JP3548661B2 - Bearing wear monitoring device for canned motor - Google Patents

Bearing wear monitoring device for canned motor Download PDF

Info

Publication number
JP3548661B2
JP3548661B2 JP33567896A JP33567896A JP3548661B2 JP 3548661 B2 JP3548661 B2 JP 3548661B2 JP 33567896 A JP33567896 A JP 33567896A JP 33567896 A JP33567896 A JP 33567896A JP 3548661 B2 JP3548661 B2 JP 3548661B2
Authority
JP
Japan
Prior art keywords
coil
detection
loop coil
output
detection coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33567896A
Other languages
Japanese (ja)
Other versions
JPH10174374A (en
Inventor
真右 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP33567896A priority Critical patent/JP3548661B2/en
Publication of JPH10174374A publication Critical patent/JPH10174374A/en
Application granted granted Critical
Publication of JP3548661B2 publication Critical patent/JP3548661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、キャンドモータの軸受摩耗に伴う回転子の変位から軸受の摩耗を監視する装置に関する。
【0002】
【従来の技術】
キャンドモータはポンプ用モータとしてプラントの一部品に適用され、高い信頼性が要求される。したがって、その回転子を支承する軸受の摩耗状態を外部から監視する装置は不可欠のものとなっている。
従来の軸受摩耗監視装置の一例を図6,図7に示す。
固定子1の180度対向した鉄心歯の長手方向に巻回した検出コイル2a,2bを、その差動出力が出力されるように接続し、その出力を電圧計3により読取るようにしている。
【0003】
この場合、回転子4の回転により検出コイル2a,2bに誘起する電圧は、電源周波数に同期した基本波電圧に回転子溝4aの影響による高調波電圧が重畳したものとなるが、180度間隔で設置された検出コイル2a,2bの出力が差動となるように接続されているので、電圧計3には基本波電圧が消されて高周波電圧の瞬時値の差が出力電圧として表示される。そして、この高調波電圧は図7に示すように、軸受が摩耗して固定子1と回転子4との間隙d1が大きく、間隙d2が小さくなると(回転子4が半径方向に変位)、検出コイル2bの高調波電圧が増加した差動出力が電圧計3に表示される。
【0004】
【発明が解決しようとする課題】
前記従来の軸受摩耗監視装置にあっては、回転子4が半径方向に変位する原因となった軸受の半径方向の摩耗状態のみを監視することが可能であって、軸受の軸方向の摩耗状態の監視はできないという不都合があった。
キャンドモータポンプは、輸送流体の性状、流体圧等によって回転子軸に加わる負荷の方向が変化するので、軸受の詳細な摩耗状況を把握する必要が望まれていた。
【0005】
本発明は、前記事情によりなされたもので、回転子の半径方向変位及び軸方向変位を招来した軸受の摩耗監視を可能とするキャンドモータの軸受摩耗監視装置の提供を目的とする。
【0006】
【課題を解決するための手段】
本願の発明は、固定子鉄心歯の長手方向中央より偏位した位置に設けた切欠溝において交叉し、前記鉄心歯の両端面を巻回するようにして設置した8字状の大ループコイルと小ループコイルとからなる第1の検出コイルと、該第1の検出コイルと180度対向した鉄心歯に、第1の検出コイルの大ループコイルと小ループコイルの設置位置と相対的に逆な態様で設置した大ループコイルと小ループコイルとからなる第2の検出コイルとの各出力の差動合成出力が出力されるように結線され、該差動出力結線回路に出力表示器を接続したことにより、前記目的が達成される(請求項1に係る発明)。
【0007】また、本願の発明は、前記第1の検出コイルと第2の検出コイルとの各大ループコイルと小ループコイルの長さの調整により、回転子の軸方向変位及び半径方向変位の検知感度の調整を可能とすることにより、前記目的が達成される(請求項2に係る発明)。
【0008】
【作用】
請求項1に係る発明は、回転子の軸方向変位及び半径方向変位に伴う第1の検出コイルの8字状の大ループコイルと小ループコイルとの差出力と、第2の検出コイルの8字状の大ループコイルと小ループコイルとの差出力との差動合成出力の検出により、軸受の軸方向及び半径方向の摩耗がそれぞれ監視される。
請求項2に係る発明は、軸受の軸方向及び半径方向の摩耗が精度よく監視される。
【0009】
【発明の実施の形態】
まず、固定子の鉄心歯に検出コイルを設置する方法について図1を参照して説明する。図1(A)に示すように、固定子1の鉄心歯2aの長手方向中央より偏位した点P2(図では左方に偏位した点)に切欠溝2bを形成し、この切欠溝2b内で交叉し、鉄心歯2aの両端面を巻回するようにして8字状に捩った大ループコイルC2Lと小ループコイルC2Sとからなる第2の検出コイルC2を設置する(切欠溝2b内で交叉する大小の各ループコイルC2LとC2Sを例えば樹脂等で固定)。
【0010】
そして、図1(B)に示すように、前記第2の検出コイルC2を設置した鉄心歯2aと180度対向した鉄心歯1aに、前記点P2の設置位置と相対的に逆の位置P1に設けた切欠溝1bに、前記第2の検出コイルC2と同じ態様で8字状に捩った大ループコイルC1Lと小ループコイルC1Sとからなる第1の検出コイルC1を設置する。
【0011】
図2は第1,第2の各検出コイルC1,C2の結線図を示し、誘導電動機側において第1の検出コイルC1(大ループコイルC1Lと小ループコイルC1Sとの間の合成出力は差動出力)と第2の検出コイルC2(大ループコイルC2Lと小ループコイルC2Sとの間の合成出力は差動出力)とを差動出力が出力されるように結線し(第1の検出コイルC1と極性を変えて第2の検出コイルC2を接続)、この結線回路に出力表示器Vを接続してある。
【0012】
次に、回転子が正常位置より軸方向に変位した場合(軸受の軸方向変位による)の検出について説明する。
図3に示すように、回転子が正常位置0より+方向(左方)に変位すると、第1の検出コイルC1の大ループコイルコイルC1Lの誘起電圧に変化なく、小ループコイルコイルC1Sの誘起電圧は減少するので、その差のコイルC1の出力は図4に示すように増大する。
また、第2の検出コイルC2の大ループコイルC2Lの誘起電圧は減少し、小ループコイルC2Sの誘起電圧に変化がないので、その差のコイルC2の出力は図4に示すように減少する。
よって、第1、第2の各検出コイルC1とC2との差動合成出力が図4の出力特性として示され、この出力が出力表示器Vに表示され、回転子の軸方向変位を検知し、軸受の軸方向摩耗を監視することができる。
また、回転子が図3の−方向(右方)に変位した場合にも、第1,第2の各検出コイルC1,C2の出力の増減に伴う差動合成出力を示す図4の出力特性により検出することができる。
【0013】
回転子が正常位置より半径方向に変位した場合(軸受の半径方向変位による)の検出について説明する。
図3に示すように、回転子が正常位置0より+方向(上方)に変位すると、第1の検出コイルC1の大ループコイルC1Lと小ループコイルC1Sの誘起電圧はともに増加し、その差のコイルC1の出力は図5に示すように増大する。
また、第2の検出コイルC2の大ループコイルC2Lと小ループコイルC2Sの誘起電圧はともに減少し、その差のC2の出力は図5に示すように減少する。よって、第1,第2の各検出コイルC1とC2との差動合成出力が図5の出力特性として示され、この出力が出力表示器Vに表示され、回転子の半径方向変位を検知し、軸受の半径方向摩耗と監視することができる。
また、回転子が図3の−方向(下方)に変位した場合にも、第1,第2の各検出コイルC1,C2の出力増減に伴う差動合成出力を示す図5の出力特性により検出することができる。
【0014】
【実施例】
回転子の軸方向変位と半径方向変位の検出感度は第1,第2の各検出コイルの大ループコイルと小ループコイルの長さの比で調節することが可能であり、例えば、小ループコイルを2重に巻回して誘起電圧を増加し、両コイルの出力差を大きくすることにより感度よく検出することができる。
また、固定子の鉄心歯の中央に切欠溝を設け、この切欠溝で交叉する同一長のループコイルを有する検出コイルを鉄心歯の180度対向する位置に設置することにより、回転子の軸方向変位のみを検出することできる。
【0015】
【発明の効果】
請求項1に係る発明は、回転子の軸方向変位及び半径方向変位の原因となる軸受の軸方向摩耗及び半径方向摩耗を2つの検出コイルのセットにより効率よく監視することができる。
請求項2に係る発明は、回転子の軸方向変位及び半径方向変位を精度よく検出することができる。
【図面の簡単な説明】
【図1】固定子の鉄心歯に検出コイルを設置する方法を示し、図1(A)は斜視図、図1(B)は側面断面図である。
【図2】検出コイルの結線図である。
【図3】回転子の軸方向変位と半径方向変位の検出を説明する図である。
【図4】回転子の軸方向変位と検出コイルの出力特性図である。
【図5】回転子の半径方向変位と検出コイルの出力特性図である。
【図6】従来の軸受摩耗検出の固定子への検出コイルの設置を示す説明図である。
【図7】検出回路の説明図である。
【符号の説明】
1 固定子
1a 固定子鉄心歯
1b,2b 切欠溝
c1 第1の検出コイル
C1L 大ループコイル
C1S 小ループコイル
c2 第2の検出コイル
C2L 大ループコイル
C2S 小ループコイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for monitoring bearing wear from displacement of a rotor caused by bearing wear of a canned motor.
[0002]
[Prior art]
The canned motor is applied to one part of a plant as a pump motor, and high reliability is required. Therefore, a device for externally monitoring the wear state of the bearing supporting the rotor is indispensable.
6 and 7 show an example of a conventional bearing wear monitoring device.
The detection coils 2a and 2b wound in the longitudinal direction of the iron core teeth of the stator 1 opposed to each other by 180 degrees are connected so as to output the differential output, and the output is read by the voltmeter 3.
[0003]
In this case, the voltage induced in the detection coils 2a and 2b by the rotation of the rotor 4 is a voltage obtained by superimposing a harmonic voltage under the influence of the rotor groove 4a on a fundamental wave voltage synchronized with the power supply frequency. Are connected so that the outputs of the detection coils 2a and 2b provided in the differential are differential, the voltmeter 3 eliminates the fundamental wave voltage and displays the difference between the instantaneous values of the high-frequency voltage as the output voltage. . Then, as shown in FIG. 7, when the gap d1 between the stator 1 and the rotor 4 becomes large and the gap d2 becomes small (the rotor 4 is displaced in the radial direction) as shown in FIG. The voltmeter 3 displays the differential output with the increased harmonic voltage of the coil 2b.
[0004]
[Problems to be solved by the invention]
In the conventional bearing wear monitoring device, it is possible to monitor only the radial wear state of the bearing that caused the rotor 4 to be displaced in the radial direction, and it is possible to monitor the axial wear state of the bearing. There was a disadvantage that it could not be monitored.
In the canned motor pump, the direction of the load applied to the rotor shaft changes depending on the properties of the transport fluid, the fluid pressure, and the like. Therefore, it is desired to grasp the detailed wear state of the bearing.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a bearing wear monitoring device for a canned motor that enables monitoring of bearing wear resulting from radial displacement and axial displacement of the rotor.
[0006]
[Means for Solving the Problems]
The invention of the present application is directed to a large loop coil having a figure-eight shape, which intersects at notched grooves provided at positions deviated from the longitudinal center of the stator core teeth and is installed so as to wind both end faces of the core teeth. A first detection coil composed of a small loop coil, and an iron core tooth 180 degrees opposite to the first detection coil, are relatively opposite to the installation positions of the large loop coil and the small loop coil of the first detection coil. And a second detection coil comprising a large loop coil and a small loop coil, which are installed in the embodiment, are connected so as to output a differential combined output, and an output display is connected to the differential output connection circuit. Thereby, the above object is achieved (the invention according to claim 1).
[0007] The invention of the present application is also directed to an axial displacement and a radial displacement of the rotor by adjusting the lengths of the large loop coil and the small loop coil of the first detection coil and the second detection coil. The object is achieved by enabling the detection sensitivity to be adjusted (the invention according to claim 2).
[0008]
[Action]
The invention according to claim 1 provides a differential output between a large loop coil and a small loop coil having a figure-eight shape of the first detection coil accompanying the axial displacement and the radial displacement of the rotor, and the differential output of the second detection coil. By detecting the differential combined output of the difference output between the large loop coil and the small loop coil, the wear of the bearing in the axial direction and the radial direction is monitored.
According to the second aspect of the invention, the axial and radial wear of the bearing is accurately monitored.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a method of installing the detection coil on the iron core teeth of the stator will be described with reference to FIG. As shown in FIG. 1A, a notch groove 2b is formed at a point P2 (point deviated to the left in the figure) deviated from the center in the longitudinal direction of the iron core teeth 2a of the stator 1, and this notch groove 2b And a second detection coil C2 composed of a large loop coil C2L and a small loop coil C2S that are twisted in an eight-letter shape so as to wind around both end surfaces of the iron core teeth 2a (notched groove 2b) Each of the large and small loop coils C2L and C2S crossing each other is fixed with, for example, resin or the like).
[0010]
Then, as shown in FIG. 1 (B), the iron core tooth 1a 180 degrees opposite to the iron core tooth 2a on which the second detection coil C2 is installed is located at a position P1 relatively opposite to the installation position of the point P2. A first detection coil C1 composed of a large loop coil C1L and a small loop coil C1S twisted in a figure-eight shape in the same manner as the second detection coil C2 is installed in the provided notch groove 1b.
[0011]
FIG. 2 shows a connection diagram of the first and second detection coils C1 and C2. On the induction motor side, the first detection coil C1 (the combined output between the large loop coil C1L and the small loop coil C1S is a differential output). Output) and a second detection coil C2 (the combined output between the large loop coil C2L and the small loop coil C2S is a differential output) so as to output a differential output (the first detection coil C1). And the polarity is changed to connect the second detection coil C2), and the output display V is connected to this connection circuit.
[0012]
Next, detection when the rotor is displaced in the axial direction from the normal position (due to axial displacement of the bearing) will be described.
As shown in FIG. 3, when the rotor is displaced in the + direction (leftward) from the normal position 0, the induced voltage of the large loop coil C1L of the first detection coil C1 is not changed, and the induced voltage of the small loop coil C1S is not changed. As the voltage decreases, the output of the difference coil C1 increases as shown in FIG.
Further, since the induced voltage of the large loop coil C2L of the second detection coil C2 decreases and the induced voltage of the small loop coil C2S does not change, the output of the difference coil C2 decreases as shown in FIG.
Therefore, the differential combined output of the first and second detection coils C1 and C2 is shown as the output characteristic in FIG. 4, and this output is displayed on the output display V to detect the axial displacement of the rotor. , The axial wear of the bearing can be monitored.
Further, even when the rotor is displaced in the negative direction (rightward) in FIG. 3, the output characteristic of FIG. 4 showing the differential combined output accompanying the increase and decrease of the output of each of the first and second detection coils C1 and C2. Can be detected.
[0013]
Detection when the rotor is displaced in the radial direction from the normal position (due to the radial displacement of the bearing) will be described.
As shown in FIG. 3, when the rotor is displaced in the + direction (upward) from the normal position 0, the induced voltages of the large loop coil C1L and the small loop coil C1S of the first detection coil C1 both increase, and The output of the coil C1 increases as shown in FIG.
Further, the induced voltages of the large loop coil C2L and the small loop coil C2S of the second detection coil C2 both decrease, and the output of the difference C2 decreases as shown in FIG. Therefore, the differential combined output of the first and second detection coils C1 and C2 is shown as the output characteristic in FIG. 5, and this output is displayed on the output display V to detect the radial displacement of the rotor. , Can be monitored with radial wear of the bearing.
In addition, even when the rotor is displaced in the negative direction (downward) in FIG. 3, the detection is performed based on the output characteristics in FIG. 5 showing the differential combined output accompanying the increase and decrease in the output of the first and second detection coils C1 and C2. can do.
[0014]
【Example】
The detection sensitivity of the axial displacement and the radial displacement of the rotor can be adjusted by the ratio of the length of the large loop coil to the length of the small loop coil of each of the first and second detection coils. Are wound twice to increase the induced voltage and increase the output difference between the two coils, thereby enabling detection with high sensitivity.
Further, a notch groove is provided at the center of the iron core teeth of the stator, and a detection coil having a loop coil of the same length intersecting with the notch groove is installed at a position 180 degrees opposite to the iron core teeth, so that the axial direction of the rotor can be improved. Only displacement can be detected.
[0015]
【The invention's effect】
According to the first aspect of the present invention, it is possible to efficiently monitor the axial wear and the radial wear of the bearing, which cause the axial displacement and the radial displacement of the rotor, by using two sets of detection coils.
The invention according to claim 2 can accurately detect the axial displacement and the radial displacement of the rotor.
[Brief description of the drawings]
1A and 1B show a method of installing a detection coil on a core tooth of a stator. FIG. 1A is a perspective view, and FIG. 1B is a side sectional view.
FIG. 2 is a connection diagram of a detection coil.
FIG. 3 is a diagram illustrating detection of axial displacement and radial displacement of a rotor.
FIG. 4 is a diagram illustrating an axial displacement of a rotor and an output characteristic of a detection coil;
FIG. 5 is a diagram illustrating a radial displacement of a rotor and an output characteristic of a detection coil.
FIG. 6 is an explanatory view showing a conventional installation of a detection coil on a stator for detecting bearing wear.
FIG. 7 is an explanatory diagram of a detection circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stator 1a Stator iron core teeth 1b, 2b Notch groove c1 First detection coil C1L Large loop coil C1S Small loop coil c2 Second detection coil C2L Large loop coil C2S Small loop coil

Claims (2)

固定子鉄芯歯の長手方向中央より偏位した位置に設けた切欠溝において交叉し、前記鉄心歯の両端面を巻回するようにして設置した8字状の大ループコイルと小ループコイルとからなる第1の検出コイルと、該第1の検出コイルと180度対向した鉄心歯に、第1の検出コイルの大ループコイルと小ループコイルの設置位置と相対的に逆な態様で設置した大ループコイルと小ループコイルとからなる第2の検出コイルとの各出力の差動合成出力が出力されるように結線され、該差動出力結線回路に出力表示器を接続したことを特徴とするキャンドモータの軸受摩耗監視装置。An eight-shaped large loop coil and a small loop coil which intersect at notch grooves provided at positions deviated from the center in the longitudinal direction of the stator iron core teeth and are installed so as to wind both end surfaces of the iron core teeth. A first detection coil composed of: and the iron core teeth 180 degrees opposite to the first detection coil are installed in a manner that is relatively opposite to the installation positions of the large loop coil and the small loop coil of the first detection coil. And a second detection coil including a large loop coil and a small loop coil. The second detection coil is connected such that a differential combined output is output, and an output indicator is connected to the differential output connection circuit. Bearing monitoring device for canned motors. 第1の検出コイルと第2の検出コイルとの各大ループコイルと小ループコイルの長さの調整により、回転子の軸方向変位及び半径方向変位の検知感度の調整を可能とした請求項1に記載のキャンドモータの軸受摩耗監視装置。2. The detection sensitivity of the axial displacement and the radial displacement of the rotor can be adjusted by adjusting the length of each of the large loop coil and the small loop coil of the first detection coil and the second detection coil. 4. The device for monitoring bearing wear of a canned motor according to claim 1.
JP33567896A 1996-12-16 1996-12-16 Bearing wear monitoring device for canned motor Expired - Lifetime JP3548661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33567896A JP3548661B2 (en) 1996-12-16 1996-12-16 Bearing wear monitoring device for canned motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33567896A JP3548661B2 (en) 1996-12-16 1996-12-16 Bearing wear monitoring device for canned motor

Publications (2)

Publication Number Publication Date
JPH10174374A JPH10174374A (en) 1998-06-26
JP3548661B2 true JP3548661B2 (en) 2004-07-28

Family

ID=18291288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33567896A Expired - Lifetime JP3548661B2 (en) 1996-12-16 1996-12-16 Bearing wear monitoring device for canned motor

Country Status (1)

Country Link
JP (1) JP3548661B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231217A (en) * 2000-02-14 2001-08-24 Teikoku Electric Mfg Co Ltd Axial direction bearing wear detecting device of a canned motor

Also Published As

Publication number Publication date
JPH10174374A (en) 1998-06-26

Similar Documents

Publication Publication Date Title
Takemoto et al. Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation
US6265801B1 (en) Permanent magnet type electrical rotating machine
US6741003B2 (en) Permanent magnet rotor
KR940001180B1 (en) Permanent magnet variable reluctance generator
JPS6052654B2 (en) Bearing wear detection device for AC rotating electric machines
WO1996000882A1 (en) Switched reluctance machine having unbalance forces compensation coils
JP3488578B2 (en) Bearing wear monitoring device for canned motor
JP2002199692A (en) Stepping motor, stepping motor device and its drive method
JPH1042494A (en) Electric machine and rotor for motor
US6351053B1 (en) Reluctance motors
JP3041675B2 (en) Rocking motor
JP3548661B2 (en) Bearing wear monitoring device for canned motor
JPS599528A (en) Torque sensor
JPS5946526A (en) Electromagnetic stress sensor
CN207335861U (en) A kind of torsional oscillation detection sensor
Nazari et al. Diagnosis of different types of air-gap eccentricity fault in switched reluctance motors using transient finite element method
CN203151303U (en) Power drive device of magnetic suspension bearing
JP3982075B2 (en) AC servo motor
JPH05130762A (en) Detector for axial runout and eccentricity of rotor of induction motor
JP2771171B2 (en) Torque meter
CN115343501B (en) Variable magnetic flux type rotating speed sensor
JP3600047B2 (en) Secondary current detection device for induction motor
US20240022132A1 (en) Electric motor, compressor, and refrigeration device
US5903081A (en) Squirrel-cage induction motor
JPS6193925A (en) Torque detector by application of resolver

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term