、その角部を契合端15,16としている。そしてこの素形鋼板は所定の板圧に積層され積層鉄心1の原形である素形積層鉄心1Aとなる。
【0017】
次に、固定子コイル2の巻線行程となるが、この状態では各々歯部12間、即ちスロット空間5は巻線機のノズルが十分に移動できる範囲まで広げて設けられており、余裕を持ってスピーディに、効果的にコイルが集中巻きされる。
【0018】
このとき、素形積層鉄心1Aは変形圧吸収空間3の分だけ巻線部内径および外径が大きいため固定子コイル2が入るスロット空間5の断面積は大きくできると共に、スロット空間5の開口部の幅G(固定子鉄心歯部12間のスリット)は外径の増大分だけ広がる。すなわち、スロット空間5の断面積が大きくなった分だけ固定子コイル2は巻数を多く巻装するか、あるいは巻線の線径を大きくすることができる。
【0019】
コイルが施された前記素形積層鉄心1Aは外周方向から所定の外径寸法まで圧縮変形されて、即ち変形圧吸収空間3がゼロになるまで圧縮変形されるとつなぎ片14は固定子コイル2の底辺に沿って塑性変形し、開口端の契合端15,16は互いにがっちり噛み合い強固に連結される。上記塑性変形による圧縮空間は前記したようにゼロが目標であるが、塑性変形の容易性を或いは塑性変形時のスプリングバックを考慮すれば予めつなぎ片14に塑性変形のための逃げ空間31を設けておくのが良い。これによって精度よく塑性変形される。
【0020】
ここで重要なのは歯部12が同心的に圧縮変形されることで、コイルの損傷防止,圧縮空間をゼロにして磁気損失を最小限に抑さえることにつながる。その一例を図3,図4にて説明する。図3,図4は積層鉄心をプレス機械により圧縮変形するための治具である。治具は、円筒状の内側面にテーパーを有する固定治具100と、その固定治具のテーパー面に対接して配置され、前記固定治具100のテーパー面に沿って移動する断面三角形状の摺動駒200と、素形積層鉄心1Aの内径を保持し、かつ前記摺動駒200のスライドをガイドする保持治具300とから構成される。摺動駒200は素形積層鉄心の歯部に相当する数だけ周方向に配置され、軸方向に押す力を固定治具100と摺動駒200とのテーパー面の分力により径方向の力に変換させ、素形積層鉄心歯部12に圧力を加えて素形積層鉄心1Aの変形圧吸収空間3を圧縮する。
【0021】
ここで、周方向に配置する摺動駒200の数は、素形積層鉄心歯部12と一対一に対応し、全ての素形積層鉄心歯部12を同時に、かつ均等に圧力を加える。すなわち、9個の歯部を所有する素形積層鉄心1Aの場合の摺動駒200の所定の数は9である。圧縮変形する素形積層鉄心1Aは、固定子コイル2を巻装したもので摺動駒200の中心に固定し、固定治具100に対して摺動駒200の押し込み送り量により発生する径方向の分力により圧縮変形される。このとき、圧縮時の圧力は、摺動駒200の送り量によって調整され、摺動駒200を介して個々の素形積層鉄心歯部12Aに圧力を加え、素形積層鉄心1Aの変形圧吸収空間3を押し潰す。
【0022】
これにより、積層鉄心1の全ての変形圧吸収空間3をほぼ同時に押し潰すことができるため圧縮変形圧後の積層鉄心1の形状の精度を確保することができる。
第2の実施例
図5,図6は第2の実施例を示すもので、前述の第1の実施例と相違する点は、図6からわかるように素形積層鉄心1Bの変形圧吸収空間3Aの成形は打ち抜きによって形成されていることである。これによってつなぎ片14aと14bが鉄心歯部12Bの両側に対向して位置し、素形積層鉄心1Bを圧縮成形する際均等にバランスして塑性変形させることができる。もちろん塑性変形の精度を上げるにはそれぞれのつなぎ片14a,14bに変形圧吸収空間31,32を設けておいた方が好ましい。
【0023】
第3の実施例
図7,図8は第3の実施例で、内転型磁石電動機に用いる場合の固定子を示す。図7において積層された素形積層鉄心20Aは外周継鉄部21の磁極間に相当する位置につなぎ片21Aを設けている。このつなぎ片は外周から内周に向けて斜めに掛けられ、これにより外周継鉄部21の内側と外側にそれぞれ変形圧吸収空間21a,21bが形成される。このように所定の厚さに積層された素形積層鋼板20Aは固定子コイル2を巻装した後、前述の実施例と同様の治具により同心状に圧縮変形される。これにより変形圧吸収空間21a,21bは詰まりゼロになってスロット空間Gも所定空隙gまで詰まる。
【0024】
なお、このようにして成形された積層鉄心は圧縮変形により生じる突き合わせ部21c,21dの結合力を得るため図8に示すようにアルミニウム製円筒ケーシング22で覆って使用するのが一般的であるが、突き合わせ部を溶接接合してもよい。
【0025】
第4の実施例
図9は第4の実施例で、前述同様内転型磁石電動機に用いる場合の固定子を示す。図において素形積層鉄心40は、外周継鉄部41の内周から外周に向かって「く」の字状のスリット41aが設けられており、その外周部はそれぞれの歯部42が環状つながるように外周に突出するつなぎ片41bにて連結されている。このつなぎ片41bは素形積層鉄心40の圧縮成型時に変形圧吸収空間として働き成形精度を高める。また使用状態ではアルミニウムケーシングに圧入すればつなぎ片が回り止め効果として働き機械強度の高い固定子となる。
【0026】
第5の実施例
図10,図11,図12は第5の実施例を示すもので、前述の第1の実施例におけるスロットピッチとスロット空間の開口部の幅gの寸法比(スロット開口率)の範囲を規定している。
【0027】
図10,図11の縦軸にはステータ外径φ=20mm,スロット開口率が16%の場合を基準値とし、各測定値を同基準値に対する比に換算して示したものである。なお、基準としたスロット構造の値はステータ外径φ=20mmにおいて自動巻線機を用いる場合の一般的な寸法である。また、モータは2〜5W級の永久磁石界磁の外転型ブラシレスモータとした。
【0028】
図11に示すように、永久磁石界磁のモータの振動要因には、ロータが回転したときに生じるコギングトルクとモータ通電時に生じる転流トルクリプルとがある。
【0029】
コギングトルクは、ロータが回転したときに永久磁石と固定子鉄心との空隙部(ギャップ)がスロット開口部で変化する(パーミアンスが変化する)ことによって発生し、固定子鉄心のスロット開口率を小さくすればコギングトルクは小さくできる。ステータ外径を大きくした場合、ステータの外側に配置された永久磁石の表面積を増やせるため、出力トルクを大きくできるが、コギングトルクも増大する。
【0030】
一方、転流トルクリプルΔTは固定子巻線のリアクタンスによる電流の遅れDtによってトルク変動が発生し、固定子鉄心のスロット開口率を小さくすれば転流トルクリプルは大きくなる。これは、スロット開口部の幅gを小さくするとスロット開口部での漏れリアクタンスが増えることにより固定子巻線のリアクタンスが増加するためである。
【0031】
図12で転流トルクリプルは、各U,V,W相の固定子巻線の巻線印加電圧Vu,Vv,Vwを相切替え(転流)して巻線電流Iu,Iv,Iwを流す際、巻線のリアクタンスにより印加電圧から巻線電流が遅れDtを生じ、各U,V,W相の総合の出力トルクは相切替えの度に落ち込み脈動トルクとなる。この脈動分が転流トルクリプルΔTである。ここで、W相の巻線電流Iwと巻線印加電圧Vv,Vwは図示していない。
【0032】
ステータ外径を大きくした場合、永久磁石の磁束量が増やせるため、小さい巻線電流値で同じ出力トルクを得ることが可能となる。すなわち、ステータ外径が大きいφ24を用いてφ16と同じ出力トルクを得ようとした場合、巻線電流は小さくできるため、巻線電流の影響を小さくすることができ、転流トルクリプルは小さくすることができる。
【0033】
図10に示すように、これら2つのトルクリプル成分によって生じるモータ振動(周方向の振動)はモータの取付部を介して装置全体を加振し、振動・騒音の原因となる。モータ振動比とスロット開口率の関係は、下に凸の曲線となり最小値が存在する。
【0034】
基準値以下となり、かつステータ外径によらずモータ振動が最小値となるスロット開口率を求めると、ステータ外径φ24とφ16の交点となるスロット開口率が12.5% 以下で、かつステータ外径φ24とφ20の交点となるスロット開口率が5%以上の範囲に設定すれば良いことが見いだせる。
【0035】
以上により、本発明による固定子鉄心のスロットピッチとスロット開口部の幅寸法比を永久磁石界磁のモータに適用すれば、振動・騒音の低減が可能となる。
【0036】
【発明の効果】
本発明によれば、積層されて形成された素形積層鉄心のスロットを解放状態にしてコイルを施し、その後外周方向から圧縮変形させて固定子鉄心としてあるので、小型軽量,高効率が達成可能な回転電機の固定子を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例における巻線後の固定子鉄心の正面図。
【図2】図1における加工前正面図。
【図3】本発明に用いられる治具と固定子鉄心の配置横断面図。
【図4】図3における要部横断面図。
【図5】本発明の他の一実施例における巻線後の固定子鉄心の正面図。
【図6】図5における加工前正面図。
【図7】本発明の更に他の実施例に固定子鉄心の加工前正面図。
【図8】図7の使用状態を示す固定子鉄心の正面図。
【図9】本発明の更に他の実施例における固定子鉄心の加工前正面図。
【図10】モータ振動とスロット開口率の関係図。
【図11】図10におけるモータ振動要因の関係図。
【図12】図11における転流トルクリプルの説明図。
【符号の説明】
1…積層鉄心、1A,1B,20A…素形積層鉄心、2…固定子コイル、3,3A,21a,21b,31,32…変形圧吸収空間、5…スロット空間、11…内周継鉄部、12…歯部、13…歯部の根本、14,14a,14b,21A…つなぎ片。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stator for a rotating electrical machine, and more particularly to a stator for a rotating electrical machine suitable for a diskless brushless motor or the like.
[0002]
[Prior art]
In general, a disk drive motor for office equipment is desired to be small, lightweight and highly efficient from the viewpoint of small space and energy saving. For this purpose, a brushless electric motor using a permanent magnet is optimal. In particular, in the field of small-sized brushless motors, a concentrated winding system in which most of the stator windings are concentrated and wound around the stator core teeth as disclosed in JP-A-7-298522 is adopted. .
[0003]
The above-mentioned conventional example discloses that a laminated core is divided into magnetic poles in a circumferential direction, and the stator core is formed by winding and winding and joining annularly.
[0004]
Japanese Patent Application Laid-Open No. Sho 62-203527 discloses that a slot is released and winding is performed, and then a through-window (deformation pressure absorbing space) provided in an iron core portion is compressed and deformed to hold a coil. It has been disclosed.
[0005]
[Problems to be solved by the invention]
According to the former conventional technique, the stator coil is concentrated and wound around the stator core teeth divided in the circumferential direction, so that the coil end portion of the stator coil is also short, and the space factor of the coil is increased. Therefore, there is an advantage that the physique of the electric motor can be reduced. However, the inner and outer peripheries are welded in order to make the stator core tooth portions laminated and divided into an annular shape.
[0006]
Therefore, first, the number of parts to be handled is large, and the configuration becomes complicated. Second, since the stator winding is wound directly around the divided stator core teeth, the time required for winding the coil is long, and it is difficult to wind the coil in alignment. Further, there is a problem that the space factor is not necessarily reduced, and that it cannot be said that it is easy to manufacture.
[0007]
According to the latter conventional technology, high output and high efficiency can be expected because the coil area factor is increased. However, since the coil locking piece of the tooth portion is simply provided after the winding, the size and weight can be reduced. I can't connect.
[0008]
An object of the present invention is to provide a stator of a rotating electric machine that is small and lightweight and can achieve high efficiency.
[0009]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a stator for a rotating electrical machine having a small size and a laminated core having a high winding space factor.
[0010]
[Means for Solving the Problems]
The present invention relates to an iron core steel plate in which a plurality of teeth are arrayed in a ring with a connecting piece at a yoke portion located at an inner peripheral portion or an outer peripheral portion of a tooth portion, and a shape formed by laminating the shape steel plates. This is achieved by winding a coil around the teeth of the laminated core and then compressing and deforming the laminated core from the outer peripheral direction to a predetermined outer diameter to form a stator core.
[0011]
Preferably, the present invention is achieved by absorbing the compressive deformation pressure by a deformation pressure absorbing space formed at the root of the tooth portion.
[0012]
Preferably, the present invention is achieved by absorbing the compressive deformation pressure by a deformation pressure absorbing space formed in the outer yoke portion of the tooth portion.
[0013]
The present invention is achieved by applying a coil with the slots of the elementary laminated core formed by lamination being released, and then compressively deforming the stator from the outer peripheral direction to obtain a stator core.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
First Embodiment FIG. 1 shows a state diagram of a laminated core of a stator for a rotating electric machine and a state diagram of a stator coil winding according to a first embodiment of the present invention. It is a structure of a stator core for a type motor.
[0015]
As shown in FIG. 1, the stator core is composed of a laminated core 1 in which a plurality of teeth 12 are radially formed on an inner peripheral yoke portion 11, and a stator coil 2 wound around each of the teeth 12. The teeth 12 are arranged in a ring shape with a slot gap g of several millimeters.
[0016]
Each of the steel sheets of the elementary laminated iron core 1A which is the original form of the laminated iron core 1 is formed by punching or etching a magnetic steel sheet (for example, 35S210) as shown in FIG. That is, as shown in FIG. 2, the shaped steel plate of the iron core is provided with a connecting piece 14 extending from the root portion 13 of the tooth portion so that the deformation pressure absorbing space 3 is formed between the inner peripheral yoke portion 11 and each tooth portion 12. ing. On the other hand, one side of the anti-joint is an open end 4 and its corners are engagement ends 15 and 16. Then, the formed steel sheet is laminated at a predetermined plate pressure to form a formed laminated iron core 1A which is an original form of the laminated iron core 1.
[0017]
Next, the winding process of the stator coil 2 is performed. In this state, the space between the teeth 12, that is, the slot space 5 is provided so as to be widened to the extent that the nozzle of the winding machine can move sufficiently. Concentrated winding of the coil is speedy and effective.
[0018]
At this time, the cross section of the slot space 5 in which the stator coil 2 enters can be made large because the inner diameter and the outer diameter of the winding portion of the elementary laminated iron core 1A are large by the deformation pressure absorption space 3, and the opening of the slot space 5 The width G (slit between the stator core teeth 12) is increased by an increase in the outer diameter. That is, the stator coil 2 can be wound with a large number of turns or the wire diameter of the winding can be increased by an amount corresponding to the increase in the sectional area of the slot space 5.
[0019]
When the coil is applied to the elementary laminated iron core 1A, it is compressed and deformed from the outer peripheral direction to a predetermined outer diameter, that is, when the deformed pressure absorbing space 3 is compressed and deformed to zero, the connecting piece 14 becomes the stator coil 2A. Are plastically deformed along the bottom side, and the engagement ends 15 and 16 of the open ends are firmly engaged with each other and are firmly connected. The target of the compression space due to the plastic deformation is zero as described above. However, in consideration of the easiness of the plastic deformation or the springback at the time of the plastic deformation, an escape space 31 for the plastic deformation is provided in the connecting piece 14 in advance. Good to keep. Thereby, plastic deformation is performed with high accuracy.
[0020]
What is important here is that the teeth 12 are concentrically compressed and deformed, thereby preventing damage to the coil and reducing the compression space to zero to minimize magnetic loss. One example will be described with reference to FIGS. 3 and 4 show a jig for compressing and deforming the laminated core by a press machine. The jig is provided with a fixing jig 100 having a cylindrical inner surface tapered, and disposed in contact with the tapered surface of the fixing jig, and has a triangular cross section that moves along the tapered surface of the fixing jig 100. The sliding piece 200 includes a holding jig 300 that holds the inner diameter of the elementary laminated iron core 1A and guides the sliding of the sliding piece 200. The sliding pieces 200 are arranged in the circumferential direction by the number corresponding to the tooth portions of the elementary laminated iron core, and a force in the axial direction is applied by a component force of a taper surface between the fixing jig 100 and the sliding piece 200 in a radial direction. Then, the deformed pressure absorbing space 3 of the shaped laminated core 1A is compressed by applying pressure to the shaped laminated iron core teeth 12.
[0021]
Here, the number of the sliding pieces 200 arranged in the circumferential direction corresponds one-to-one with the elementary laminated iron core teeth 12, and applies pressure to all the elementary laminated iron core teeth 12 simultaneously and uniformly. That is, the predetermined number of the sliding pieces 200 is 9 in the case of the elementary laminated iron core 1A having nine teeth. The compression-deformed elementary laminated core 1 </ b> A is wound around the stator coil 2 and is fixed to the center of the sliding piece 200, and the radial direction generated by the pushing amount of the sliding piece 200 with respect to the fixing jig 100. Is compressed and deformed by the component force. At this time, the pressure at the time of compression is adjusted by the feed amount of the sliding piece 200, and a pressure is applied to each of the element laminated iron core teeth 12A via the sliding piece 200 to absorb the deformation pressure of the element laminated iron core 1A. Crush space 3.
[0022]
Thereby, all the deformation pressure absorption spaces 3 of the laminated core 1 can be crushed almost simultaneously, so that the accuracy of the shape of the laminated core 1 after the compressive deformation pressure can be secured.
Second Embodiment FIGS. 5 and 6 show a second embodiment. The difference from the first embodiment is that, as can be seen from FIG. 6, the deformed pressure absorbing space of the elementary laminated iron core 1B. 3A is formed by punching. As a result, the connecting pieces 14a and 14b are located on both sides of the iron core tooth portion 12B so as to be evenly balanced and plastically deformed when the elementary laminated iron core 1B is compression molded. Of course, in order to increase the accuracy of plastic deformation, it is preferable to provide deformation pressure absorbing spaces 31, 32 in the respective connecting pieces 14a, 14b.
[0023]
Third Embodiment FIGS. 7 and 8 show a stator according to a third embodiment when used in an adduction type magnet motor. In FIG. 7, the laminated laminated core 20 </ b> A has a connecting piece 21 </ b> A at a position corresponding to between the magnetic poles of the outer yoke 21. The connecting piece is hung obliquely from the outer circumference to the inner circumference, thereby forming deformed pressure absorbing spaces 21a and 21b inside and outside the outer yoke 21 respectively. After the stator coil 2 is wound around the thus formed elemental laminated steel sheet 20A laminated to a predetermined thickness, it is compressed and deformed concentrically by the same jig as in the above-described embodiment. As a result, the deformation pressure absorbing spaces 21a and 21b become clogged to zero, and the slot space G also becomes clogged to the predetermined gap g.
[0024]
The laminated iron core thus formed is generally used by covering it with an aluminum cylindrical casing 22 as shown in FIG. 8 in order to obtain the coupling force of the butted portions 21c and 21d generated by compression deformation. Alternatively, the butted portions may be joined by welding.
[0025]
Fourth Embodiment FIG. 9 shows a stator according to a fourth embodiment which is used in an adduction type magnet motor as described above. In the figure, the elementary laminated iron core 40 is provided with a slit 41a in the shape of a "<" from the inner periphery to the outer periphery of the outer yoke portion 41, and the outer periphery thereof is formed so that the respective tooth portions 42 are connected in an annular shape. Are connected by a connecting piece 41b projecting to the outer periphery. The connecting piece 41b acts as a deformation pressure absorbing space at the time of compression molding of the elementary laminated core 40 to enhance the molding accuracy. In use, if pressed into an aluminum casing, the connecting piece acts as a detent effect to provide a stator with high mechanical strength.
[0026]
Fifth Embodiment FIGS. 10, 11, and 12 show a fifth embodiment, in which the dimensional ratio (slot opening ratio) of the slot pitch and the width g of the opening of the slot space in the first embodiment is described. ).
[0027]
The vertical axis in FIGS. 10 and 11 shows the case where the stator outer diameter φ = 20 mm and the slot opening ratio is 16% as a reference value, and converts each measured value into a ratio to the reference value. In addition, the value of the slot structure as a reference is a general dimension when an automatic winding machine is used when the stator outer diameter φ is 20 mm. The motor was an external rotation type brushless motor having a permanent magnet field of 2 to 5 W class.
[0028]
As shown in FIG. 11, the factors of the motor vibration of the permanent magnet field include a cogging torque generated when the rotor rotates and a commutation torque ripple generated when the motor is energized.
[0029]
The cogging torque is generated when a gap between the permanent magnet and the stator core changes (permeance changes) at the slot opening when the rotor rotates, and the slot opening ratio of the stator core decreases. By doing so, the cogging torque can be reduced. When the outer diameter of the stator is increased, the output torque can be increased since the surface area of the permanent magnet disposed outside the stator can be increased, but the cogging torque also increases.
[0030]
On the other hand, the commutation torque ripple ΔT causes torque fluctuation due to the current delay Dt due to the reactance of the stator winding, and the commutation torque ripple increases when the slot opening ratio of the stator core is reduced. This is because when the width g of the slot opening is reduced, the reactance of the stator winding increases due to an increase in leakage reactance at the slot opening.
[0031]
In FIG. 12, the commutation torque ripple is generated when the winding currents Iu, Iv, Iw flow by switching the phases of the winding applied voltages Vu, Vv, Vw of the U, V, W phase stator windings (commutation). Due to the reactance of the winding, the winding current is delayed from the applied voltage by a delay Dt, and the total output torque of each of the U, V, and W phases drops every time the phase is switched to become a pulsating torque. This pulsation is the commutation torque ripple ΔT. Here, the W-phase winding current Iw and the winding applied voltages Vv and Vw are not shown.
[0032]
When the stator outer diameter is increased, the amount of magnetic flux of the permanent magnet can be increased, so that the same output torque can be obtained with a small winding current value. In other words, when trying to obtain the same output torque as φ16 using φ24 having a large stator outer diameter, the winding current can be reduced, so that the effect of the winding current can be reduced and commutation torque ripple should be reduced. Can be.
[0033]
As shown in FIG. 10, motor vibration (peripheral vibration) generated by these two torque ripple components vibrates the entire apparatus via a motor mounting portion, and causes vibration and noise. The relationship between the motor vibration ratio and the slot opening ratio becomes a downwardly convex curve and has a minimum value.
[0034]
When the slot opening ratio at which the motor vibration becomes the minimum value regardless of the stator outer diameter is obtained below the reference value, the slot opening ratio at the intersection of the stator outer diameters φ24 and φ16 is 12.5% or less and the stator outer diameter is less than 12.5%. It can be seen that the slot opening ratio at the intersection of the diameters φ24 and φ20 should be set to a range of 5% or more.
[0035]
As described above, if the slot pitch ratio of the stator core and the width dimension ratio of the slot opening according to the present invention are applied to a permanent magnet field motor, vibration and noise can be reduced.
[0036]
【The invention's effect】
According to the present invention, since the coil is formed with the slots of the elementary laminated cores formed by lamination being released, and then compressed and deformed from the outer peripheral direction to form the stator core, compactness, light weight and high efficiency can be achieved. Thus, it is possible to provide a stator for a rotating electric machine.
[Brief description of the drawings]
FIG. 1 is a front view of a stator core after winding in one embodiment of the present invention.
FIG. 2 is a front view before processing in FIG. 1;
FIG. 3 is an arrangement transverse sectional view of a jig and a stator core used in the present invention.
FIG. 4 is a cross-sectional view of a main part in FIG. 3;
FIG. 5 is a front view of a stator core after winding in another embodiment of the present invention.
FIG. 6 is a front view before processing in FIG. 5;
FIG. 7 is a front view of a stator core before machining according to still another embodiment of the present invention.
FIG. 8 is a front view of the stator core showing the use state of FIG. 7;
FIG. 9 is a front view of a stator core before machining according to still another embodiment of the present invention.
FIG. 10 is a diagram showing the relationship between motor vibration and slot opening ratio.
FIG. 11 is a diagram showing the relationship between motor vibration factors in FIG. 10;
FIG. 12 is an explanatory diagram of a commutation torque ripple in FIG. 11;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laminated iron core, 1A, 1B, 20A ... Elementary laminated iron core, 2 ... Stator coil, 3, 3A, 21a, 21b, 31, 32 ... Deformation pressure absorption space, 5 ... Slot space, 11 ... Inner circumference yoke part, 12 ... tooth part, 13 ... root of tooth part, 14, 14a, 14b, 21A ... connecting piece.

Claims (6)

歯部の内周部もしくは外周部に位置する継鉄部につなぎ片をもって環状に複数個の歯部を配列した鉄心素形鋼板を積層した固定子を備える回転電機において、前記固定子の歯部にはコイルが巻装され、前記歯部の根本部に設けられた変形圧吸収空間が圧縮されて固定子が形成されることを特徴とする回転電機。In a rotating electric machine having a stator in which iron core shaped steel plates in which a plurality of teeth are arrayed in a ring with a connecting piece at a yoke portion located at an inner peripheral portion or an outer peripheral portion of a tooth portion are laminated, the tooth portions of the stator A rotary electric machine, wherein a coil is wound around the base, and a deformation pressure absorption space provided at a root portion of the tooth portion is compressed to form a stator. 請求項1記載において、圧縮変形圧を歯部の外周継鉄部に形成した変形圧吸収空間により吸収したことを特徴とする回転電機。 According to claim 1, wherein the rotating electric machine, characterized in that absorbed by the compressive deformation pressure formed on the outer peripheral yoke portion of the tooth portion deformation pressure absorbing space. 請求項記載において、変形圧吸収空間は歯部の根本部の少なくとも一方に形成されたつなぎ片により形成されていることを特徴とする回転電機。 According to claim 1, wherein the rotating electric machine deformation pressure absorbing space is characterized in that it is formed by connecting pieces formed on at least one of the root portion of the teeth. 請求項記載において、変形圧吸収空間は歯部の根本部の少なくとも一方に形成されたつなぎ片により形成されて、反つなぎ片側開口端を契合端としていることを特徴とする回転電機。 According to claim 1, wherein the deformation pressure absorbing space is formed by connecting pieces formed on at least one of the root portion of the teeth, rotary electric machine, characterized in that as the engaged end of the reaction tie one open end. 請求項記載において、変形圧吸収空間は歯部の外周継鉄部に形成されたつなぎ片により形成されていることを特徴とする回転電機。 In claim 2, the rotational electric machine, characterized in that the deformation pressure absorbing space is formed by connecting pieces formed in the outer circumferential yoke portion of the teeth. 請求項1記載において、固定子鉄心のスロットピッチとスロット開口部の幅寸法比を5%〜12.5% の範囲に設定したことを特徴とする回転電機。 According to claim 1, wherein the rotating electric machine, characterized in that setting the slot pitch and the width ratio of the slot opening of the stator core in the range of 5% to 12.5%.
JP32268497A 1997-11-25 1997-11-25 Stator for rotating electric machine Expired - Fee Related JP3551732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32268497A JP3551732B2 (en) 1997-11-25 1997-11-25 Stator for rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32268497A JP3551732B2 (en) 1997-11-25 1997-11-25 Stator for rotating electric machine

Publications (2)

Publication Number Publication Date
JPH11155263A JPH11155263A (en) 1999-06-08
JP3551732B2 true JP3551732B2 (en) 2004-08-11

Family

ID=18146471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32268497A Expired - Fee Related JP3551732B2 (en) 1997-11-25 1997-11-25 Stator for rotating electric machine

Country Status (1)

Country Link
JP (1) JP3551732B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722458B1 (en) 2004-03-03 2017-05-31 Mitsubishi Denki Kabushiki Kaisha Armature core for an electric machine
JP4682100B2 (en) 2006-07-13 2011-05-11 株式会社日立製作所 Rotating electric machine
JP4466671B2 (en) 2007-03-28 2010-05-26 株式会社日立製作所 Induction machine
DE102010043976A1 (en) * 2010-11-16 2012-05-16 Robert Bosch Gmbh Component for manufacturing machine component e.g. stator for electric machine, has several teeth which are arranged at base portion in arrangement direction, and base portion comprises one or more upsetting regions between each teeth
US8704422B2 (en) * 2010-11-18 2014-04-22 Nidec Motor Corporation Full round stator assembly and electromagnetic machine having high slot fill
JP5382033B2 (en) 2011-03-01 2014-01-08 株式会社デンソー MANUFACTURING METHOD FOR STATOR CORE OF Rotating Electric Machine

Also Published As

Publication number Publication date
JPH11155263A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
KR100898202B1 (en) Stator and motor, to which the stator is applied, and method of manufacturing the stator
US8384263B2 (en) Rotating electrical machine having a compact stator
EP1777795B1 (en) Permanent magnet pole assembly
JP3122433B2 (en) Stator core for alternately stacked linear motor
US8294325B2 (en) Stator core for dynamo-electric machine and manufacturing method therefor
WO2002071575A3 (en) Motor with divided stator having bonded laminations
JP2006101673A (en) Rotating machine with permanent magnet and method for manufacturing teeth of stator iron core of the same
JP3137510B2 (en) Stator for synchronous machine, method of manufacturing the same, teeth piece and yoke piece
JP2001292542A (en) Manufacturing method for stator core of motor and stator
JP3551732B2 (en) Stator for rotating electric machine
JP4568639B2 (en) Stator
KR101247683B1 (en) Amorphous Stator, Electric Motor Using the Same, and Producing Method thereof
JPH11308789A (en) Stator of electric motor
JP2003304656A (en) Stator structure of dynamo-electric machine and method of manufacturing stator
JP3305973B2 (en) Rotating electric machine
JP2002315251A (en) Stator of motor and method of manufacturing the same
JP2010148225A (en) Rotating electric machine
JP4742947B2 (en) Stator, electric motor, and stator manufacturing method
JP2005094927A (en) Rotary electric machine and driving coil for armature for use in rotary electric machine
WO2007123058A1 (en) Motor
JP4305978B2 (en) Rotating electric machine stator and rotating electric machine
CN212486213U (en) Single-phase stator-rotor assembly of transverse flux motor and transverse flux single-phase motor
JP5109737B2 (en) Method for manufacturing split stator core
JP4771278B2 (en) Permanent magnet type motor and method for manufacturing the same
JP3738409B2 (en) Permanent magnet motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees