JP3547986B2 - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film Download PDF

Info

Publication number
JP3547986B2
JP3547986B2 JP8387298A JP8387298A JP3547986B2 JP 3547986 B2 JP3547986 B2 JP 3547986B2 JP 8387298 A JP8387298 A JP 8387298A JP 8387298 A JP8387298 A JP 8387298A JP 3547986 B2 JP3547986 B2 JP 3547986B2
Authority
JP
Japan
Prior art keywords
film
biaxially oriented
layer
oriented polyester
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8387298A
Other languages
Japanese (ja)
Other versions
JPH11279293A (en
Inventor
雅文 古関
秀明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8387298A priority Critical patent/JP3547986B2/en
Publication of JPH11279293A publication Critical patent/JPH11279293A/en
Application granted granted Critical
Publication of JP3547986B2 publication Critical patent/JP3547986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Magnetic Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二軸配向ポリエステルフィルムに関し、さらに詳細には、磁気記録媒体用、特にデジタルデータストレージ用に有用な二軸配向ポリエステルフィルムに関する。
【0002】
【従来の技術】
ポリエステルフィルムは、優れた熱的、機械的特性を有することから、磁気記録媒体用、電気絶縁用などの広い分野で用いられている。なかでも、磁気記録媒体用、特にデータストレージ用途においては、テープの高容量化、高密度化がかなり進みつつあり、それに伴ってベースフィルムへの要求も厳しいものとなっている。QIC、DLTなど、リニアトラック方式を採用するデータストレージ用途では、テープの高容量化を実現するために、トラックピッチを非常に狭くしており、そのため特にテープ幅方向および長手方向での寸法変化によってトラックずれを引き起こし、エラーとなってしまうという問題を抱えている。これらの寸法変化は、テープ使用下での温度・湿度変化によるものと、最近のドライブの小型化によって生じているテープの走行テンションの変動によって生じるテープ幅および長手方向の変動から生じていると推定される。しかしながら、これらの寸法変化は、個々のファクターがどの程度影響するか、いまだに解明されておらず、テープの高容量化の問題となっている。
【0003】
【発明が解決しようとする課題】
本発明の課題は、長手方向および幅方向の寸法変化の問題を解決し、特にリニアトラック方式のデジタルデータストレージ用途において、トラックずれによるエラーレートが発生し難く、出力特性を向上させることが可能な二軸配向ポリエステルフィルムを提供することにある。
【0004】
【課題を解決するための手段】
本発明は、全厚みが7μm未満の二軸配向ポリエステルフィルムからなり、ポリエステルがポリエチレン−2,6−ナフタレートまたはポリエチレンテレフタレートであり、フィルムの熱膨張係数αt (×10-6/℃)、湿度膨張係数αh (×10-6/%RH)、65℃で9日間保持したときの熱収縮率S(%)が下記式 II の範囲にあることを特徴とする二軸配向ポリエステルフィルムである。
【0005】
【数4】

Figure 0003547986
【0006】
ここで、
α(MD);フィルム長手方向の熱膨張係数
α(TD);フィルム幅方向の熱膨張係数
α(MD);フィルム長手方向の湿度膨張係数
α(TD);フィルム幅方向の湿度膨張係数
S(MD);フィルム長手方向の熱収縮率
S(TD);フィルム幅方向の熱収縮率
である。
【0007】
【発明の実施の形態】
本発明に用いられるポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリエチレン−α,β−ビス(2−クロルフェノキシ)エタン−4,4′−ジカルボキシレートなどが挙げられるが、これらのポリエステルのなかでも、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリエチレン−α,β−ビス(2−クロルフェノキシ)エタン−4,4′−ジカルボキシレートが好ましく、特にポリエチレン−2,6−ナフタレートが好ましい。また、本発明に用いられるポリエステルは、上記ポリエステルの1種類の単独でも、2種以上のポリエステルの共重合体や、2種以上のポリエステルの混合物であってもよい。さらに、本発明の効果を阻害しない範囲であれば、各種添加剤が添加されていても構わない。
【0008】
本発明における二軸配向ポリエステルフィルムは、公知の方法に準じて製造することができる。例えば、ポリエチレン−2,6−ナフタレートを溶融押し出しし、好ましくは融点(Tm;℃)ないし(Tm+70)℃の温度で溶融押し出しし、急冷却固化して未延伸フィルムとし、さらにこの未延伸フィルムを一軸方向(縦方向または横方向)に(Tg−10)〜(Tg+70)℃の温度(ただし、Tg;ポリエチレン−2,6−ナフタレートのガラス転移温度)で所定の倍率に延伸し、次いで上記延伸方向と直角方向(一段目が縦方向の場合には二段目は横方向となる)にTg〜(Tg+70)℃の温度で所定の倍率に延伸し、さらに熱処理する方法を用いて製造することができる。その際、延伸倍率、延伸温度、熱処理条件などは、上記フィルムの特性から選択、決定される。延伸面積倍率は、好ましくは9〜26倍、さらに好ましくは12〜26倍である。熱固定温度は190〜250℃、熱処理時間は1〜60秒の範囲である。
【0009】
以上の逐次二軸延伸法のほか、同時二軸延伸法を用いることができる。また、逐次二軸延伸法において、縦方向、横方向の延伸回数は1回に限られるものではなく、縦−横延伸を数回の延伸処理により行うことができ、その回数に限定されるものではない。例えば、さらに機械的特性を上げたい場合には、熱固定処理前の上記二軸延伸フィルムについて、(Tg+20)〜(Tg+70)℃の温度で熱処理し、さらにこの熱処理温度より10〜40℃高い温度で縦方向または横方向に延伸し、次いでさらに、この延伸温度より20〜50℃高い温度で横方向または縦方向に延伸し、縦方向の場合、総合延伸倍率を3.0〜6.0倍、横方向の場合、総合延伸倍率を3.0〜5.5倍とするのが好ましい。
【0010】
本発明の二軸配向ポリエステルフィルムは、フィルムの長手方向の熱膨張係数αt (MD)(×10-6/℃)、幅方向の熱膨張係数αt (TD)(×10-6/℃)、長手方向の湿度膨張係数αh (MD)(×10-6/%RH)、幅方向の湿度膨張係数αh (TD)(×10-6/%RH)、65℃で9日間保持したときの熱収縮率S(MD)(%)、同幅方向の熱収縮率S(TD)(%)が、下記式 II の範囲にある必要があり、
【0013】
【数6】
Figure 0003547986
【0014】
の範囲である。上記の値が、0.05未満では、テープの幅方向の寸法変化が悪くなり、一方、1.0を超えると、テープの長手方向の寸法変化が悪くなり、エラーが発生し易くなるので好ましくない。
【0015】
ポリエステルとして、ポリエチレン−2,6−ナフタレートを用いると、本発明の骨子である温度膨張係数、湿度膨張係数、65℃で9日間保持したときの熱収縮率の関係を特定範囲にし易いという面から、本発明の効果がより一層顕著となるので好ましい。
【0016】
本発明の二軸配向ポリエステルフィルムにおいては、フィルムの長手方向のヤング率Y(MD)とフィルム幅方向のヤング率Y(TD)の比、Y(MD)/Y(TD)が好ましくは1.4〜2.0、さらに好ましくは1.4〜1.9である。Y(MD)/Y(TD)の値が1.4未満では、テープの長手方向の強度が不足するためテープが伸びたりして好ましくなく、一方、2.0を超えると、一方向にかなり延伸されるため製膜性が悪く、生産性が低下し好ましくない。なお、ヤング率は、長手方向のヤング率と幅方向のヤング率の和が1,200kg/mm以上が好ましく、さらに好ましくは1,400kg/mm以上である。ヤング率の和が1,200kg/mm以上であると、出力特性が向上し、ヘッドとの当たりが良くなるので好ましい。
【0017】
また、本発明の二軸配向ポリエステルフィルムは、A層およびB層の2層からなり、A層厚みtとA層中に含有される粒子の平均粒径dとの比t/dが次式の範囲にあることが好ましい。
【0018】
【数7】
10<t/d≦30
【0019】
t/dの値が10以下の場合、A層中の粒子がB層表面を粗し、出力特性が低下し、一方、30を超えると、A層表面の粗さが著しく低下し、巻き取り性が悪化し、または粒子がフィルムから脱落しやすくなり、加工工程で削られるので好ましくない。
【0020】
さらに、本発明の二軸配向ポリエステルフィルムは、磁気記録媒体用であって、磁性層を塗布する層の表面粗さWRaが好ましくは0.5〜7nm、さらに好ましくは1.0〜5.0nmである。この表面粗さWRaが0.5nm未満では、フィルム−フィルム間の滑り性が悪化し、フィルムの巻き取り性が悪化するので好ましくなく、一方、7nmを超えると、テープとしたときに、磁性面が粗化し、出力特性が低下するので好ましくない。
【0021】
この表面粗さWRaは、フィルム中の不活性微粒子、例えば周期律表第IIA,第IIB、第IVA、第IVBの元素を含有する無機微粒子(例えば、カオリン、アルミナ、酸化チタン、炭酸カルシウム、二酸化ケイ素など)、シリコン樹脂、架橋ポリスチレンなどの耐熱性の高い高分子よりなる微粒子などを含有させることで、あるいは、微細凹凸を形成する表面処理剤、例えば易滑塗剤のコーティング処理によって調整することができる。不活性微粒子を含有させる場合、微粒子の平均粒径は、0.05〜0.8μm、さらには0.08〜0.7μmであることが好ましく、またこの量は、0.05〜1.0重量%(対ポリマー)、さらには0.2〜0.6重量%(対ポリマー)であることが好ましい。
【0022】
本発明の二軸配向ポリエステルフィルムは、全厚みが7μm未満、好ましくは3.0〜6.0μmである必要がある。フィルムの全厚みが7μm以上となると、テープの長時間化およびカセットサイズのコンパクト化ができなくなるので好ましくない。
【0023】
以上のような本発明の二軸配向ポリエステルフィルムは、特にデジタル記録型磁気媒体用ベースフィルムや、デジタル記録型データストレージ用途として好適である。
【0024】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これらに実施例に限定されるものではない。なお、実施例中の各特性値は、下記の方法で測定した。
【0025】
1.ヤング率
フィルムを試料幅10mm、長さ15cmに切り、チャック間100mmにして引張速度10mm/分、チャート速度500mm/分でインストロンタイプの万能引張試験装置で引っ張り、得られた荷重−伸び曲線の立ち上がり部の接線より、ヤング率を計算した。
【0026】
2.フィルム表面粗さ(WRa)
WYKO社製、非接触三次元粗さ計(TOPO−3D)を用いて、測定倍率40倍、測定面積242μm×239μm(0.058mm)の条件にて測定を行い、同粗さ計の内蔵ソフトによる表面解析により、WRaは以下の式により計算されたアウトプットされた値を用いた。
【0027】
【数8】
Figure 0003547986
【0028】
ここで、Zjkは、測定方向(242μm)、それと直交する方向(239μm)をそれぞれM分割、N分割したときのj番目、k番目の位置における2次元粗さチャート上の高さである。
【0029】
3.粒子の平均粒径
フィルム断面を、透過型電子顕微鏡(TEM)を用い、10万倍以上の倍率で観察した。TEMの切片厚さは約100nmとし、場所を変えて100視野以上測定した。粒子の平均粒径は、重量平均径(等価円相当径)から求めた。
【0030】
4.熱膨張係数(α
フィルムのサンプルをフィルム横方向長さ15mmに切り出し、真空理工(株)製、TM−3000にセットし、窒素雰囲気下、60℃で30分間、前処理し、その後、室温まで降温させ、その後、25℃から70℃まで2℃/分で昇温し、各温度でのサンプル長を測定し、次式より熱膨張係数(α)を算出した。
【0031】
【数9】
α={〔(L−L)×10〕/(L×△T)}
ここで、
;45℃時のサンプル長(mm)
;55℃時のサンプル長(mm)
△T;10(=55−45℃)
である。
【0032】
5.湿度膨張係数(α
フィルムのサンプルをフィルム横方向に、長さ15mm、幅5mmに切り出し、真空理工(株)製、TM−3000にセットし、窒素雰囲気下から、湿度20%RH、および湿度80%RH一定に保ち、そのときのサンプルの長さを測定し、次式より湿度膨張係数(α)を算出した。
【0033】
【数10】
α={〔(L−L)×10〕/(L×△H)}
ここで、
;湿度20%RH時のサンプル長(mm)
;湿度80%RH時のサンプル長(mm)
△H;60(=80−20%RH)
である。
【0034】
6.フィルムの熱収縮率
65℃に設定されたオーブン中の中に、あらかじめ正確な長さを測定した長さ約30cm、幅1cmのフィルムを無荷重で入れ、9日間熱処理し、その後、オーブンよりサンプルを取り出し、室温に戻してからその寸法の変化を読み取った。熱処理前の長さ(L)と熱処理による寸法変化量(ΔL)より、次式で熱収縮率(%)を求めた。
【0035】
【数11】
熱収縮率=(ΔL/L)×100
【0036】
7.フィルム積層厚み
2次イオン質量分析装置(SIMS)を用いて、表層から深さ3,000nmの範囲のフィルム中の粒子のうち、最も高濃度の粒子に起因する元素とポリエステルの炭素元素の濃度比(M/C)を粒子濃度とし、表面から深さ3,000nmまで厚さ方向の分析を行う。表層では表面という界面のために粒子濃度は低く、表面から遠ざかるにつれて粒子濃度は高くなる。本発明のフィルムの場合は、いったん極大値となった粒子濃度がまた減少し始める。この濃度分布曲線をもとに、表面粒子濃度の極大値の1/2となる深さ(この深さは、極大値となる深さよりも深い)を求め、これを積層厚さとした。条件は、次のとおり。
【0037】
▲1▼測定装置
2次イオン質量分析装置(SIMS)
ドイツ、ATOMIKA社製、A−DIDA3000
▲2▼測定条件
1次イオン種;O
1次イオン加速電圧;12KV
1次イオン電流;200nA
ラスター領域;400μm□
分析領域;ゲート30%
測定真空度;5.0×10−9 Torr
E−GUN;0.5KV−3.0A
【0038】
なお、表層から深さ3,000nmの範囲に最も多く含有する粒子が有機高分子粒子の場合はSIMSでは測定が難しいので、表面からエッチングしながらXPS(X線光電子分光法)、IR(赤外分光法)などで、上記と同様のデプスプロファイルを測定し、積層厚さを求めてもよいし、電子顕微鏡などによる断面観察で、粒子濃度の変化状態やポリマーの違いによるコントラストの差から界面を認識し、積層厚さを求めることもできる。さらには、積層ポリマーを剥離後、薄膜段差測定機を用いて、積層厚さを求めることもできる。
【0039】
8.エラーレート
メディアロジック社製、ML4500B、QIC用システムを用いて、下記条件でエラーレートを測定した。
Current;15.42mA
Frequency;0.25mHz
Location;0
Threshold;40.0
Bad/Good/Max=1:1:1
Tracks;28
なお、エラーレート数は、測定したトラック数(=28)の平均値で表した。
9.電磁変換特性
メディアロジック社製、ML4500B、QIC用システムを用いて測定した。
【0040】
10.削れ性(走行耐久性)
ソニー(株)製、EV−S700を用い、走行開始、停止を繰り返しながら100時間走行させ、走行状態を調べるとともに、出力測定を行った。このときの磁気テープの走行耐久性を下記のように判定した。
<3段階測定>
○;テープの端が折れたり、ワカメ状にならない。また、削れがなく白粉付着がない。
△;若干、テープの端の折れやワカメが発生したり、少量の白粉付着が見られる。
×;テープの折れやワカメの発生が著しい。また、テープ削れが著しく白粉が多量に発生する。
【0041】
11.巻き取り性(巻き上がり良品率)
フィルムを500mm幅で4,000m、ロール状に100本巻き取ったときに得られる良品数を百分率で示した。このときの良品とは、▲1▼フィルムが円筒状に巻き上げられており、角張ったり、垂れ下がったりしておらず、▲2▼フィルムロールにしわの発生がないものをいう。
【0042】
〔実施例1〕
平均粒径0.1μmの単分散シリカ粒子を0.25重量%および平均粒径0.6μmの炭酸カルシウム粒子を0.016重量%含有する固有粘度0.63dl/g(o−クロロフェノールを溶媒として用い、25℃で測定した値)のポリエチレン−2,6−ナフタレートを180℃で5時間乾燥したのち、300℃で溶融押し出しし、60℃に保持したキャスティングドラム上で急冷固化させて、未延伸フィルムを得た。この未延伸フィルムを速度差を持った2つのロール間で長手方向に120℃の温度で5.2倍延伸し、さらにテンターによって横方向に4.0倍延伸し、その後、220℃で15秒間熱処理をした。このようにして、厚さ6μmのフィルムを得て、巻き取った。
【0043】
一方、下記に示す組成物をボールミルに入れ、16時間混練り、分散したのち、イソシアナート化合物(バイエル社製のデスモジュールL)5重量部を加え、1時間高速剪断分散して磁性塗料とした。
Figure 0003547986
【0044】
この磁性塗料を、上述のポリエチレン−2,6−ナフタレートフィルムの片面に塗布厚2μmになるように塗布し、次いで2,500ガウスの直流磁場で配向処理を行い、100℃で加熱乾燥後、スーパーカレンダー処理(線圧;200kg/cm、温度;80℃)を行い、巻き取った。この巻き取ったロールを55℃のオーブン中に3日間放置した。さらに、下記組成のバックコート層塗料を厚さ1μmに塗布し、乾燥させ、さらに6.35mm(=1/4インチ)に裁断し、磁気テープを得た。
Figure 0003547986
得られたフィルムおよびテープの特性を、表1に示す。表1から明らかなように、エラーレートがなく、出力特性も良好であった。
【0045】
〔実施例2〕
平均粒径0.3μmのシリカ粒子を0.01重量%および平均粒径0.09μmのシリカ粒子を0.30重量%含有する固有粘度0.62dl/g(o−クロロフェノールを溶媒として用い、25℃で測定した値)のポリエチレン−2,6−ナフタレートをA層とし、平均粒径0.09μmのシリカ粒子を0.01重量%含有する固有粘度0.63dl/g(o−クロロフェノールを溶媒として用い、25℃で測定した値)のポリエチレン−2,6−ナフタレートをB層として、共押し出し法により、未延伸積層フィルムを得た。得られた未延伸積層フィルムを、低速・高速のロール間で長手方向に120℃の温度で5.2倍延伸し、さらにテンターによって125℃で横方向に4.0倍延伸し、さらにステンターに供給して、220℃で15秒間熱処理をし、厚さ4.5μm(A層厚み1.1μm)のフィルムを得た。このフィルムに、実施例1と同様にして、B層表面に磁性塗料を、A層側にバックコート層塗料を施し、裁断して、磁気テープを得た。得られたテープの特性を表1に示す。実施例1と同様に、良好な結果が得られた。
【0046】
〔実施例3〕
平均粒径0.5μmの架橋シリコン樹脂粒子を0.02重量%および平均粒径0.09μmのアルミナ粒子を0.3重量%含有する固有粘度0.62dl/g(o−クロロフェノールを溶媒として用い、25℃で測定した値)のポリエチレンテレフタレートを、170℃で3時間乾燥したのち、300℃で溶融押し出しし、25℃に保持したキャスティングドラム上で急冷固化させて、未延伸フィルムを得た。得られた未延伸積層フィルムを、75℃に予熱し、さらに低速・高速のロール間で14mm上方より830℃の表面温度のIRヒーターを用いて加熱して2.25倍に延伸し、急冷し、続いてステンターに供給し、110℃で幅方向に3.6倍延伸した。さらに、引き続いて110℃で予熱し、低速・高速のロール間で2.5倍に長手方向に延伸し、さらにステンターに供給し、240℃で2秒間熱固定し、厚み6.0μmのフィルムを得た。このフィルムを用いて、実施例1と同様にして磁気テープを得た。得られたテープの特性を表1に示す。実施例1と同様に良好な結果が得られた。
【0047】
〔実施例4〕
表1に示す架橋シリコン樹脂粒子とアルミナ粒子を含有する固有粘度0.62dl/g(o−クロロフェノールを溶媒として用い、25℃で測定した値)のポリエチレンテレフタレートをA層とし、表1に示すシリカ粒子を含む固有粘度0.63l/gのポリエチレンテレフタレートをB層として、共押し出し法により、未延伸積層フィルムを得た。得られた未延伸フィルムを、実施例3と同様にしてフィルムおよび磁気テープを得た。このとき、磁性層はB層表面に、バックコート層はA層表面に施した。このフィルムおよび磁気テープの特性を表1に示す。実施例1と同様に良好な結果が得られた。
【0048】
〔比較例1〕
実施例1と同様にして、ポリエチレン−2,6−ナフタレートの未延伸フィルムを得て、得られた未延伸フィルムを、75℃に予熱し、さらに低速・高速のロール間で14mm上方より830℃の表面温度のIRヒーターにて加熱し、3.8倍に延伸し、急冷後、ステンターに供給し、120℃にて幅方向に5.2倍に延伸し、その後、200℃で10秒間熱固定し、厚み6μmのフィルムを得た。また、このフィルムを用い、実施例1と同様にして磁気テープを得た。結果を表2に示す。本比較例は、上記式(1)の範囲を外れる場合であり、トラックずれによると思われるエラーレートが高い。
【0049】
〔比較例2〕
表2に示す架橋シリコン樹脂粒子とアルミナ粒子を含有する固有粘度0.63dl/g(o−クロロフェノールを溶媒として用い、25℃で測定した値)のポリエチレン−2,6−ナフタレートを170℃で3時間乾燥したのち、300℃で溶融押し出しし、25℃に保持したキャスティングドラム上で急冷固化させて、未延伸フィルムを得た。得られた未延伸フィルムを、速度差を持った2つのロール間で長手方向に90℃の温度で3.6倍延伸し、さらにテンターによって横方向に3.9倍延伸し、その後、220℃で15秒間熱処理をし、厚さ6μmのフィルムを得た。また、実施例1と同様にして、磁気テープを得た。このフィルムおよび磁気テープの特性を、表2に示す。上記式(I)の範囲を外れ、トラックずれによると思われるエラーレートが高く、またフィルムのヤング率が低いため、テープにしたときの耐久性およびヘッドのあたり不足によって、出力特性が悪化する結果となった。
【0050】
〔比較例3〕
平均粒径0.3μmのシリカ粒子を2.0重量%含有する固有粘度0.61dl/g(o−クロロフェノールを溶媒として用い、25℃で測定した値)のポリエチレンテレフタレートをA層とし、同様のシリカ粒子を0.1重量%含有する固有粘度0.62dl/g(o−クロロフェノールを溶媒として用い、25℃で測定した値)のポリエチレンテレフタレートをB層とし、比較例2と同様にして、厚さ6μmの積層延伸フィルム(A層厚み0.4μm)、および磁気テープを得た。得られた二軸配向積層フィルムと磁気テープの特性を、表2に示す。本比較例は、上記式(I)の範囲を外れ、トラックずれによると思われるエラーレートが高く、またt/dの値が10以下のため、巻き取り性および走行耐久性が悪く、削れによってエラーレートが高かった。
【0051】
【表1】
Figure 0003547986
【0052】
【表2】
Figure 0003547986
【0053】
【発明の効果】
本発明の二軸配向ポリエステルフィルムは、磁気テープなどの磁気記録媒体としたときのトラックずれなどの寸法変化によるエラーレートの発生がなく、出力特性が良く、特にデジタルデータストレージ用テープとして有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a biaxially oriented polyester film, and more particularly to a biaxially oriented polyester film useful for magnetic recording media, particularly for digital data storage.
[0002]
[Prior art]
Polyester films have excellent thermal and mechanical properties and are therefore used in a wide variety of fields such as for magnetic recording media and electrical insulation. Above all, in magnetic recording media, especially in data storage applications, tape capacity and density have been considerably increasing, and accordingly, demands on base films have become strict. In data storage applications that use the linear track method, such as QIC and DLT, the track pitch is made very narrow in order to achieve high tape capacity. There is a problem of causing a track shift and causing an error. These dimensional changes are presumed to be due to changes in temperature and humidity during tape use, and to changes in tape width and longitudinal direction caused by fluctuations in tape running tension caused by recent drive miniaturization. Is done. However, the extent to which these dimensional changes are affected by individual factors has not yet been elucidated, and is a problem in increasing the capacity of tapes.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to solve the problem of dimensional change in the longitudinal direction and the width direction, and in particular, in a digital data storage application of a linear track system, an error rate due to a track shift hardly occurs and output characteristics can be improved. It is to provide a biaxially oriented polyester film.
[0004]
[Means for Solving the Problems]
The present invention comprises a biaxially oriented polyester film having a total thickness of less than 7 μm, wherein the polyester is polyethylene-2,6-naphthalate or polyethylene terephthalate, the coefficient of thermal expansion αt (× 10 −6 / ° C.), A biaxially oriented polyester film characterized by having a coefficient αh (× 10 −6 /% RH) and a heat shrinkage S (%) when held at 65 ° C. for 9 days is in the range of the following formula ( II ). .
[0005]
(Equation 4)
Figure 0003547986
[0006]
here,
α t (MD); coefficient of thermal expansion in the film longitudinal direction α t (TD); coefficient of thermal expansion in the film width direction α h (MD); coefficient of humidity expansion in the film longitudinal direction α h (TD); humidity in the film width direction Expansion coefficient S (MD); Heat shrinkage rate S (TD) in the longitudinal direction of the film; Heat shrinkage rate in the film width direction.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of the polyester used in the present invention include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polyethylene-α, β-bis (2-chlorophenoxy) ethane-4,4′-dicarboxy. And the like. Among these polyesters, polyethylene terephthalate, polyethylene-2,6-naphthalate, polyethylene-α, β-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylate are preferred. Particularly, polyethylene-2,6-naphthalate is preferred. The polyester used in the present invention may be one of the above-mentioned polyesters alone, a copolymer of two or more polyesters, or a mixture of two or more polyesters. Further, various additives may be added as long as the effects of the present invention are not impaired.
[0008]
The biaxially oriented polyester film in the present invention can be manufactured according to a known method. For example, polyethylene-2,6-naphthalate is melt-extruded, preferably melt-extruded at a temperature of melting point (Tm; ° C) to (Tm + 70) ° C, quenched and solidified to form an unstretched film. The film is stretched in a uniaxial direction (longitudinal direction or transverse direction) at a temperature of (Tg-10) to (Tg + 70) ° C. (Tg; glass transition temperature of polyethylene-2,6-naphthalate) at a predetermined magnification, and then stretched as described above. In a direction perpendicular to the direction (when the first stage is a vertical direction, the second stage is a horizontal direction), it is stretched at a predetermined magnification at a temperature of Tg to (Tg + 70) ° C., and further subjected to a heat treatment. Can be. At that time, the stretching ratio, the stretching temperature, the heat treatment conditions and the like are selected and determined from the characteristics of the film. The stretching area magnification is preferably 9 to 26 times, and more preferably 12 to 26 times. The heat setting temperature ranges from 190 to 250 ° C, and the heat treatment time ranges from 1 to 60 seconds.
[0009]
In addition to the sequential biaxial stretching method described above, a simultaneous biaxial stretching method can be used. Further, in the sequential biaxial stretching method, the number of stretching in the longitudinal direction and the transverse direction is not limited to one, and the longitudinal-lateral stretching can be performed by several stretching processes, and is limited to the number of times. is not. For example, when it is desired to further improve the mechanical properties, the biaxially stretched film before the heat-setting treatment is heat-treated at a temperature of (Tg + 20) to (Tg + 70) ° C, and is further heated at a temperature higher by 10 to 40 ° C than this heat-treating temperature. In the longitudinal or transverse direction, and then further in the transverse or longitudinal direction at a temperature 20 to 50 ° C. higher than the stretching temperature. In the case of the longitudinal direction, the total stretching ratio is 3.0 to 6.0 times. In the case of the transverse direction, the total stretching ratio is preferably 3.0 to 5.5 times.
[0010]
The biaxially oriented polyester film of the present invention has a coefficient of thermal expansion in the longitudinal direction of the film αt (MD) (× 10 −6 / ° C.), a coefficient of thermal expansion in the width direction αt (TD) (× 10 −6 / ° C.), Longitudinal humidity expansion coefficient αh (MD) (× 10 −6 /% RH), width direction humidity expansion coefficient αh (TD) (× 10 −6 /% RH), heat when held at 65 ° C. for 9 days The shrinkage ratio S (MD) (%) and the heat shrinkage ratio S (TD) (%) in the same width direction must be within the range of the following formula ( II ) ,
[0013]
(Equation 6)
Figure 0003547986
[0014]
Range. If the above value is less than 0.05, the dimensional change in the width direction of the tape becomes worse, while if it exceeds 1.0, the dimensional change in the longitudinal direction of the tape becomes worse and an error easily occurs. Absent.
[0015]
When polyethylene-2,6-naphthalate is used as the polyester, the relationship between the temperature expansion coefficient, the humidity expansion coefficient, and the heat shrinkage rate when held at 65 ° C. for 9 days, which are the essence of the present invention, can be easily set to a specific range. It is preferable because the effect of the present invention becomes more remarkable.
[0016]
In the biaxially oriented polyester film of the present invention, the ratio of the Young's modulus Y (MD) in the longitudinal direction of the film to the Young's modulus Y (TD) in the film width direction, Y (MD) / Y (TD), is preferably 1. It is 4-2.0, more preferably 1.4-1.9. If the value of Y (MD) / Y (TD) is less than 1.4, the strength of the tape in the longitudinal direction is insufficient, so that the tape may be undesirably stretched. Since the film is stretched, the film forming property is poor, and the productivity is undesirably reduced. The sum of the Young's modulus in the longitudinal direction and the Young's modulus in the width direction is preferably 1,200 kg / mm 2 or more, more preferably 1,400 kg / mm 2 or more. It is preferable that the sum of the Young's modulus is 1,200 kg / mm 2 or more, because the output characteristics are improved and the contact with the head is improved.
[0017]
The biaxially oriented polyester film of the present invention is composed of two layers, A layer and B layer, and the ratio t / d of the thickness t of the A layer to the average particle diameter d of the particles contained in the A layer is represented by the following formula. Is preferably within the range.
[0018]
(Equation 7)
10 <t / d ≦ 30
[0019]
When the value of t / d is 10 or less, the particles in the layer A roughen the surface of the layer B, and the output characteristics are deteriorated. This is not preferable because the properties are deteriorated or the particles easily fall off the film and are cut off in the processing step.
[0020]
Furthermore, the biaxially oriented polyester film of the present invention is for a magnetic recording medium, and the surface roughness WRa of the layer on which the magnetic layer is applied is preferably 0.5 to 7 nm, more preferably 1.0 to 5.0 nm. It is. If the surface roughness WRa is less than 0.5 nm, the slipperiness between the film and the film deteriorates, and the winding property of the film deteriorates, which is not preferable. Is undesirably roughened and output characteristics deteriorate.
[0021]
This surface roughness WRa can be determined by using inert fine particles in the film, for example, inorganic fine particles containing elements of Periodic Tables IIA, IIB, IVA, and IVB (for example, kaolin, alumina, titanium oxide, calcium carbonate, and carbon dioxide). Adjustment by incorporating fine particles of high heat-resistant polymer such as silicon), silicon resin, cross-linked polystyrene, etc., or by coating with a surface treatment agent that forms fine irregularities, for example, a lubricating agent. Can be. When containing inert fine particles, the average particle size of the fine particles is preferably 0.05 to 0.8 μm, more preferably 0.08 to 0.7 μm, and the amount is 0.05 to 1.0 μm. % By weight (based on polymer), and more preferably from 0.2 to 0.6% by weight (based on polymer).
[0022]
The biaxially oriented polyester film of the present invention needs to have a total thickness of less than 7 μm, preferably 3.0 to 6.0 μm. If the total thickness of the film is 7 μm or more, it is not preferable because the length of the tape and the size of the cassette cannot be reduced.
[0023]
The biaxially oriented polyester film of the present invention as described above is particularly suitable as a base film for a digital recording type magnetic medium or as a digital recording type data storage use.
[0024]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, each characteristic value in an Example was measured by the following method.
[0025]
1. The Young's modulus film was cut into a sample having a width of 10 mm and a length of 15 cm, and pulled with an Instron-type universal tensile tester at a tensile speed of 10 mm / min and a chart speed of 500 mm / min with a chuck of 100 mm. The Young's modulus was calculated from the tangent at the rising portion.
[0026]
2. Film surface roughness (WRa)
Using a non-contact three-dimensional roughness meter (TOPO-3D) manufactured by WYKO, measurement is performed under the conditions of a measurement magnification of 40 times and a measurement area of 242 μm × 239 μm (0.058 mm 2 ), and the built-in roughness meter is used. The output value calculated by the following formula was used for WRa by the surface analysis using software.
[0027]
(Equation 8)
Figure 0003547986
[0028]
Here, Z jk is the height on the two-dimensional roughness chart at the j-th and k-th positions when the measurement direction (242 μm) and the direction (239 μm) orthogonal thereto are divided into M and N, respectively.
[0029]
3. The cross section of the film having an average particle size of the particles was observed at a magnification of 100,000 or more using a transmission electron microscope (TEM). The thickness of the section of the TEM was about 100 nm, and the measurement was carried out for 100 or more visual fields at different locations. The average particle diameter of the particles was determined from the weight average diameter (equivalent circle equivalent diameter).
[0030]
4. Thermal expansion coefficient (α t )
A film sample was cut out to a film lateral length of 15 mm, set in TM-3000 manufactured by Vacuum Riko Co., Ltd., pretreated at 60 ° C. for 30 minutes in a nitrogen atmosphere, and then cooled to room temperature. The temperature was raised from 25 ° C. to 70 ° C. at 2 ° C./min, the sample length at each temperature was measured, and the coefficient of thermal expansion (α t ) was calculated from the following equation.
[0031]
(Equation 9)
α t = {[(L 2 −L 1 ) × 10 6 ] / (L 1 × {T)}
here,
L 1 ; sample length at 45 ° C. (mm)
L 2 ; sample length at 55 ° C (mm)
ΔT; 10 (= 55-45 ° C.)
It is.
[0032]
5. Humidity expansion coefficient (α h )
A film sample was cut out in the lateral direction of the film into a length of 15 mm and a width of 5 mm, and set on a TM-3000 manufactured by Vacuum Riko Co., Ltd., and kept at a constant humidity of 20% RH and 80% RH under a nitrogen atmosphere. The length of the sample at that time was measured, and the humidity expansion coefficient (α h ) was calculated from the following equation.
[0033]
(Equation 10)
α h = {[(L 2 −L 1 ) × 10 6 ] / (L 1 × {H)}
here,
L 1 : Sample length at 20% RH (mm)
L 2 : sample length at 80% RH (mm)
ΔH; 60 (= 80-20% RH)
It is.
[0034]
6. A film with a length of about 30 cm and a width of 1 cm, whose exact length was measured in advance, was placed in an oven set at a heat shrinkage of 65 ° C without any load, heat-treated for 9 days, and then sampled from the oven Was taken out and returned to room temperature, and the change in its dimensions was read. From the length (L 0 ) before the heat treatment and the dimensional change (ΔL) due to the heat treatment, the heat shrinkage (%) was determined by the following equation.
[0035]
(Equation 11)
Heat shrinkage = (ΔL / L 0 ) × 100
[0036]
7. Using a film lamination thickness secondary ion mass spectrometer (SIMS), the concentration ratio of the element attributable to the highest concentration particle to the carbon element of the polyester among the particles in the film having a depth of 3,000 nm from the surface layer. (M * / C * ) is defined as the particle concentration, and the analysis is performed in the thickness direction from the surface to a depth of 3,000 nm. In the surface layer, the particle concentration is low due to the interface of the surface, and the particle concentration increases as the distance from the surface increases. In the case of the film according to the invention, the particle concentration, which once reached a maximum, starts to decrease again. Based on this concentration distribution curve, a depth at which the maximum value of the surface particle concentration was 1/2 (this depth was deeper than the depth at which the maximum value was reached) was obtained, and this was defined as the lamination thickness. The conditions are as follows.
[0037]
(1) Measuring device Secondary ion mass spectrometer (SIMS)
A-DIDA3000, manufactured by ATOMIKA, Germany
(2) Measurement conditions Primary ion species; O 2 +
Primary ion acceleration voltage; 12 KV
Primary ion current; 200 nA
Raster area: 400 μm □
Analysis area; gate 30%
Measurement vacuum degree: 5.0 × 10 −9 Torr
E-GUN; 0.5KV-3.0A
[0038]
In addition, when the particles most contained in the range of 3,000 nm in depth from the surface layer are organic polymer particles, it is difficult to measure by SIMS. Therefore, XPS (X-ray photoelectron spectroscopy) and IR (infrared Spectroscopy) may be used to measure the same depth profile as above to determine the lamination thickness, or to observe the cross-section using an electron microscope or the like to determine the interface from the change in particle concentration or the difference in contrast due to the difference in polymer. It is also possible to recognize and determine the lamination thickness. Furthermore, after the laminated polymer is peeled off, the laminated thickness can be determined by using a thin film step measuring device.
[0039]
8. Error Rate The error rate was measured under the following conditions using a ML4500B, QIC system manufactured by Medialogic.
Current; 15.42 mA
Frequency; 0.25 mHz
Location; 0
Threshold; 40.0
Bad / Good / Max = 1: 1: 1
Tracks; 28
The number of error rates was represented by an average value of the measured number of tracks (= 28).
9. Electromagnetic conversion characteristics Measured using a system for QIC, ML4500B, manufactured by MediaLogic.
[0040]
10. Sharpness (running durability)
Using an EV-S700 manufactured by Sony Corporation, the vehicle was run for 100 hours while repeatedly starting and stopping the running, and the running state was examined and the output was measured. The running durability of the magnetic tape at this time was determined as follows.
<Three-step measurement>
;: The end of the tape is not broken or wakame. Also, there is no scraping and no white powder adhesion.
Δ: Slight breakage of the tape end or wakame occurs, and a small amount of white powder adhered.
X: Tape breakage and wakame generation are remarkable. In addition, tape scraping is remarkable and a large amount of white powder is generated.
[0041]
11. Rewindability (Rolling up good product rate)
The number of non-defective products obtained when 100 films were wound in a roll shape at 4,000 m in a width of 500 mm was shown in percentage. The non-defective product at this time means that (1) the film is wound up in a cylindrical shape, is not angular or hanging, and (2) has no wrinkles on the film roll.
[0042]
[Example 1]
0.25% by weight of monodisperse silica particles having an average particle diameter of 0.1 μm and 0.016% by weight of calcium carbonate particles having an average particle diameter of 0.6 μm, and an intrinsic viscosity of 0.63 dl / g (o-chlorophenol is dissolved in a solvent) Polyethylene-2,6-naphthalate) was dried at 180 ° C for 5 hours, melt-extruded at 300 ° C, and quenched and solidified on a casting drum kept at 60 ° C. A stretched film was obtained. This unstretched film is stretched 5.2 times in the longitudinal direction at a temperature of 120 ° C. between two rolls having a speed difference, further stretched 4.0 times in a transverse direction by a tenter, and then at 220 ° C. for 15 seconds. Heat treatment was performed. Thus, a film having a thickness of 6 μm was obtained and wound up.
[0043]
On the other hand, the composition shown below was placed in a ball mill, kneaded and dispersed for 16 hours, and then 5 parts by weight of an isocyanate compound (Desmodur L, manufactured by Bayer AG) was added. .
Figure 0003547986
[0044]
This magnetic paint is applied to one side of the above-mentioned polyethylene-2,6-naphthalate film so as to have a coating thickness of 2 μm, then subjected to an orientation treatment in a DC magnetic field of 2,500 gauss, and dried by heating at 100 ° C. A super calender treatment (linear pressure; 200 kg / cm, temperature; 80 ° C.) was performed, and the film was wound. The wound roll was left in an oven at 55 ° C. for 3 days. Further, a backcoat layer paint having the following composition was applied to a thickness of 1 μm, dried, and further cut to 6.35 mm (= 1/4 inch) to obtain a magnetic tape.
Figure 0003547986
Table 1 shows the properties of the obtained film and tape. As is clear from Table 1, there was no error rate and the output characteristics were good.
[0045]
[Example 2]
An intrinsic viscosity of 0.62 dl / g containing 0.01% by weight of silica particles having an average particle diameter of 0.3 μm and 0.30% by weight of silica particles having an average particle diameter of 0.09 μm (using o-chlorophenol as a solvent, Layer A of polyethylene-2,6-naphthalate (measured at 25 ° C.) having an intrinsic viscosity of 0.63 dl / g (o-chlorophenol containing 0.01% by weight of silica particles having an average particle size of 0.09 μm). An unstretched laminated film was obtained by a co-extrusion method using polyethylene-2,6-naphthalate (value measured at 25 ° C. as a solvent) as a layer B. The obtained unstretched laminated film is stretched 5.2 times at a temperature of 120 ° C. in the longitudinal direction between low-speed and high-speed rolls, and further stretched 4.0 times in the transverse direction at 125 ° C. by a tenter. The film was supplied and heat-treated at 220 ° C. for 15 seconds to obtain a film having a thickness of 4.5 μm (A layer thickness: 1.1 μm). In the same manner as in Example 1, this film was coated with a magnetic paint on the layer B surface and a backcoat layer paint on the layer A side, and cut to obtain a magnetic tape. Table 1 shows the properties of the obtained tape. As in Example 1, good results were obtained.
[0046]
[Example 3]
An intrinsic viscosity of 0.62 dl / g (containing o-chlorophenol as a solvent) containing 0.02% by weight of crosslinked silicone resin particles having an average particle diameter of 0.5 μm and 0.3% by weight of alumina particles having an average particle diameter of 0.09 μm Polyethylene terephthalate (measured at 25 ° C.) was dried at 170 ° C. for 3 hours, melt-extruded at 300 ° C., and quenched and solidified on a casting drum maintained at 25 ° C. to obtain an unstretched film. . The obtained unstretched laminated film is preheated to 75 ° C., further stretched 2.25 times by heating using an IR heater having a surface temperature of 830 ° C. from 14 mm above between low-speed and high-speed rolls, and quenched. Subsequently, it was supplied to a stenter and stretched 3.6 times in the width direction at 110 ° C. Further, the film is subsequently preheated at 110 ° C., stretched 2.5 times in the longitudinal direction between low-speed and high-speed rolls, further supplied to a stenter, and heat-set at 240 ° C. for 2 seconds to form a film having a thickness of 6.0 μm. Obtained. Using this film, a magnetic tape was obtained in the same manner as in Example 1. Table 1 shows the properties of the obtained tape. Good results were obtained as in Example 1.
[0047]
[Example 4]
A layer of polyethylene terephthalate having an intrinsic viscosity of 0.62 dl / g (measured at 25 ° C. using o-chlorophenol as a solvent) containing the crosslinked silicon resin particles and alumina particles shown in Table 1 is shown in Table 1. An unstretched laminated film was obtained by co-extrusion using polyethylene terephthalate having an intrinsic viscosity of 0.63 l / g containing silica particles as a layer B. A film and a magnetic tape were obtained from the obtained unstretched film in the same manner as in Example 3. At this time, the magnetic layer was applied to the surface of the layer B, and the back coat layer was applied to the surface of the layer A. Table 1 shows the characteristics of the film and the magnetic tape. Good results were obtained as in Example 1.
[0048]
[Comparative Example 1]
In the same manner as in Example 1, an unstretched film of polyethylene-2,6-naphthalate was obtained, and the obtained unstretched film was preheated to 75 ° C., and further 830 ° C. between the low-speed and high-speed rolls by 14 mm above. Is heated by an IR heater having a surface temperature of 3.8, stretched 3.8 times, quenched, supplied to a stenter, stretched 5.2 times in the width direction at 120 ° C, and then heated at 200 ° C for 10 seconds. It was fixed to obtain a film having a thickness of 6 μm. Using this film, a magnetic tape was obtained in the same manner as in Example 1. Table 2 shows the results. In this comparative example, the value is out of the range of the above equation (1), and the error rate considered to be due to track deviation is high.
[0049]
[Comparative Example 2]
Polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.63 dl / g (measured at 25 ° C. using o-chlorophenol as a solvent) containing cross-linked silicon resin particles and alumina particles shown in Table 2 at 170 ° C. After drying for 3 hours, the mixture was melt-extruded at 300 ° C. and rapidly cooled and solidified on a casting drum maintained at 25 ° C. to obtain an unstretched film. The obtained unstretched film is stretched 3.6 times in the longitudinal direction at a temperature of 90 ° C. between two rolls having a speed difference, further stretched 3.9 times in a transverse direction by a tenter, and then 220 ° C. For 15 seconds to obtain a film having a thickness of 6 μm. Further, a magnetic tape was obtained in the same manner as in Example 1. Table 2 shows the characteristics of the film and the magnetic tape. As a result of deviating from the range of the above formula (I), the error rate considered to be due to the track deviation is high, and the Young's modulus of the film is low. It became.
[0050]
[Comparative Example 3]
A layer made of polyethylene terephthalate having an intrinsic viscosity of 0.61 dl / g (measured at 25 ° C. using o-chlorophenol as a solvent) containing 2.0% by weight of silica particles having an average particle diameter of 0.3 μm, and In the same manner as in Comparative Example 2, polyethylene terephthalate having an intrinsic viscosity of 0.62 dl / g (a value measured at 25 ° C. using o-chlorophenol as a solvent) containing 0.1% by weight of silica particles was used as the B layer. Then, a laminated stretched film having a thickness of 6 μm (layer A thickness 0.4 μm) and a magnetic tape were obtained. Table 2 shows the properties of the obtained biaxially oriented laminated film and the magnetic tape. This comparative example is out of the range of the above formula (I), has a high error rate which is considered to be due to track deviation, and has a value of t / d of 10 or less. Error rate was high.
[0051]
[Table 1]
Figure 0003547986
[0052]
[Table 2]
Figure 0003547986
[0053]
【The invention's effect】
The biaxially oriented polyester film of the present invention has no error rate due to dimensional change such as track deviation when used as a magnetic recording medium such as a magnetic tape, has good output characteristics, and is particularly useful as a tape for digital data storage. .

Claims (6)

全厚みが7μm未満の二軸配向ポリエステルフィルムからなり、ポリエステルがポリエチレン−2,6−ナフタレートまたはポリエチレンテレフタレートであり、フィルムの熱膨張係数αt(×10-6/℃)、湿度膨張係数αh(×10-6/%RH)、65℃で9日間保持したときの熱収縮率S(%)が下記式 II の範囲にあることを特徴とする二軸配向ポリエステルフィルム。
Figure 0003547986
ここで、
αt(MD);フィルム長手方向の熱膨張係数
αt(TD);フィルム幅方向の熱膨張係数
αh(MD);フィルム長手方向の湿度膨張係数
αh(TD);フィルム幅方向の湿度膨張係数
S(MD);フィルム長手方向の熱収縮率
S(TD);フィルム幅方向の熱収縮率
である。
It consists of a biaxially oriented polyester film having a total thickness of less than 7 μm, wherein the polyester is polyethylene-2,6-naphthalate or polyethylene terephthalate, and has a coefficient of thermal expansion α t (× 10 −6 / ° C.) and a coefficient of humidity expansion α h (× 10 −6 /% RH), a biaxially oriented polyester film having a heat shrinkage S (% ) in the range of the following formula ( II ) when held at 65 ° C. for 9 days.
Figure 0003547986
here,
α t (MD); coefficient of thermal expansion in the film longitudinal direction α t (TD); coefficient of thermal expansion in the film width direction α h (MD); coefficient of humidity expansion in the film longitudinal direction α h (TD); humidity in the film width direction Expansion coefficient S (MD); Thermal shrinkage rate S (TD) in the film longitudinal direction; Thermal shrinkage rate in the film width direction.
フィルムの長手方向のヤング率Y(MD)とフィルム幅方向のヤング率Y(TD)の比Y(MD)/Y(TD)が1.4〜2.0の範囲にある請求項1記載の二軸配向ポリエステルフィルム。The ratio of the longitudinal Young's modulus of the film Y (MD) and width direction of the film a Young's modulus Y (TD) Y (MD) / Y (TD) is in the range of 1.4 to 2.0 according to claim 1 Symbol placement Biaxially oriented polyester film. フィルムがA層およびB層の2層からなり、A層厚みtとA層中に含有される粒子の平均粒径dとの比t/dが次式の範囲である請求項1または2のいずれか1項記載の二軸配向ポリエステルフィルム。
【数3】
10<t/d≦30
The film according to claim 1 or 2, wherein the film is composed of two layers, an A layer and a B layer, and the ratio t / d between the thickness t of the A layer and the average particle diameter d of the particles contained in the A layer is in the range of the following formula . The biaxially oriented polyester film according to claim 1.
[Equation 3]
10 <t / d ≦ 30
磁気記録媒体用であって、磁性層を塗布する層の表面粗さWRaが0.5〜7nmである請求項1〜いずれか1項記載の二軸配向ポリエステルフィルム。The biaxially oriented polyester film according to any one of claims 1 to 4, which is for a magnetic recording medium and has a surface roughness WRa of 0.5 to 7 nm on a layer on which a magnetic layer is applied. デジタル記録型磁気媒体用である請求項1〜いずれか1項記載の二軸配向ポリエステルフィルム。The biaxially oriented polyester film according to any one of claims 1 to 4, which is used for a digital recording type magnetic medium. データストレージ用である請求項記載の二軸配向ポリエステルフィルム。The biaxially oriented polyester film according to claim 5 , which is used for data storage.
JP8387298A 1998-03-30 1998-03-30 Biaxially oriented polyester film Expired - Fee Related JP3547986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8387298A JP3547986B2 (en) 1998-03-30 1998-03-30 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8387298A JP3547986B2 (en) 1998-03-30 1998-03-30 Biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPH11279293A JPH11279293A (en) 1999-10-12
JP3547986B2 true JP3547986B2 (en) 2004-07-28

Family

ID=13814759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8387298A Expired - Fee Related JP3547986B2 (en) 1998-03-30 1998-03-30 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JP3547986B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890471B2 (en) 2000-12-11 2005-05-10 Teijin Limited Biaxially oriented polyester film and method for production thereof
JP2002329312A (en) * 2001-04-27 2002-11-15 Toray Ind Inc Base for magnetic recording medium and magnetic recording tape
JP2003062901A (en) * 2001-08-27 2003-03-05 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film for magnetic recording medium
GB0208506D0 (en) * 2002-04-12 2002-05-22 Dupont Teijin Films Us Ltd Film coating
JP2004114492A (en) * 2002-09-26 2004-04-15 Teijin Dupont Films Japan Ltd Biaxially oriented polyester film
KR101089200B1 (en) * 2003-11-14 2011-12-02 도레이 카부시키가이샤 Film and magnetic-recording medium using the same
EP1764206B1 (en) 2004-05-14 2009-09-09 Teijin Dupont Films Japan Limited Oriented polyester film for a flexible electronics device substrate

Also Published As

Publication number Publication date
JPH11279293A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP2989080B2 (en) Laminated polyester film for magnetic recording media
US8404371B2 (en) Biaxially oriented polyester film and magnetic recording tape
US6190753B1 (en) Biaxially oriented polyester film for magnetic recording media
JP4008706B2 (en) Biaxially oriented polyester film and magnetic recording medium
EP0995593B1 (en) Biaxially orientated polyester film laminate
JP3547986B2 (en) Biaxially oriented polyester film
EP0561596B1 (en) Oriented polyester film
JPH05282657A (en) High-density magnetic recording medium
JP7303999B2 (en) LAMINATED POLYESTER FILM AND MAGNETIC RECORDING TAPE USING THE SAME
JP3920008B2 (en) Laminated biaxially oriented polyester film
KR100297271B1 (en) Magnetic Tape for Digital Audio Tape Recorder Cassette and Biaxially Oriented Polyester Substrate Film Used in It
JPH1134262A (en) Laminated biaxially oriented polyester film
JP6072623B2 (en) Biaxially oriented laminated polyester film and coating type magnetic recording tape using the same
JP3068945B2 (en) Biaxially oriented polyethylene-2,6-naphthalate film
EP0611789A1 (en) Biaxially oriented, unidirectionally long polyethylene-2,6-naphthalaenedicarboxylate film
JP3958442B2 (en) Laminated biaxially oriented polyester film
JP2004310899A (en) Support base for magnetic recording medium
JPH11348114A (en) Biaxially oriented polyester film and its production
JP3489849B2 (en) Base film for magnetic recording tape
KR0175951B1 (en) Biaxially oriented unidirectionally long polyethylene-2,6-naphthalene dicarboxylate film
JP3051263B2 (en) Laminated polyester film for magnetic recording media
JP2937693B2 (en) Biaxially oriented laminated polyester film
JP4169389B2 (en) Laminated polyester film
JPH1134267A (en) Laminated polyester film
JP2001031778A (en) Polyester film for magnetic recording medium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees