JP3549257B2 - Conductor forming method for power inverter - Google Patents

Conductor forming method for power inverter Download PDF

Info

Publication number
JP3549257B2
JP3549257B2 JP21439994A JP21439994A JP3549257B2 JP 3549257 B2 JP3549257 B2 JP 3549257B2 JP 21439994 A JP21439994 A JP 21439994A JP 21439994 A JP21439994 A JP 21439994A JP 3549257 B2 JP3549257 B2 JP 3549257B2
Authority
JP
Japan
Prior art keywords
conductors
insulator
conductor
power inverter
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21439994A
Other languages
Japanese (ja)
Other versions
JPH0880031A (en
Inventor
稔弥 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP21439994A priority Critical patent/JP3549257B2/en
Publication of JPH0880031A publication Critical patent/JPH0880031A/en
Application granted granted Critical
Publication of JP3549257B2 publication Critical patent/JP3549257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、半導体素子で構成された複数の半導体パワーモジュールと、この複数の半導体パワーモジュール相互を接続して大電流を通す平板状の導電材料から形成された複数の導体とを備えた電力逆変換装置の導体形成方法に関する。
【0002】
【従来の技術】
半導体素子で構成された複数の半導体パワーモジュールを備えた、一般的にインバータと称される電力逆変換装置では、大電流を通す複数の導体で複数の半導体パワーモジュール相互を接続して主回路が構成される。この主回路を構成する複数の導体は、その外形形状および外形寸法が互に異なっており、平板状の導電材料から形成されるとともに、絶縁材料から形成された絶縁体を介し互に連結固定される。この絶縁体による連結固定を含め、導体それぞれの製作に伴い発生する加工費が低いことが望まれるが、この種の導体を備えた電力逆変換装置の導体成形方法の従来例を図3および図4に基づいて説明する。図3は従来の一つの電力逆変換装置の導体成形方法による複数の導体の構成を示す平面図、図4は従来の異なる電力逆変換装置の導体成形方法による複数の導体の構成を示す平面図で、いずれも図の下側が前面側である。
【0003】
図3および図4において、1A,1B,1Cは、電力逆変換装置に備えられ半導体素子で構成された図示しない複数の半導体パワーモジュールを互に接続し大電流を通す、外形形状および外形寸法が互に異なる複数の導体である。
この複数の導体1A,1B,1Cは、平板状の導電材料から塑性加工により打抜型を使ってそれぞれ打抜いて形成されており、図3では、絶縁材料である合成樹脂から形成された横長角棒状の絶縁体2上面にナイロン製のリベット3でそれぞれ固定して、空気を介し互に向い合う面間に所要の沿面距離を置き連結固定されている。また図4では、複数の導体1A,1B,1Cは、ガラス入エポキシ樹脂から形成された平板状の絶縁体4に、この絶縁体4表面に間隔を互に置いて接着された、形状が互に異なる銅箔5A,5B,5Cをそれぞれ介しろー付けなどによりそれぞれ固着して、空気を介し互に向い合う面間には所要の沿面距離を置き電気的に分離しかつ物理的に連結固定されている。
【0004】
【発明が解決しようとする課題】
ところで、このような従来の電力逆変換装置の導体形成方法は、それぞれ打抜型を使って打抜いてそれぞれ製作された複数の導体1A,1B,1Cが、絶縁体2,4にリベット3で固定若しくは、ろー付けなどで接合して、空気を介し互に向い合う面間に所要の沿面距離を置き連結固定されている。
【0005】
これによって、導体1A,1B,1C相互間に火花放電が起こるのを防ぐことができる。
しかし、導体1A,1B,1Cを製作するに当っては、この導体1A,1B,1Cそれぞれに専用の打抜型を必要とするととに、導体1A,1B,1Cを絶縁体2,4に個々に固定する必要がある。
【0006】
そのため、導体1A,1B,1Cの製作に必要な、この導体1A,1B,1Cの数と同数の打抜型の製作および保管管理に伴う費用が増大するとともに、導体1A,1B,1Cを絶縁体2,4に固定する作業は手間がかかりるという問題がある。また、導体1A,1B,1Cの互に向い合う面間に所要の沿面距離を置いて、この導体1A,1B,1Cを絶縁体2,4に連結固定することにより、導体1A,1B,1Cの占める空間が大きくなり、電力逆変換装置の小形化が困難になるという問題がある。
【0007】
この発明は、導体の製作に伴い発生する費用の低減を図ることができるとともに、電力逆変換装置を小形化することができる電力逆変換装置の導体形成方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するため、この発明によれば、半導体素子で構成された複数の半導体パワーモジュールと、この複数の半導体パワーモジュール相互を接続する、平板状の導電材料から形成された複数の導体とを備えた電力逆変換装置において、第一工程として、平板状の導電材料から複数の導体を連結部で互に連結した状態の平板状の導体を打抜き加工し、第二工程として、第一工程で成形した平板状の複数の導体に折曲げ部を形成し、第三工程として、第二工程で折曲げ部を形成した複数の導体を物理的に互いに連結する絶縁体を成形し、第四工程として、第三工程で連結部を切除して複数の導体を電気的に互いに分離するものとする。
【0011】
【作用】
この発明は、上記構成により、前記複数の導体を互に連結する連結部と一体で一枚の前記導電材料から形成された前記複数の導体が、絶縁体を介し物理的に互に連結固定後に、前記連結部を切除して電気的に互に分離されるものとしたので、複数の導体が、外形形状および外形寸法が互に異なる複数の導体であっても、この複数の導体を、連結部で互に連結した状態で一度に一つの打抜型を使用して打抜くことができる。また、複数の導体の中に折れ曲った折曲げ部を持つ導体が含まれていても、連結部で互に連結した状態で打抜かれた複数の導体を一つの部品として取り扱うことができ、それぞれ専用の打抜型を使用し個別に打抜いて複数の導体が製作される場合よりはるかに少ない数の曲げ型で折曲げ部を折り曲げて曲げ加工を行うことができる。
【0012】
また、絶縁体は、合成樹脂から成形された絶縁体であるものとしたので、絶縁体を成形する際、この絶縁体の成形型内に複数の導体を挿着して、絶縁体の成形と同時にこの絶縁体で複数の導体を物理的に互に連結固定できるとともに、絶縁体を構成する合成樹脂を介して互に向い合う、複数の導体の面間の絶縁耐力が、空気を介して互に向い合うより向上するので、絶縁体を構成する合成樹脂を介して互に向い合う、複数の導体の面間の所要の沿面距離を縮小できる。
【0013】
また、複数の導体は、絶縁体の成形と同時にこの絶縁体で物理的に互に連結固定されるものとしたので、それぞれリベットを使ったり、ろー付けなどをしたりして、それぞれ絶縁体に固定して複数の導体を互に連結固定する工程を省略できるとともに、絶縁体を構成する合成樹脂を介して互に向い合う、複数の導体の面間の所要の沿面距離を縮小できる。
【0014】
また、絶縁体は、電力逆変換装置内に導体を支持する支持部が一体で成形された絶縁体であるものとしたので、支持部を別に製作する必要がなくなり、電力逆変換装置を構成する部品点数を削減できる。
また、導体は、絶縁体を介し互に連結固定される前に形成される、折れ曲った折曲げ部を持つ導体であるものとしたので、連結部で互に連結した状態で打抜かれた複数の導体を一つの部品として取り扱うことができ、それぞれ専用の打抜型を使用して個別に打抜いて複数の導体が製作される場合よりはるかに少ない数の曲げ型で折曲げ部を折り曲げて曲げ加工を行うことができる。
【0015】
【実施例】
以下、この発明の実施例を図1および図2に基づいて説明する。図1はこの発明の一つの実施例の電力逆変換装置の導体形成方法を示し、(A)および(B)が、打抜型を使用し連結部で互に連結して打抜いた状態の複数の導体の平面図および右側面図,(C)および(D)が、(A)の状態の複数の導体の折曲げ部を曲げ型を使って折り曲げた状態の複数の導体の平面図および右側面図,(E)および(F)が、(C)の状態の複数の導体を絶縁体の成形型に挿着して絶縁体の成形と同時にこの絶縁体で互に連結固定した状態の複数の導体の平面図および右側面図,(G)および(H)が、(E)の状態の複数の導体を互に連結する連結部を切断型を使用して切除した状態の複数の導体の平面図および右側面図で、いずれも図の下側が前面側である。また、図2はこの発明の異なる実施例の電力逆変換装置の導体形成方法による複数の導体の構成を示す平面図で、図の下側が前面側である。図3および図4と共通あるいは同一の部分は同一の符号で示す。
【0016】
この発明の一つの実施例を示す図1において、図1(G)および(H)の6A,6B,6C,6Dは、電力逆変換装置に備え半導体素子で構成した図示しない複数の半導体パワーモジュールを互に接続し大電流を通す、外形形状および外形寸法が互に異なる複数の導体である。この複数の導体6A,6B,6C,6Dを、絶縁材料である合成樹脂から成形した絶縁体7で所要の沿面距離を置き互に連結固定しており、複数の導体6A,6B,6C,6Dの中の、導体6A,6B,6Cは折れ曲った折曲げ部8A,8B,8Cをそれぞれ持っている。
【0017】
複数の導体6A,6B,6C,6Dの形成方法は、先ず第一工程として、打抜型を使用し平板状の導電材料から連結部9で互に連結した図1(A)および(B)の状態の、折曲げ部8A,8B,8Cのない平板状の導体6A,6B,6C,6Dを打抜く。次に第二工程として、第一工程で成形した平板状の複数の導体6A,6B,6C,6Dに、曲げ型を使用して折曲げ部8A,8B,8Cを同時に形成して、図1(C)および(D)に示す状態の複数の導体6A,6B,6C,6Dを形成する。さらに、第三工程として、第二工程で折曲げ部8A,8B,8Cを成形した導体6A,6B,6C,6Dを、絶縁体7を成形する成形型に挿着し絶縁体7を成形する。これにより、電力逆変換装置内に導体6A,6B,6C,6Dを支持する支持部10が一体の絶縁体7を成形すると同時に、連結部9で互に連結した導体6A,6B,6C,6Dをさらに絶縁体7で互に連結固定して、図1(E)および(F)に示す状態の複数の導体6A,6B,6C,6Dになる。最後に、第四工程として、第三工程で絶縁体7により互に連結固定され連結部9で互に連結された導体6A,6B,6C,6Dを、連結部9を切断除去する切断型を使用して連結部9を切除することにより、図1(G)および(H)に示す状態の、空気および絶縁体7をそれぞれ介し互に向い合う面間には所要の沿面距離をそれぞれ置き電気的に分離しかつ物理的に絶縁体7で連結固定した導体6A,6B,6C,6Dを形成できる。
【0018】
この発明の異なる実施例を示す図2において、11A,11B,11Cは、電力逆変換装置に備え半導体素子で構成した図示しない複数の半導体パワーモジュールを互に接続し大電流を通す、外形形状および外形寸法が互に異なる複数の導体である。この複数の導体11A,11B,11Cを、絶縁材料である合成樹脂から成形した絶縁体12で所要の沿面距離を置き互に連結固定しており、複数の導体11A,11B,11Cはいずれも折れ曲った折曲げ部13A,13B,13Cをそれぞれ持っている。
【0019】
複数の導体11A,11B,11Cの形成方法は、前述の図1に示す実施例とほぼ同様であるが、先ず第一工程として、打抜型を使用し平板状の導電材料から図示しない連結部で互に連結した状態の、折曲げ部13A,13B,13Cのない平板状の導体11A,11B,11Cを打抜く。次に第二工程として、第一工程で成形した平板状の複数の導体11A,11B,11Cに、曲げ型を使用して折曲げ部13A,13B,13Cを同時に形成する。さらに、第三工程として、第二工程で折曲げ部13A,13B,13Cを成形した導体11A,11B,11Cを、絶縁体12を成形する成形型に挿着し絶縁体12を成形する。これにより、電力逆変換装置内に導体11A,11B,11Cを支持する支持部14が一体の絶縁体12を形成すると同時に、図示しない連結部で互に連結された導体11A,11B,11Cをさらに絶縁体12で互に連結固定する。最後に、第四工程として、第三工程で絶縁体12で互に連結固定され図示しない連結部で互に連結された導体11A,11B,11Cを、図示しない連結部を切断除去する切断型を使用して図示しない連結部を切除する。これにより、空気および絶縁体12をそれぞれ介し互に向い合う面間には所要の沿面距離を置き電気的に分離しかつ物理的に絶縁体12で連結固定した導体11A,11B,11Cを形成できる。
【0020】
前述の構成において、この発明の電力逆変換装置の導体形成方法により形成した導体6A,6B,6C,6Dおよび導体11A,11B,11Cそれぞれの製作に必要な型の製作および保管管理に伴う費用,加工工数および機能につき以下説明する。
導体6A,6B,6C,6Dおよび導体11A,11B,11Cそれぞれの製作に必要な型数はいずれも打抜型,曲げ型,成形型および切断型の4つである。そのため、連結部9および図示しない連結部で互に連結しないで導体6A,6B,6C,6Dおよび導体11A,11B,11Cを製作する場合に比べると、はるかに少ない型数で製作でき、型の製作および保管管理に伴う費用を大幅に削減できる。
【0021】
また、連結部9および図示しない連結部で互に連結した状態で、打抜いて曲げた後、絶縁体7,12の成形と同時にこの絶縁体7,12による連結固定を行うとともに、支持部10,14を絶縁体7,12に一体で成形している。そのため、連結部9および図示しない連結部で互に連結せずに導体6A,6B,6C,6Dおよび導体11A,11B,11Cを製作する場合に比べると、大幅に少ない加工工数で導体6A,6B,6C,6Dおよび導体11A,11B,11Cを製作でき、かつ部品点数も削減できる。
【0022】
さらに、導体6A,6B,6C,6Dおよび導体11A,11B,11Cの機能としては、導体6A,6B,6C,6D相互間および導体11A,11B,11C相互間に火花放電が起こるのを防ぐことができる。また同時に、絶縁体7,12を構成する合成樹脂で絶縁体力の向上が図れるので、この合成樹脂をそれぞれ介し互に向い合う導体6A,6B,6C,6D若しくは導体11A,11B,11Cの面間の所要の沿面距離を、空気を介して互に向い合う面間の所要の沿面距離より小さくでき、電力逆変換装置の小形化を図ることができる。
【0023】
【発明の効果】
この発明によれば、半導体素子で構成された複数の半導体パワーモジュール相互を接続する、平板状の導電材料から形成された複数の導体を互に連結する連結部と一体で形成し、前記複数の導体を絶縁体を介し物理的に互に連結固定後、前記連結部を切除して電気的に互に分離されるものとしたので、複数の導体が、外形形状および外形寸法が互に異なる複数の導体であっても、それぞれ専用の打抜型を使用して個別に打抜くことにより、複数の導体が製作される場合よりもはるかに少ない数の打抜型および曲げ型で打抜いて全ての折曲げ部を同時に折り曲げることができ、これにより、型の製作および保管管理に伴う費用および導体の加工工数を大幅に削減できるという効果が得られる。
【0024】
また、絶縁体は、合成樹脂から成形された絶縁体であるものとしたので、絶縁体の成形と同時にこの絶縁体で複数の導体を物理的に互に連結固定できるとともに、絶縁体を構成する合成樹脂を介して互に向い合う、複数の導体の面間の所要の沿面距離を縮小でき、これにより、絶縁体を介して複数の導体を物理的に互に連結固定する工程を省略でき、同時に電力逆変換装置の小形化が図れるという効果がえられる。
【0025】
また、複数の導体は、絶縁体の成形と同時にこの絶縁体で物理的に互に連結固定されるものとしたので、複数の導体を互に連結固定する工程を省略できるとともに、絶縁体を構成する合成樹脂を介して互に向い合う、複数の導体の面間の所要の沿面距離を縮小でき、上記と同様の効果が得られる。
また、絶縁体は、電力逆変換装置内に導体を支持する支持部が一体で成形された絶縁体であるものとしたので、電力逆変換装置を構成する部品点数を削減でき、これにより、部品の製作および組立てに伴い発生する加工工数を削減できるという効果がえられる。
【0026】
また、導体は、絶縁体を介し互に連結固定される前に形成される、折れ曲った折曲げ部を持つ導体であるものとしたので、それぞれ専用の打抜型を使用して個別に打抜いて複数の導体が製作される場合よりはるかに少ない数の打抜型および曲げ型で打抜いて折曲げ部を折り曲げることができ、これにより、型の製作および保管管理に伴う費用および導体の加工工数を大幅に削減できるという効果がえられる。
【0027】
その結果、導体の製作に伴い発生する費用を、型の製作および保管管理に伴う費用を含め大幅に削減して電力逆変換装置の低価格化および小形化を図ることができるとともに、連結部で連結し一体化した状態で打抜き,曲げなどの後加工を行うことができるので、導体製作の自動化が容易になるという効果が得られる。
【図面の簡単な説明】
【図1】この発明の一つの実施例の電力逆変換装置の導体形成方法を示し、(A)および(B)が、打抜型を使用し連結部で互に連結して打抜いた状態の複数の導体の平面図および右側面図,(C)および(D)が、(A)の状態の複数の導体の折曲げ部を曲げ型を使って折り曲げた状態の複数の導体の平面図および右側面図,(E)および(F)が、(C)の状態の複数の導体を絶縁体の成形型に挿着して絶縁体の成形と同時にこの絶縁体で互に連結固定した状態の複数の導体の平面図および右側面図,(G)および(H)が、(E)の状態の複数の導体を互に連結する連結部を切断型を使用して切除した状態の複数の導体の平面図および右側面図
【図2】この発明の異なる実施例の電力逆変換装置の導体形成方法による複数の導体の構成を示す平面図
【図3】従来の一つの電力逆変換装置の導体成形方法による複数の導体の構成を示す平面図
【図4】従来の異なる電力逆変換装置の導体成形方法による複数の導体の構成を示す平面図
【符号の説明】
1A,1B,1C,6A,6B,6C,6D,11A,11B,11C導体
2,4,7,12 絶縁体
3 リベット
5A,5B,5C 銅箔
8A,8B,8C,13A,13B,13C 折曲げ部
9 連結部
10,14 支持部
[0001]
[Industrial applications]
The present invention provides a power inverter including a plurality of semiconductor power modules each including a semiconductor element and a plurality of conductors formed of a plate-shaped conductive material that interconnects the plurality of semiconductor power modules and passes a large current. The present invention relates to a method for forming a conductor of a converter.
[0002]
[Prior art]
In a power reversing device generally called an inverter having a plurality of semiconductor power modules composed of semiconductor elements, a main circuit is formed by connecting a plurality of semiconductor power modules to each other by a plurality of conductors through which a large current flows. Be composed. The plurality of conductors constituting the main circuit have different outer shapes and outer dimensions from each other, and are formed of a plate-shaped conductive material, and are connected and fixed to each other via an insulator formed of an insulating material. You. Although it is desired that the processing cost incurred in manufacturing each conductor, including the connection and fixing by the insulator, be low, a conventional example of a conductor forming method of a power inverter having such a conductor is shown in FIGS. 4 will be described. FIG. 3 is a plan view showing a configuration of a plurality of conductors according to a conventional conductor shaping method of one power inverter, and FIG. 4 is a plan view showing a configuration of a plurality of conductors according to a conventional conductor shaping method of a different power inverter. In each case, the lower side of the figure is the front side.
[0003]
3 and 4, reference numerals 1A, 1B, and 1C denote a plurality of semiconductor power modules (not shown) provided in the power inversion device, each of which includes a semiconductor element and are connected to each other to allow a large current to flow. A plurality of conductors different from each other.
The plurality of conductors 1A, 1B, and 1C are formed by punching a flat conductive material using a punching die by plastic working. In FIG. 3, a horizontal oblique angle formed from a synthetic resin that is an insulating material is used. Nylon rivets 3 are fixed to the upper surface of the rod-shaped insulator 2 and connected and fixed with a required creepage distance between the surfaces facing each other via air. In FIG. 4, a plurality of conductors 1A, 1B, and 1C are bonded to a flat insulator 4 formed of glass-filled epoxy resin at intervals on the surface of the insulator 4, and have a mutual shape. Different copper foils 5A, 5B, 5C are fixed to each other by means of soldering, etc., and a required creepage distance is provided between the surfaces facing each other via air, and they are electrically separated and physically connected and fixed. Have been.
[0004]
[Problems to be solved by the invention]
By the way, in such a conventional method of forming a conductor of a power inverter, a plurality of conductors 1A, 1B, and 1C, each manufactured by punching using a punching die, are fixed to insulators 2, 4 with rivets 3. Alternatively, they are joined by brazing or the like, and are connected and fixed with a required creepage distance between the surfaces facing each other via air.
[0005]
Thus, it is possible to prevent spark discharge from occurring between the conductors 1A, 1B, and 1C.
However, in manufacturing the conductors 1A, 1B, and 1C, a special punching die is required for each of the conductors 1A, 1B, and 1C, and the conductors 1A, 1B, and 1C are individually attached to the insulators 2 and 4. Need to be fixed to
[0006]
Therefore, the cost for manufacturing and storing and managing the same number of punching dies as the number of the conductors 1A, 1B, 1C required for manufacturing the conductors 1A, 1B, 1C increases, and the conductors 1A, 1B, 1C are made of an insulator. There is a problem that the work of fixing to 2 and 4 is troublesome. The conductors 1A, 1B, 1C are connected and fixed to the insulators 2, 4 with a required creepage distance between the mutually facing surfaces of the conductors 1A, 1B, 1C. Occupies a large space, making it difficult to miniaturize the power inverter.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide a conductor forming method for a power inverter, which can reduce the cost of producing the conductor and can reduce the size of the power inverter.
[0008]
[Means for Solving the Problems]
According to the present invention, to solve the above-described problems, a plurality of semiconductor power modules each including a semiconductor element, and a plurality of conductors formed of a plate-shaped conductive material for connecting the plurality of semiconductor power modules with each other are provided. In a power inverting device provided with, as a first step, a plurality of conductors are punched from a plate-shaped conductive material in a state where a plurality of conductors are connected to each other at a connection portion, and as a second step, a first step A bent portion is formed in the plurality of flat conductors formed in the step, and as a third step, an insulator that physically connects the plurality of conductors formed in the second step to each other is formed, and a fourth step is performed. As a step, the connecting portion is cut off in the third step to electrically separate a plurality of conductors from each other.
[0011]
[Action]
According to the present invention, according to the above configuration, the plurality of conductors formed from one piece of the conductive material integrally with the connecting portion that connects the plurality of conductors to each other are physically connected and fixed to each other via an insulator. Since the connecting portion is cut off and electrically separated from each other, even if the plurality of conductors are a plurality of conductors having different outer shapes and outer dimensions, the plurality of conductors are connected. It can be punched using one punch at a time with the parts connected to each other. Also, even if a conductor having a bent portion is included in a plurality of conductors, a plurality of conductors punched while being connected to each other at a connection portion can be treated as one component, and The bending process can be performed by bending the bent portion with a much smaller number of bending dies than when a plurality of conductors are individually punched using a dedicated punching die.
[0012]
Also, since the insulator is an insulator molded from a synthetic resin, when molding the insulator, a plurality of conductors are inserted into a mold for the insulator to form the insulator. At the same time, a plurality of conductors can be physically connected and fixed to each other by the insulator, and the dielectric strength between the surfaces of the plurality of conductors facing each other via the synthetic resin constituting the insulator can be mutually changed via air. Therefore, the required creepage distance between the surfaces of the plurality of conductors facing each other via the synthetic resin forming the insulator can be reduced.
[0013]
In addition, since the plurality of conductors are physically connected and fixed to each other with this insulator at the same time as the insulator is formed, each of the insulators is riveted or brazed, etc. And the step of connecting and fixing the plurality of conductors to each other can be omitted, and the required creepage distance between the surfaces of the plurality of conductors facing each other via the synthetic resin forming the insulator can be reduced.
[0014]
Further, since the insulator is an insulator in which the support portion for supporting the conductor in the power inverter is integrally formed, it is not necessary to separately manufacture the support portion, and the power inverter is configured. The number of parts can be reduced.
In addition, since the conductor is a conductor having a bent portion formed before being connected and fixed to each other via an insulator, a plurality of conductors punched in a state of being connected to each other at the connection portion are provided. Can be handled as one part, and the bent part is bent with a much smaller number of bending dies than when multiple conductors are manufactured by punching individually using dedicated punching dies. Processing can be performed.
[0015]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a method for forming a conductor of a power inverter according to one embodiment of the present invention, in which (A) and (B) show a plurality of punched-out portions connected to each other at a connecting portion using a punching die. (C) and (D) show a plan view and a right side view of a plurality of conductors in a state where bent portions of the plurality of conductors in the state (A) are bent using a bending mold. In the plan views (E) and (F), the plurality of conductors in the state of (C) are inserted into the mold for forming the insulator, and the plurality of conductors are connected and fixed to each other with the insulator simultaneously with the formation of the insulator. And (G) and (H) show a plurality of conductors in a state in which a connecting portion connecting the plurality of conductors in the state of (E) is cut off using a cutting die. In both the plan view and the right side view, the lower side of the figure is the front side. FIG. 2 is a plan view showing a configuration of a plurality of conductors by a conductor forming method of a power inverter according to a different embodiment of the present invention. The lower side of the figure is the front side. 3 and 4 are denoted by the same reference numerals.
[0016]
In FIG. 1 showing one embodiment of the present invention, 6A, 6B, 6C and 6D in FIGS. 1 (G) and 1 (H) denote a plurality of semiconductor power modules (not shown) constituted by semiconductor elements provided in a power inverter. Are connected to each other to allow a large current to pass through, and a plurality of conductors having mutually different outer shapes and outer dimensions. The plurality of conductors 6A, 6B, 6C, 6D are connected and fixed to each other with a required creepage distance by an insulator 7 molded from a synthetic resin as an insulating material. Among them, the conductors 6A, 6B, 6C have bent portions 8A, 8B, 8C, respectively.
[0017]
The method of forming the plurality of conductors 6A, 6B, 6C, and 6D is as follows. First, as a first step, a punching die is used to connect a flat conductive material to each other at a connecting portion 9 in FIGS. 1A and 1B. The flat conductors 6A, 6B, 6C, 6D without the bent portions 8A, 8B, 8C in the state are punched. Next, as a second step, bent portions 8A, 8B, 8C are simultaneously formed on a plurality of flat conductors 6A, 6B, 6C, 6D formed in the first step by using a bending die, and FIG. A plurality of conductors 6A, 6B, 6C, 6D in the state shown in (C) and (D) are formed. Further, as a third step, the conductors 6A, 6B, 6C, and 6D in which the bent portions 8A, 8B, and 8C are formed in the second step are inserted into a mold for forming the insulator 7, and the insulator 7 is formed. . As a result, the supporting portion 10 supporting the conductors 6A, 6B, 6C, 6D forms an integral insulator 7 in the power inverter, and at the same time, the conductors 6A, 6B, 6C, 6D connected to each other by the connecting portion 9. Are further connected and fixed to each other by an insulator 7 to form a plurality of conductors 6A, 6B, 6C, 6D in the state shown in FIGS. 1 (E) and 1 (F). Finally, as a fourth step, a cutting die for cutting and removing the connecting portions 9 from the conductors 6A, 6B, 6C, and 6D that are connected and fixed to each other by the insulator 7 in the third step and connected to each other by the connecting portions 9 is used. By cutting the connecting portion 9 by using, the required creepage distance is set between the surfaces facing each other via the air and the insulator 7 in the state shown in FIGS. The conductors 6A, 6B, 6C, and 6D that are physically separated and physically connected and fixed by the insulator 7 can be formed.
[0018]
In FIG. 2 showing another embodiment of the present invention, reference numerals 11A, 11B, and 11C denote external shapes and a plurality of semiconductor power modules (not shown) provided in a power inverter, which are connected to each other and pass a large current. It is a plurality of conductors having different external dimensions. The plurality of conductors 11A, 11B, and 11C are fixedly connected to each other at a required creepage distance by an insulator 12 molded from a synthetic resin as an insulating material, and each of the plurality of conductors 11A, 11B, and 11C is broken. It has bent parts 13A, 13B and 13C, respectively.
[0019]
The method of forming the plurality of conductors 11A, 11B, and 11C is substantially the same as that of the embodiment shown in FIG. 1 described above. First, as a first step, a punching die is used to connect a flat conductive material to a connecting portion (not shown). The flat conductors 11A, 11B, and 11C without the bent portions 13A, 13B, and 13C, which are connected to each other, are punched. Next, as a second step, bent portions 13A, 13B, and 13C are simultaneously formed on the plurality of flat conductors 11A, 11B, and 11C formed in the first step using a bending die. Further, as a third step, the conductors 11A, 11B, 11C having the bent portions 13A, 13B, 13C formed in the second step are inserted into a mold for forming the insulator 12, thereby forming the insulator 12. Thereby, the supporting portion 14 supporting the conductors 11A, 11B, 11C forms an integral insulator 12 in the power inverter, and at the same time, further connects the conductors 11A, 11B, 11C connected to each other by a connecting portion (not shown). The insulators 12 are connected and fixed to each other. Finally, as a fourth step, a cutting mold for cutting and removing the conductors 11A, 11B, and 11C which are connected and fixed to each other by the insulator 12 in the third step and connected to each other by a connection part (not shown) is used. Then, the connecting portion (not shown) is cut off. As a result, conductors 11A, 11B, and 11C that are electrically separated from each other with a required creepage distance between the surfaces facing each other through the air and the insulator 12 and that are physically connected and fixed by the insulator 12 can be formed. .
[0020]
In the above-described configuration, the costs associated with the production and storage management of the molds required for producing the conductors 6A, 6B, 6C, 6D and the conductors 11A, 11B, 11C formed by the conductor forming method of the power inverter of the present invention, The processing steps and functions will be described below.
Each of the conductors 6A, 6B, 6C, and 6D and the conductors 11A, 11B, and 11C requires four molds: a punching die, a bending die, a forming die, and a cutting die. Therefore, as compared with the case where the conductors 6A, 6B, 6C and 6D and the conductors 11A, 11B and 11C are manufactured without being connected to each other by the connecting portion 9 and a connecting portion (not shown), the number of molds can be significantly reduced. Costs associated with production and storage management can be significantly reduced.
[0021]
After punching and bending in a state where the connecting portions 9 and a connecting portion (not shown) are connected to each other, the fixing of the insulating members 7 and 12 is performed simultaneously with the formation of the insulators 7 and 12, and , 14 are integrally formed with the insulators 7, 12. Therefore, compared with the case where the conductors 6A, 6B, 6C, 6D and the conductors 11A, 11B, 11C are manufactured without being connected to each other by the connecting portion 9 and the connecting portion (not shown), the conductors 6A, 6B can be processed with significantly less man-hours. , 6C, 6D and conductors 11A, 11B, 11C, and the number of parts can be reduced.
[0022]
Further, the function of the conductors 6A, 6B, 6C, 6D and the conductors 11A, 11B, 11C is to prevent spark discharge between the conductors 6A, 6B, 6C, 6D and between the conductors 11A, 11B, 11C. Can be. At the same time, the strength of the insulator can be improved by the synthetic resin forming the insulators 7 and 12, so that the conductors 6A, 6B, 6C and 6D or the conductors 11A, 11B and 11C facing each other through the synthetic resin can be used. Can be made smaller than the required creepage distance between the surfaces facing each other via air, and the size of the power inverter can be reduced.
[0023]
【The invention's effect】
According to the present invention, a plurality of semiconductor power modules each configured by a semiconductor element are connected to each other, and a plurality of conductors formed of a plate-shaped conductive material are integrally formed with a connecting portion that connects the plurality of conductors. After the conductors are physically connected and fixed to each other via an insulator, the connecting portions are cut off and electrically separated from each other. Therefore, the plurality of conductors have different outer shapes and outer dimensions from each other. Even if conductors are individually punched using dedicated punching dies, punching with a much smaller number of punching and bending dies than when multiple conductors are manufactured The bent portion can be bent at the same time, which has the effect of significantly reducing the cost associated with the production and storage management of the mold and the number of processing steps for the conductor.
[0024]
Also, since the insulator is an insulator molded from a synthetic resin, a plurality of conductors can be physically connected and fixed to each other with the insulator at the same time as the insulator is formed, and the insulator is formed. Facing each other via the synthetic resin, the required creepage distance between the surfaces of the plurality of conductors can be reduced, thereby eliminating the step of physically connecting and fixing the plurality of conductors to each other via the insulator, At the same time, the effect that the power inverter can be downsized can be obtained.
[0025]
In addition, since the plurality of conductors are physically connected and fixed to each other with the insulator at the same time as the formation of the insulator, the step of connecting and fixing the plurality of conductors to each other can be omitted, and the insulator can be formed. The required creeping distance between the surfaces of the plurality of conductors facing each other via the synthetic resin can be reduced, and the same effect as described above can be obtained.
Further, since the insulator is an insulator in which the supporting portion for supporting the conductor is integrally formed in the power inverter, the number of components constituting the power inverter can be reduced, and as a result, This has the effect of reducing the number of man-hours required for manufacturing and assembling the device.
[0026]
In addition, the conductors were formed before being connected and fixed to each other via an insulator, and were conductors having bent portions, so they were individually punched using dedicated punching dies. The bent part can be bent by punching with a much smaller number of punching and bending dies than when multiple conductors are manufactured, thereby reducing the cost associated with the manufacturing and storage management of the die and the man-hours required to process the conductor. Can be greatly reduced.
[0027]
As a result, the cost incurred in the production of the conductor, including the cost in the production and storage management of the mold, can be significantly reduced, and the price and size of the power inverter can be reduced, and the connection part can be reduced. Post-processing such as punching and bending can be performed in a connected and integrated state, so that the effect of facilitating automation of conductor production can be obtained.
[Brief description of the drawings]
FIG. 1 shows a method of forming a conductor of a power inverter according to one embodiment of the present invention, wherein (A) and (B) show a state in which a punching die is used to connect and connect with each other at a connecting portion. A plan view and a right side view of the plurality of conductors, and (C) and (D) are plan views of the plurality of conductors in a state where the bent portions of the plurality of conductors in the state (A) are bent using a bending mold. The right side views, (E) and (F), show a state in which a plurality of conductors in the state of (C) are inserted into a molding die of an insulator, and the insulator is molded and connected to each other with the insulator at the same time. The plan view and the right side view of the plurality of conductors, and (G) and (H) show the plurality of conductors in a state where the connecting portions for connecting the plurality of conductors in the state of (E) are cut off using a cutting die. FIG. 2 is a plan view and a right side view of the present invention. FIG. FIG. 3 is a plan view showing a configuration of a plurality of conductors according to a conventional conductor shaping method of one power inversion device. FIG. 4 is a configuration diagram of a plurality of conductors according to a conventional conductor shaping method of a different power inversion device. [Description of reference numerals]
1A, 1B, 1C, 6A, 6B, 6C, 6D, 11A, 11B, 11C Conductor 2, 4, 7, 12 Insulator 3 Rivet 5A, 5B, 5C Copper foil 8A, 8B, 8C, 13A, 13B, 13C Fold Bending part 9 Connecting part 10, 14 Support part

Claims (1)

半導体素子で構成された複数の半導体パワーモジュールと、この複数の半導体パワーモジュール相互を接続する、平板状の導電材料から形成された複数の導体とを備えた電力逆変換装置において、
第一工程として、平板状の導電材料から複数の導体を連結部で互に連結した状態の平板状の導体を打抜き加工し、
第二工程として、第一工程で成形した平板状の複数の導体に折曲げ部を形成し、
第三工程として、第二工程で折曲げ部を形成した複数の導体を物理的に互いに連結する絶縁体を成形し、
第四工程として、第三工程で連結部を切除して複数の導体を電気的に互いに分離する
ことを特徴とする電力逆変換装置の導体形成方法。
In a power inversion device including a plurality of semiconductor power modules configured by semiconductor elements and a plurality of conductors formed of a plate-shaped conductive material for interconnecting the plurality of semiconductor power modules,
As a first step, a plurality of conductors are punched out of a plate-shaped conductive material in a state where a plurality of conductors are connected to each other at a connection portion,
As a second step, forming a bent portion in a plurality of flat conductors molded in the first step,
As a third step, an insulator that physically connects the plurality of conductors having the bent portions formed in the second step to each other is formed,
As a fourth step, a method for forming a conductor of a power reversing device, comprising cutting off a connecting portion in a third step to electrically separate a plurality of conductors from each other .
JP21439994A 1994-09-08 1994-09-08 Conductor forming method for power inverter Expired - Fee Related JP3549257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21439994A JP3549257B2 (en) 1994-09-08 1994-09-08 Conductor forming method for power inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21439994A JP3549257B2 (en) 1994-09-08 1994-09-08 Conductor forming method for power inverter

Publications (2)

Publication Number Publication Date
JPH0880031A JPH0880031A (en) 1996-03-22
JP3549257B2 true JP3549257B2 (en) 2004-08-04

Family

ID=16655150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21439994A Expired - Fee Related JP3549257B2 (en) 1994-09-08 1994-09-08 Conductor forming method for power inverter

Country Status (1)

Country Link
JP (1) JP3549257B2 (en)

Also Published As

Publication number Publication date
JPH0880031A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
US6748651B2 (en) Method of manufacturing a bus-bar wiring board to reduce the amount of waste
JP3549257B2 (en) Conductor forming method for power inverter
JP2003244820A (en) Bus-bar structure, junction block having the bus-bar structure, and method of manufacturing the same
EP1119225A2 (en) Circuit board, electrical connection box having the circuit board and method of making the circuit board
JP3889690B2 (en) Manufacturing method of electronic component built-in connector
JP2002281645A (en) Electrical connection box and manufacturing method of the same
JP3562431B2 (en) Manufacturing method of large busbar
JP2002084631A (en) Fuse circuit construction of junction box
AU2003229527A1 (en) A method for manufacturing a carrier element for a hearing aid and a carrier element for a hearing aid
JPH0759285A (en) Electrical connection plate of motor and, motor
JPH1070810A (en) Bus-bar wiring body
JPH04131845U (en) card type fuse
KR200393140Y1 (en) Half-finished goods for producing fuses
JP3800281B2 (en) Chip-type electronic component and manufacturing method thereof
JPH06253437A (en) Electric connection box
JPH08163745A (en) Electric junction box
JP2002051432A (en) Bus-bar with fusing function and bus-bar circuit board
KR20220136993A (en) Fuse, and method of manufacturing the fuse
JP3869080B2 (en) Manufacturing method of electric wire assembly and electric wire assembly
JP2002134870A (en) Circuit board for large current, method of manufacturing the board, and composite circuit board
JP3364881B2 (en) Manufacturing method of busbar wiring board
JP2000350335A (en) Bus bar structure
JP2001314020A (en) Electric junction box and method of forming bus-bar to be used therefor
JP2001103638A (en) Electrical connection box and connecting method of bus bars
JPH0974642A (en) Electric junction box and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees