JP3549182B2 - Transmission amplifier - Google Patents

Transmission amplifier Download PDF

Info

Publication number
JP3549182B2
JP3549182B2 JP23289398A JP23289398A JP3549182B2 JP 3549182 B2 JP3549182 B2 JP 3549182B2 JP 23289398 A JP23289398 A JP 23289398A JP 23289398 A JP23289398 A JP 23289398A JP 3549182 B2 JP3549182 B2 JP 3549182B2
Authority
JP
Japan
Prior art keywords
amplifier
signal
bias
transmitted
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23289398A
Other languages
Japanese (ja)
Other versions
JP2000068753A (en
Inventor
龍介 金田
誠嗣 萩原
忠雄 鷹見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP23289398A priority Critical patent/JP3549182B2/en
Publication of JP2000068753A publication Critical patent/JP2000068753A/en
Application granted granted Critical
Publication of JP3549182B2 publication Critical patent/JP3549182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は例えば移動通信機に適用され、線形動作をする送信増幅器に関する。
【0002】
【従来の技術】
図3に従来の送信増幅器を示す。入力端子11からのデータ信号は波形生成回路12において、例えばQPSK信号の同相成分信号と直交成分信号との波形信号とされ、これら波形信号にて直交変調器13で搬送波が直交変調され、その直交変調出力信号は振幅変調回路14で必要に応じて利得(レベル)調整され、飽和形増幅器、つまり送信増幅器15で出力増幅され、出力端子16へ出力される。
【0003】
出力増幅器15は例えば図4Aに示すように、入力端子17よりの信号はマッチング回路18を通じてFET19のゲートへ供給され、FET19のソースは接地され、ドレインは負荷21を通じて電源端子22に接続され、またマッチング回路20を通じて出力端子16に接続される。FET19のゲートはインピーダンス素子23を通じて端子24に接続される。
【0004】
この飽和形増幅器15で効率的な線形動作をさせるため、従来においては図3に示すように、波形生成回路12の出力を包絡線生成回路27へ供給して、飽和形増幅器15の入力信号の包絡線と対応した信号を生成し、この包絡線信号で直流増幅器28を制御し、端子29の直流入力が直流増幅器28で制御され、飽和形増幅器15の電源端子、例えば図4A中のドレイン電源端子22へ供給される。このようにして飽和形増幅器15のドレイン電圧が直流増幅器28により制御されて、飽和形増幅器15の飽和レベルを入力信号包絡線にダイナミックに追従させて、効率のよい線形動作を実現していた。
【0005】
直流増幅器28の代りにDC−DCコンバータを用いることもある。このように従来においてはドレイン電圧を制御しているため、つまり増幅器15の出力側の電圧を直接制御しているため、大きな電流が直流増幅器(DC−DCコンバータ)28に流れ、しかも入力信号(データ)が高速であるため、高速で大きな電流を制御する必要があった。このため、直流増幅器を用いた場合、直流増幅器の効率が劣化するため、送信増幅器全体としてみた場合の効率が劣化する。またDC−DCコンバータを使用した場合は、効率は良好であるが、直流増幅器に比べ回路規模が大きくなる欠点の他に、変調帯域がメガヘルツを超える高速広帯域の無線変調方式で使用された場合、DC−DCコンバータの追従速度が間に合わず使用することが困難であった。
【0006】
このような点から図5Aに図3、図4Aと対応する部分に同一符号を付けて示すように、包絡線生成回路27の出力をバイアス生成回路31へ供給し、バイアス生成回路31の出力を端子24へ印加して、FET19のゲートバイアスを制御する。つまり振幅変調回路14の出力信号が例えば図5Bに示すような場合、包絡線生成回路27から図5Bの信号の包絡線信号が得られ、バイアス生成回路31の出力バイアス制御信号は図5Cに示すように、振幅変調回路14の出力の包絡の上側と対応したものとなり、振幅変調回路14の出力、つまり飽和増幅器15の入力信号の振幅が大きければ、ゲートバイアスが大きくなり、振幅が小さければゲートバイアスが小さくなる。
【0007】
つまり、図4Bに示す飽和形増幅器15(図4A)のドレイン電流−ドレイン・ソース内電圧特性において、増幅器15の入力信号振幅が大きい時の入力33に対してはゲートバイアスはa点と大きくなり、入力信号振幅が小さい時の入力34に対してはゲートバイアスがb点と小さくなる。つまり従来では、大振幅で飽和しないように、ゲートバイアス点aと対応したドレイン電流Iaが流れるが、図5Aに示した制御により、小振幅入力時には、ドレイン電流はバイアス点bと対応したIbと小さくなり、それだけ、消費電力が小さくなる。つまり図5Aに示した構成によれば、入力信号の振幅に追従してゲートバイアスが制御され、つまり変調信号の振幅値に合わせて一定のバックオフ値となり、高効率が実現される。しかもバイアスの制御をドレイン側ではなく、ゲート側で行うため、直流増幅器、又はDC−DCコンバータを必要とせず、これらにもとづく効率の劣化、追従速度の問題もなくなる。
【0008】
【発明が解決しようとする課題】
図5Aに示した構成は図3に示したものよりも効率がよいが、例えば図5Bに示す信号中の大振幅状態36ではゲートバイアスは図5Cに示すようにVgaに保持されている。この大振幅状態36は瞬時的にみれば、そのピーク値Ppより大部分は低い値であり、ゲートバイアス値Vgaはこのピーク値Ppと対応している。この点で無駄にドレイン電流を流している部分があると言え、つまり、効率改善の余地があると言える。
【0009】
【課題を解決するための手段】
請求項1の発明によれば送信増幅器の入力信号への瞬時振幅に追従したバイアス制御信号がバイアス生成回路で生成され、そのバイアス制御信号により、送信増幅器のバイアスが、送信信号と瞬時振幅と同期して制御される。
請求項2の発明によれば、入力信号が逆歪特性増幅器へ供給されて逆歪特性が与えられ、入力信号レベルが送信増幅器の出力−入力特性の飽和レベルに近いしきい値以上か否か判定され、しきい値以下と判定されると入力信号がそのまま送信増幅器へ供給し、しきい値以上と判定される逆歪特性増幅器を送信増幅器へ供給するように切替え手段により切替えられる。
【0010】
【発明の実施の形態】
図1Aに請求項1の発明の実施例を示し、図3、図4Aと対応する部分に同一符号を付けてある。この実施例においては振幅変調回路14の出力信号が分岐されてバイアス生成回路41へ供給される。バイアス生成回路41はその入力信号の振幅の瞬時値と対応したバイアス制御信号を生成する。つまり振幅変調回路14の出力信号が例えば図1Bに示すような場合は、その周波数と、バイアス制御信号は図1Cに示すように同一であり、位相も同一であり、振幅も対応している。ただバイアス制御信号の瞬時値の最低値はその振幅が小さい時の値Qbも、振幅が大きい時の値Qaもほぼ同一値とされている。振幅値は、出力信号の振幅が小さいPsbでは小さく、大きなPsaではこれに応じて大きな振幅とされている。しかも、出力信号(図1B)とバイアス制御信号(図1C)は同位相とされる。つまりバイアス生成回路41でバイアス制御信号の生成に遅れを伴う場合は、その遅れ分の遅延が遅延回路42で振幅変調回路14の出力信号に対して与えられて飽和増幅器15、図1AではFET19のゲートへ供給される。バイアス制御信号はこの例ではFET19のゲートバイアス端子24へ印加される。
【0011】
この構成によれば、飽和増幅器15に入力信号の瞬時レベルと、対応したゲートバイアスが飽和増幅器15に印加され、瞬時的に見ても、常に適切なゲートバイアスが与えられ、図5Aに示したものよりも、更に効率がよくなる。
図2Aに請求項3の発明の実施例を示し、図3、図4A、図5Aと対応する部分に同一符号を付けてある。この実施例では振幅変調回路14の出力は逆歪特性増幅器51へ供給される。逆歪特性増幅器の出力−入力特性は図2Bに示すようなものである。つまり飽和増幅器15は曲線52で示すように入力レベルが大きくなると直線性から外れ徐々に飽和する。従って、この徐々に飽和に近づき始める入力レベルVi1以上ではその非直線性を補償して直線性特性曲線53に近づくような補正特性曲線54を入力信号に与えるように、逆歪増幅器51の特性が選定される。つまり、増幅器15の特性曲線52が非直線部分に入り、歪が生じるようになるのを補償し、歪が生じないようにする逆歪特性曲線54とされる。
【0012】
振幅変調回路14の出力は分岐されて、判定手段56に供給される。判定手段56では、飽和増幅器15が飽和になり始める入力レベル、図2B中のVi1をしきい値とし、これと振幅変調回路14の出力信号とを比較し、この出力信号がしきい値Vi1より大であれば逆歪特性増幅器51の出力を選択し、Vi1より小であれば、振幅変調回路14の出力信号を選択するように、判定手段56の判定結果により切替え手段57が制御される。
【0013】
切替え手段57で選択された信号は飽和増幅器15のFET19のゲートに供給されると共に分岐されて包絡線検波器58で包絡線検波され、その検波出力はバイアス生成回路31へ供給され、バイアス制御信号が生成され、そのバイアス制御信号でFET19のゲートバイアスが制御される。バイアス生成回路31からは図5Cに示したようなバイアス制御信号が得られる。
【0014】
この構成によれば、振幅変調回路14の出力信号がしきい値Vi1以下であれば、そのまま飽和増幅器15へ供給され、図2Bに示すように線形増幅される。振幅変調回路14の出力信号がしきい値Vi1以上になると、この出力信号は逆歪特性増幅器51で図2Bの曲線54で示す補償が与えられ、入力が大きくなるに従って、直線性以上に大きくなり、この逆歪特性増幅器51の出力信号が増幅器15へ供給されるため、増幅器15の出力は図2B中の破線53で示すようにほぼ線形特性になる。
【0015】
またこの実施例では、包絡線検波器58とバイアス生成回路31とにより図5で説明したと同様なゲートバイアス制御が、増幅信号の振幅に応じて行われ、効率がよいものとなる。
更に図2A中に破線で示すように、切替え手段57の出力を分岐して直線バイアス生成回路41(図1A中のものと同一)へ入力し、そのバイアス制御信号でFET19のゲートバイアスを制御する。この場合、増幅信号と、バイアス制御信号とが位相同期するために、破線で示す遅延回路59で、その切替え手段57で何れの信号を選択しても位相が一致するようになし、またバイアス生成回路41への分岐点と、FET19のゲートとの間に遅延回路42を挿入する。このようにすれば、図1について説明したように、効率を一層高めることができる。
【0016】
なお、図2A中のバイアス生成回路31又は41を省略しても、逆歪特性増幅器51、判定手段56、切替え手段57の使用により、歪の発生を抑圧することができ、効率の低下を避けることができる。
【0017】
【発明の効果】
以上述べたように、請求項1の発明によれば、飽和増幅器のバイアスをその増幅信号の瞬時レベルでこれと同位相で制御しているため、従来よりも効率が高いものが得られる。
請求項2の発明によれば、増幅器の飽和に近い入力信号に対しては逆歪増幅により、非直線性を補償するようにしているため、大きなレベルまで直線的特性が得られ、それだけ歪の発生が少なく、効率が高いものとなる。
【0018】
請求項1および2の何れの発明においても、大電流を使う直流増幅器やDC−DCコンバータを用いないため小形に構成することができる。
請求項3、4の発明によれば、請求項2の発明よりも効率を一層高くすることができる。
【図面の簡単な説明】
【図1】Aは請求項1の発明の実施例を示す図、B、Cはその動作説明に用いる波形図である。
【図2】Aは請求項3の発明の実施例を示す図、Bは飽和増幅器15、逆歪増幅器51の入出力特性を示す図である。
【図3】従来の送信増幅器を示すブロック図である。
【図4】Aは飽和増幅器15の具体例を示す図、Bはその動作特性を示す図である。
【図5】Aは提案されている送信増幅器を示す図、B、Cはその動作の説明に供する波形図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transmission amplifier which is applied to, for example, a mobile communication device and operates linearly.
[0002]
[Prior art]
FIG. 3 shows a conventional transmission amplifier. The data signal from the input terminal 11 is converted into a waveform signal of, for example, an in-phase component signal and a quadrature component signal of a QPSK signal in a waveform generation circuit 12, and a quadrature modulator 13 quadrature modulates a carrier with these waveform signals. The modulation output signal is adjusted in gain (level) as needed by the amplitude modulation circuit 14, output-amplified by the saturation amplifier, that is, the transmission amplifier 15, and output to the output terminal 16.
[0003]
4A, the signal from the input terminal 17 is supplied to the gate of the FET 19 through the matching circuit 18, the source of the FET 19 is grounded, the drain is connected to the power supply terminal 22 through the load 21, and The output terminal 16 is connected through the matching circuit 20. The gate of the FET 19 is connected to the terminal 24 through the impedance element 23.
[0004]
Conventionally, in order to perform efficient linear operation with the saturated amplifier 15, as shown in FIG. 3, the output of the waveform generating circuit 12 is supplied to the envelope generating circuit 27, and the input signal of the saturated amplifier 15 is A signal corresponding to the envelope is generated, and a DC amplifier 28 is controlled by the envelope signal. A DC input of a terminal 29 is controlled by the DC amplifier 28, and a power supply terminal of the saturation amplifier 15, for example, a drain power supply in FIG. It is supplied to terminal 22. In this way, the drain voltage of the saturation amplifier 15 is controlled by the DC amplifier 28, and the saturation level of the saturation amplifier 15 dynamically follows the input signal envelope, thereby achieving efficient linear operation.
[0005]
A DC-DC converter may be used instead of the DC amplifier 28. As described above, since the drain voltage is conventionally controlled, that is, the voltage on the output side of the amplifier 15 is directly controlled, a large current flows to the DC amplifier (DC-DC converter) 28 and the input signal ( Data), it was necessary to control a large current at a high speed. For this reason, when a DC amplifier is used, the efficiency of the DC amplifier deteriorates, so that the efficiency of the transmission amplifier as a whole deteriorates. In addition, when a DC-DC converter is used, the efficiency is good, but in addition to the drawback that the circuit scale is larger than that of a DC amplifier, when used in a high-speed broadband wireless modulation scheme whose modulation band exceeds megahertz, The follow-up speed of the DC-DC converter was too late to use.
[0006]
From this point, the output of the envelope generation circuit 27 is supplied to the bias generation circuit 31, and the output of the bias generation circuit 31 is output as shown in FIG. The voltage is applied to the terminal 24 to control the gate bias of the FET 19. That is, when the output signal of the amplitude modulation circuit 14 is, for example, as shown in FIG. 5B, an envelope signal of the signal of FIG. 5B is obtained from the envelope generation circuit 27, and the output bias control signal of the bias generation circuit 31 is shown in FIG. As described above, the amplitude corresponds to the upper side of the envelope of the output of the amplitude modulation circuit 14. If the amplitude of the output of the amplitude modulation circuit 14, that is, the amplitude of the input signal of the saturation amplifier 15, is large, the gate bias becomes large. Bias is reduced.
[0007]
That is, in the drain current-drain-source voltage characteristics of the saturated amplifier 15 (FIG. 4A) shown in FIG. 4B, the gate bias becomes large at the point a for the input 33 when the input signal amplitude of the amplifier 15 is large. For the input 34 when the input signal amplitude is small, the gate bias becomes small at point b. That is, in the related art, the drain current Ia corresponding to the gate bias point a flows so as not to saturate with a large amplitude. However, according to the control illustrated in FIG. 5A, at the time of the small amplitude input, the drain current Ia corresponds to Ib corresponding to the bias point b. Power consumption. That is, according to the configuration shown in FIG. 5A, the gate bias is controlled to follow the amplitude of the input signal, that is, a constant back-off value is obtained in accordance with the amplitude value of the modulation signal, and high efficiency is realized. In addition, since the bias is controlled not on the drain side but on the gate side, there is no need for a DC amplifier or a DC-DC converter.
[0008]
[Problems to be solved by the invention]
Although the configuration shown in FIG. 5A is more efficient than that shown in FIG. 3, for example, in the large amplitude state 36 in the signal shown in FIG. 5B, the gate bias is held at Vga as shown in FIG. 5C. The large amplitude state 36 is almost lower than the peak value Pp when viewed instantaneously, and the gate bias value Vga corresponds to the peak value Pp. In this regard, it can be said that there is a portion where the drain current is flown uselessly, that is, there is room for improvement in efficiency.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, a bias control signal that follows the instantaneous amplitude of the input signal of the transmission amplifier is generated by the bias generation circuit, and the bias of the transmission amplifier is synchronized with the transmission signal and the instantaneous amplitude by the bias control signal. Controlled.
According to the second aspect of the present invention, the input signal is supplied to the inverse distortion characteristic amplifier to provide the inverse distortion characteristic, and whether or not the input signal level is equal to or more than a threshold value close to the saturation level of the output-input characteristic of the transmission amplifier It is determined by the switching means that the input signal is supplied to the transmission amplifier as it is when it is determined to be equal to or less than the threshold value, and the inverse distortion characteristic amplifier determined to be equal to or more than the threshold value is supplied to the transmission amplifier.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1A shows an embodiment of the first aspect of the present invention, and portions corresponding to those in FIGS. 3 and 4A are denoted by the same reference numerals. In this embodiment, the output signal of the amplitude modulation circuit 14 is branched and supplied to the bias generation circuit 41. The bias generation circuit 41 generates a bias control signal corresponding to the instantaneous value of the amplitude of the input signal. That is, when the output signal of the amplitude modulation circuit 14 is, for example, as shown in FIG. 1B, the frequency and the bias control signal are the same as shown in FIG. 1C, the phase is the same, and the amplitude is also corresponding. However, the minimum value of the instantaneous value of the bias control signal is substantially the same as the value Qb when the amplitude is small and the value Qa when the amplitude is large. The amplitude value is small when the amplitude of the output signal is small Psb, and is large when the output signal is large Psa. Moreover, the output signal (FIG. 1B) and the bias control signal (FIG. 1C) have the same phase. That is, if the bias generation signal is accompanied by a delay in the bias generation circuit 41, a delay corresponding to the delay is given to the output signal of the amplitude modulation circuit 14 by the delay circuit 42, and the saturation amplifier 15 and the FET 19 in FIG. It is supplied to the gate. The bias control signal is applied to the gate bias terminal 24 of the FET 19 in this example.
[0011]
According to this configuration, the instantaneous level of the input signal and the corresponding gate bias are applied to the saturation amplifier 15 so that an appropriate gate bias is always applied even when viewed instantaneously, as shown in FIG. 5A. More efficient than the ones.
FIG. 2A shows an embodiment of the third aspect of the present invention, in which parts corresponding to those in FIGS. 3, 4A and 5A are denoted by the same reference numerals. In this embodiment, the output of the amplitude modulation circuit 14 is supplied to an inverse distortion characteristic amplifier 51. The output-input characteristics of the inverse distortion characteristic amplifier are as shown in FIG. 2B. That is, the saturation amplifier 15 deviates from linearity and gradually saturates as the input level increases, as shown by the curve 52. Therefore, when the input level Vi1 starts to gradually approach saturation, the characteristic of the inverse distortion amplifier 51 is changed so that the nonlinearity is compensated and a correction characteristic curve 54 that approaches the linearity characteristic curve 53 is given to the input signal. Selected. In other words, the characteristic curve 52 of the amplifier 15 is a reverse distortion characteristic curve 54 that compensates for the occurrence of distortion due to the non-linear portion and prevents the distortion from occurring.
[0012]
The output of the amplitude modulation circuit 14 is branched and supplied to the determination means 56. The determination means 56 uses the input level at which the saturation amplifier 15 starts to be saturated, Vi1 in FIG. 2B as a threshold, compares this with the output signal of the amplitude modulation circuit 14, and determines that this output signal is higher than the threshold Vi1. If it is larger, the output of the inverse distortion characteristic amplifier 51 is selected, and if it is smaller than Vi1, the switching means 57 is controlled based on the determination result of the determination means 56 so that the output signal of the amplitude modulation circuit 14 is selected.
[0013]
The signal selected by the switching means 57 is supplied to the gate of the FET 19 of the saturation amplifier 15 and branched, and is subjected to envelope detection by the envelope detector 58. The detected output is supplied to the bias generation circuit 31, and the bias control signal Is generated, and the gate bias of the FET 19 is controlled by the bias control signal. A bias control signal as shown in FIG. 5C is obtained from the bias generation circuit 31.
[0014]
According to this configuration, if the output signal of the amplitude modulation circuit 14 is equal to or smaller than the threshold value Vi1, the output signal is directly supplied to the saturation amplifier 15 and linearly amplified as shown in FIG. 2B. When the output signal of the amplitude modulation circuit 14 exceeds the threshold value Vi1, the output signal is compensated by the inverse distortion characteristic amplifier 51 as shown by the curve 54 in FIG. 2B. Since the output signal of the inverse distortion characteristic amplifier 51 is supplied to the amplifier 15, the output of the amplifier 15 has a substantially linear characteristic as shown by a broken line 53 in FIG. 2B.
[0015]
Further, in this embodiment, the same gate bias control as that described in FIG. 5 is performed by the envelope detector 58 and the bias generation circuit 31 according to the amplitude of the amplified signal, so that the efficiency is improved.
Further, as shown by the broken line in FIG. 2A, the output of the switching means 57 is branched and input to the linear bias generation circuit 41 (same as that in FIG. 1A), and the gate control of the FET 19 is controlled by the bias control signal. . In this case, since the amplified signal and the bias control signal are synchronized in phase, the delay circuit 59 shown by the broken line ensures that the phase is the same regardless of which signal is selected by the switching means 57, and the bias generation signal is not generated. A delay circuit 42 is inserted between the branch point to the circuit 41 and the gate of the FET 19. In this way, the efficiency can be further increased as described with reference to FIG.
[0016]
Note that even if the bias generation circuit 31 or 41 in FIG. 2A is omitted, the occurrence of distortion can be suppressed by using the inverse distortion characteristic amplifier 51, the determination unit 56, and the switching unit 57, and a decrease in efficiency is avoided. be able to.
[0017]
【The invention's effect】
As described above, according to the first aspect of the present invention, since the bias of the saturation amplifier is controlled at the instantaneous level of the amplified signal and in phase with the instantaneous level of the amplified signal, a higher efficiency than the conventional one can be obtained.
According to the second aspect of the present invention, since the nonlinearity is compensated for the input signal close to the saturation of the amplifier by the inverse distortion amplification, the linear characteristic can be obtained up to a large level, and the distortion is accordingly increased. Less generation and higher efficiency.
[0018]
In any of the first and second aspects of the present invention, since a direct current amplifier or a DC-DC converter that uses a large current is not used, it can be configured in a small size.
According to the third and fourth aspects of the present invention, the efficiency can be made higher than that of the second aspect of the present invention.
[Brief description of the drawings]
FIG. 1A is a diagram showing an embodiment of the first aspect of the present invention, and FIGS. 1B and 1C are waveform diagrams used to explain the operation thereof.
2A is a diagram showing an embodiment of the invention of claim 3, and FIG. 2B is a diagram showing input / output characteristics of a saturation amplifier 15 and a reverse distortion amplifier 51. FIG.
FIG. 3 is a block diagram showing a conventional transmission amplifier.
FIG. 4A is a diagram showing a specific example of a saturation amplifier 15, and FIG. 4B is a diagram showing its operation characteristics.
FIG. 5A is a diagram showing a proposed transmission amplifier, and FIGS. 5B and 5C are waveform diagrams for explaining the operation thereof.

Claims (4)

無線通信機の送信増幅器において、
送信されるべき信号を増幅する飽和形増幅器と、
上記送信されるべき信号の振幅の瞬時値に対応する振幅と上記送信されるべき信号の位相を持つバイアス制御信号を生成し、そのバイアス制御信号により上記飽和形増幅器のバイアスを制御するバイアス生成回路を含むことを特徴とする送信増幅器。
In a transmission amplifier of a wireless communication device,
A saturable amplifier for amplifying the signal to be transmitted;
Generating a bias control signal having a phase amplitude and the signal to be transmitted the corresponding to instantaneous amplitude of the signal to be transmitted above, braking Gosuru bias generating the bias of the saturation type amplifier by the bias control signal A transmission amplifier comprising a circuit.
記送信されるべき信号レベルが上記飽和形増幅器の出力−入力特性の飽和レベルに近いしきい値以上か否か判定する判定手段と、
上記飽和形増幅器の入出力特性曲線の非直線部分における非直線特性を補償する特性を有し、上記送信されるべき信号が入力される逆歪特性増幅器と、
上記判定手段がしきい値未満と判定すると、上記送信されるべき信号を上記逆歪特性増幅器を通すことなく上記飽和形増幅器へ供給し、上記判定手段がしきい値以上と判定すると、上記逆歪特性増幅器の出力を上記飽和形増幅器へ供給する切替え手段と
を具備することを特徴とする請求項1記載の送信増幅器。
Levels above SL signals to be transmitted, the output of the saturation type amplifier - determination means whether or above the threshold close to the saturation level of the input characteristics,
An inverse distortion characteristic amplifier having a characteristic of compensating for a nonlinear characteristic in a nonlinear portion of an input / output characteristic curve of the saturated amplifier, and receiving the signal to be transmitted ;
When the determination means determines that less than a threshold value, a signal to be the transmitted sheet subjected to the saturated type amplifier without passing through the reverse distortion characteristic amplifier, when said determination means determines that more than the threshold value, the 2. The transmission amplifier according to claim 1 , further comprising switching means for supplying an output of the inverse distortion characteristic amplifier to the saturation amplifier.
上記送信されるべき信号と上記バイアス制御信号を振幅及び位相同期させる手段を備えることを特徴とする請求項2記載の送信増幅器。Transmission amplifier according to claim 2, further comprising a hand stage for amplitude and phase synchronizing signal and the bias control signal to be transmitted above. 上記飽和形増幅器に含まれる増幅素子はFETであり、上記バイアス生成回路のバイアス制御信号は上記FETのゲートをバイアス制御することを特徴とする請求項2記載の送信増幅器。3. The transmission amplifier according to claim 2 , wherein the amplification element included in the saturable amplifier is an FET, and the bias control signal of the bias generation circuit bias-controls the gate of the FET .
JP23289398A 1998-08-19 1998-08-19 Transmission amplifier Expired - Lifetime JP3549182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23289398A JP3549182B2 (en) 1998-08-19 1998-08-19 Transmission amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23289398A JP3549182B2 (en) 1998-08-19 1998-08-19 Transmission amplifier

Publications (2)

Publication Number Publication Date
JP2000068753A JP2000068753A (en) 2000-03-03
JP3549182B2 true JP3549182B2 (en) 2004-08-04

Family

ID=16946503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23289398A Expired - Lifetime JP3549182B2 (en) 1998-08-19 1998-08-19 Transmission amplifier

Country Status (1)

Country Link
JP (1) JP3549182B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4014072B2 (en) * 2000-03-31 2007-11-28 株式会社ルネサステクノロジ Power amplifier module
JP3567148B2 (en) * 2001-09-05 2004-09-22 株式会社日立国際電気 Distortion compensator
EP1564897A1 (en) * 2004-02-13 2005-08-17 Thomson Licensing S.A. Control of a power amplifier for reducing power consumption in a transceiver
WO2008136124A1 (en) * 2007-04-26 2008-11-13 Panasonic Corporation Amplifier
JP4784558B2 (en) * 2007-05-30 2011-10-05 ソニー株式会社 Power amplification device and wireless communication device using the same
WO2011002099A1 (en) * 2009-07-03 2011-01-06 日本電気株式会社 Power consumption control circuit, amplifying circuit, and power consumption control method

Also Published As

Publication number Publication date
JP2000068753A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP3841416B2 (en) Transmission device, transmission output control method, and wireless communication device
US7102427B2 (en) Amplifier and radio frequency power amplifier using the same
US7560984B2 (en) Transmitter
KR100359601B1 (en) Load envelope following amplifier system
JP5379110B2 (en) Apparatus and method for efficiently amplifying a broadband envelope signal
US5420536A (en) Linearized power amplifier
US6252455B1 (en) Method and apparatus for efficient signal amplification
JP4642068B2 (en) Transmitting apparatus and wireless communication apparatus
US7742541B2 (en) Transmission circuit, and communication apparatus using the same
JP2964883B2 (en) Transmitter
JP4199185B2 (en) Transmitting apparatus and wireless communication apparatus
JP2001519612A (en) High frequency broadband power amplifier
JPH07101821B2 (en) High efficiency UHF linear power amplifier circuit
KR20060021290A (en) Power control for a transmitter
WO2000041296A1 (en) Method and apparatus for operating a radio-frequency power amplifier as a variable-class linear amplifier
JP5217182B2 (en) High frequency amplifier circuit
JP3549182B2 (en) Transmission amplifier
US8145148B2 (en) Transmitter and communication apparatus
JP3874747B2 (en) Transmission device, transmission power control method, and wireless communication device
KR101522644B1 (en) Apparatus and method for improving linearity of transmitter
JP2005295533A (en) Transmission device and radio communication device
KR20080076165A (en) Apparatus for power transmitter in wirelass communication systems
US6100756A (en) Method and apparatus for high efficiency power amplification
JP2004517541A (en) Multiplexed input envelope restoration scheme for high efficiency linear power amplification
JPH0656960B2 (en) Linear transmitter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term