JP3547187B2 - Plastic filter element - Google Patents

Plastic filter element Download PDF

Info

Publication number
JP3547187B2
JP3547187B2 JP32290294A JP32290294A JP3547187B2 JP 3547187 B2 JP3547187 B2 JP 3547187B2 JP 32290294 A JP32290294 A JP 32290294A JP 32290294 A JP32290294 A JP 32290294A JP 3547187 B2 JP3547187 B2 JP 3547187B2
Authority
JP
Japan
Prior art keywords
filter element
porous substrate
mold
film
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32290294A
Other languages
Japanese (ja)
Other versions
JPH08173727A (en
Inventor
孝之 渡邊
好美 滝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP32290294A priority Critical patent/JP3547187B2/en
Publication of JPH08173727A publication Critical patent/JPH08173727A/en
Application granted granted Critical
Publication of JP3547187B2 publication Critical patent/JP3547187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、プラスチック製フィルターエレメントに係り、特に、ガス状又は液状の媒体から微細な塵粒子を分離する濾過装置に使用するプラスチック製フィルターエレメントに関する。
【0002】
【従来技術とその課題】
従来、各種の媒体、特に空気中から微細な塵粒子を分離する濾過装置に組込み使用するフィルターエレメントとして、▲1▼織布、フェルト等の濾布表面に、フッ素樹脂製多孔質フィルムを貼り合わせたバッグフィルターが知られており、また、▲2▼プラスチック製の多孔質基体の表面気孔に、フッ素樹脂微粒子等の非粘着材を被着したフィルターエレメントが知られており、更には▲3▼フッ素樹脂製多孔質基体の表面を1枚以上のフッ素樹脂製多孔質シート又はフィルムで覆ったフィルターエレメント等も知られている。
【0003】
しかしながら、上記▲1▼のバッグフィルターは、表面気孔が微小且つ均一なので表面捕集が優れ、また、表面が非粘着性の良い材料で構成されているので、捕集粉塵の払い落しが容易であるが、反面、このバッグフィルターは自立性を具えていないので、これを支えるリテーナが必要である。 また、捕集粉塵を払い落すためにこのバッグフィルターに逆圧を繰返しかけることにより、リテーナとの間で摩擦を引き起してバッグフィルターが裂け、フィルターとして使用できなくなると云う問題がある。
【0004】
また、上記▲2▼のフィルターエレメントは、自立性を有するためリテーナは不要であるが、フッ素樹脂微粒子等の非粘着材をプラスチック製の多孔質基体の表面気孔に塗布、充填することにより、粉塵を表面で効率的に捕集したり、捕集粉塵の払い落し性の向上を図るものであるので、非粘着材を均一に塗布、充填する必要がある。 しかし、この非粘着材を多孔質基体の表面気孔に均一に塗布、充填することは困難であって不均一になり易く、結果的にフィルターエレメントとしての性能が不均一と云うことになる。
また、プラスチック製の多孔質基体とフッ素樹脂微粒子とは接着し難いため、濾過使用中にフッ素樹脂微粒子が脱落して所定の性能維持が困難となったり、捕集した製品粉体内へ混入する云わゆるコンタミが起き易いと云う問題がある。
【0005】
更に、上記▲3▼のフィルターエレメントは、シート又はフィルムがその端部でのみ融着等の手段により基体に支持されているので、捕集粉塵を払い落すために多孔質基体に繰返し逆圧をかける際に、シート又はフィルムが疲労で裂けフィルターとして使用不能となる等の問題がある。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するものであって、その要旨は、ガス状又は液状の媒体から微細な塵粒子を分離するフィルターエレメントであって、超高分子量ポリエチレンを主体原料とする焼結して成形した多孔質基体の表面に、該多孔質基体の孔径よりも小さい孔径のポリエチレン製多孔質シート又はフィルムを加圧、加熱により積層融着してなるプラスチック製フィルターエレメントである。
【0007】
本発明のフィルターエレメントは、超高分子量ポリエチレンを主体原料とする焼結して成形した多孔質基体の表面に、ポリエチレン製多孔質シート又はフィルムを加圧、加熱により積層融着した二層構造体からなるものであり、上記多孔質基体は、フィルターエレメント全体に自立性を賦与する骨格部分であって、フィルターエレメント全体の濾過抵抗を低くするために、その孔径は限りなく大きく形成してある。
【0008】
一方、ポリエチレン製多孔質シート又はフィルムは粉塵の捕集を行なう部分であって、フィルターエレメントの表面気孔を微小且つ均一に形成してあるので、本発明は自立性を具備し、表面捕集された粉塵の払い落しが容易であると共に、濾過抵抗が必要最低限に抑えられ濾過性能が改良されたものである。
【0009】
本発明を構成する多孔質基体は、超高分子量ポリエチレンを主体とする粉末原料を加熱、焼結して成形したものであって、自立性を保持するのに必要にして充分な機械的強度を有し、通常、その孔径は10〜300μmであり、その肉厚は1〜10mmである。そして、通常は中空状の円筒体であるが中空角筒体や板状であってもよい。
【0010】
上記多孔質基体に加圧、加熱により積層融着するポリエチレン製多孔質シート又はフィルムは、直径略0.1〜1μmも均一多孔を有するものであって、捕集する粉塵の粒径に応じた孔径を有し、厚み50〜100μmのシート又はフィルムを選択使用し、その材質は通常の分子量のポリエチレンや超高分子量ポリエチレンが挙げられるが、非粘着性のより良いものを選択すれば捕集粉塵の払い落しが容易となり好ましい。
【0011】
多孔質基体にポリエチレン製多孔質シート又はフィルムを積層融着するには、シート又はフィルムを多孔質基体に重ね合わせ、その全体又は片側を金型、プレス、ロール、又は圧力調整した加熱炉等を用いて加圧、加熱することにより容易に行なうことができるが、この加圧、加熱を多孔質基体の成形と同時に行なうこともできる。
【0012】
以上の如く、超高分子量ポリエチレンを主体とする原料で構成された多孔質基体に、ポリエチレン製多孔質シート又はフィルムを加圧、加熱により積層融着することにより、濾過抵抗が少なく、リテーナが不要で、表面捕集性能に優れ、且つ捕集粉塵の払い落しが容易なフィルターエレメントが得られ、しかもシート又はフィルムが多孔質基体に強固に支持されるため長期間に亘る耐久性能に優れている。
【0013】
【実施例1】
超高分子量ポリエチレン粉末を外型と内型で構成された二重筒成形型の間隙に充填して、200℃に温調した加熱炉内で40分間加熱した後、成形品を内型ごと外型より取出し、外径50mm、肉厚3mm、平均孔径60μmの多孔を有する中空円筒形状の多孔質基体を得た。
次に、この基体表面に、孔径1μmの多孔を有する厚み100μmの超高分子量ポリエチレン製多孔質フィルムを重ね、これらの外側を内径50mmの半割状の筒形外型で覆って加圧した。 そして、200℃に温調した加熱炉内で20分間加熱した後、半割状外型および内型より取出して、超高分子量ポリエチレン製多孔質基体の表面に、超高分子量ポリエチレン製多孔質フィルムを融着したフィルターエレメントを得た。
【0014】
【実施例2】
超高分子量ポリエチレン粉末と低密度ポリエチレン粉末とを90:10の比率で混合したものを、外型と内型で構成された二重筒成形型の間隙に充填して、200℃に温調した加熱炉内で40分間加熱した後、成形品を内型ごと外型より取出し、外径50mm、肉厚3mm、平均孔径60μmの多孔を有する中空円筒形状の多孔質基体を得た。
次に、この基体表面に、孔径1μmの多孔を有する厚み100μmの超高分子量ポリエチレン製多孔質フィルムを重ね、これらの外側を内径50mmの半割状の筒形外型で覆って加圧した。 そして、200℃に温調した加熱炉内で20分間加熱した後、半割状外型および内型より取出して、ポリエチレン主体の多孔質基体の表面に超高分子量ポリエチレン製多孔質フィルムを融着したフィルターエレメントを得た。
【0016】
【実施例
雌金型の内底面に超高分子量ポリエチレン製フィルム(孔径1μm、厚み100μm)を敷き、その上に超高分子量ポリエチレン粉末を充填した後雄金型をせた。
次に、金型を200℃に加熱しつつプレス機により所定の条件で加圧した後、金型から取出し、500mm角、肉厚3mmの超高分子量ポリエチレン製の平板状多孔質基体に、超高分子量ポリエチレン製多孔質フィルムを融着したフィルターエレメントを得た。
【0017】
【比較例1】
超高分子量ポリエチレン粉末を外型と内型で構成された二重筒成形型の間隙に充填して、200℃に温調した加熱炉内で60分間加熱した後、成形品を外型及び内型より取出し、外径50mm、肉厚3mm、平均孔径60μmの多孔を有する中空円筒形状の多孔質基体を得た。
次に、この基体外表面の気孔に、粒径10μmのポリテトラフルオロエチレン(PTFE)微粒子をバインダーと共に塗装、充填して、従来のフィルターエレメントを得た。
【0018】
【比較例2】
実施例1で用いたものより微小な超高分子量ポリエチレン粉末を外型と内型で構成された二重筒成形型の間隙に充填して、200℃に温調した加熱炉内で60分間加熱した後、成形品を外型及び内型より取出し、外径50mm、肉厚3mm、平均孔径10μmの多孔を有するフィルターエレメントを得た。
【0019】
上記実施例1〜4及び比較例1〜2で得た試料について、下記表1に特性(非粘着材の脱落状態、圧力損失)を表示する。
【0020】
【表1】

Figure 0003547187
【0021】
上記表1の如く、比較例1のPTFE微粒子の脱落は見られたが、本発明の実施例1〜では、払い落しによる多孔質基体からのフィルムの脱落、剥離は起らず、また、実施例は何れも比較例に比較して圧力損失が少なかった。
【0022】
【発明の効果】
本発明は、上記構成よりなるので下記効果を奏する。
即ち、本発明のフィルターエレメントは、濾過抵抗が少なく、自立性が優れているのでリテーナが不要であり、表面捕集性能に優れていると共に、捕集粉塵の払い落しが容易であり、しかもシート又はフィルムが多孔質基体に強固に支持されるため長期間に亘る耐久性能に優れている。[0001]
[Industrial applications]
The present invention relates to a plastic filter element, and more particularly to a plastic filter element used for a filtration device for separating fine dust particles from a gaseous or liquid medium.
[0002]
[Prior art and its problems]
Conventionally, as a filter element incorporated in a filtration device that separates fine dust particles from various media, especially air, (1) a porous film made of fluororesin is bonded to the surface of filter cloth such as woven cloth and felt. (2) A filter element in which a non-adhesive material such as fluororesin fine particles is coated on the surface pores of a plastic porous substrate, and (3) A filter element in which the surface of a fluororesin porous substrate is covered with one or more fluororesin porous sheets or films is also known.
[0003]
However, the bag filter of the above (1) has excellent surface collection because the surface pores are minute and uniform, and since the surface is made of a non-adhesive material, it is easy to remove collected dust. On the other hand, on the other hand, the bag filter is not self-supporting and needs a retainer to support it. Further, there is a problem that, by repeatedly applying a back pressure to the bag filter to remove the collected dust, friction is caused between the bag filter and the bag filter, and the bag filter is torn and cannot be used as a filter.
[0004]
The filter element (2) is self-supporting and does not require a retainer. However, by applying and filling a non-adhesive material such as fluororesin fine particles to the surface pores of a plastic porous substrate, dust is reduced. It is necessary to uniformly apply and fill a non-adhesive material because the surface is efficiently collected on the surface and the removal property of the collected dust is improved. However, it is difficult to uniformly apply and fill the non-adhesive material to the surface pores of the porous substrate, and the non-adhesive material tends to be non-uniform, resulting in non-uniform performance as a filter element.
Further, since the plastic porous substrate and the fluororesin fine particles are hard to adhere to each other, the fluororesin fine particles fall off during use during filtration, making it difficult to maintain a predetermined performance, or being mixed into the collected product powder. There is a problem that loose contamination easily occurs.
[0005]
Further, in the filter element of the above (3), since the sheet or the film is supported on the base only by means of fusion or the like at the end thereof, a back pressure is repeatedly applied to the porous base to remove the collected dust. When applied, there is a problem that the sheet or the film is broken by fatigue and cannot be used as a filter.
[0006]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the gist of the present invention is a filter element for separating fine dust particles from a gaseous or liquid medium, and a sintered element mainly composed of ultra-high molecular weight polyethylene. A plastic filter element obtained by laminating and fusion-bonding a polyethylene porous sheet or film having a pore size smaller than the pore size of the porous substrate to the surface of the porous substrate formed by pressing and heating .
[0007]
The filter element of the present invention is a two-layered structure in which a polyethylene porous sheet or film is laminated and fused by pressing and heating on the surface of a sintered and molded porous substrate mainly composed of ultra-high molecular weight polyethylene. The porous substrate is a skeletal portion that imparts autonomy to the entire filter element, and has a pore size as large as possible to reduce the filtration resistance of the entire filter element.
[0008]
On the other hand, the polyethylene porous sheet or film is a portion for collecting dust, and the surface pores of the filter element are finely and uniformly formed. In addition to easy removal of dust, filtration resistance is reduced to a minimum and filtration performance is improved.
[0009]
The porous substrate constituting the present invention is formed by heating and sintering a powder raw material mainly composed of ultra-high molecular weight polyethylene, and has sufficient mechanical strength necessary to maintain autonomy. Usually, the pore diameter is 10 to 300 μm and the wall thickness is 1 to 10 mm. And although it is usually a hollow cylindrical body, it may be a hollow rectangular cylinder or a plate.
[0010]
The polyethylene porous sheet or film that is laminated and fused to the porous substrate by pressurization and heating has a uniform porosity of about 0.1 to 1 μm in diameter, depending on the particle size of the dust to be collected. A sheet or film having a pore size and a thickness of 50 to 100 μm is selected and used, and the material thereof includes polyethylene having a normal molecular weight and ultra-high molecular weight polyethylene. It is preferable because it can be easily removed.
[0011]
In order to laminate and fuse a polyethylene porous sheet or film to a porous substrate, the sheet or film is superimposed on the porous substrate, and the whole or one side thereof is subjected to mold, press, roll, or a heating furnace or the like in which pressure is adjusted. It can be easily carried out by applying pressure and heating, but it is also possible to carry out this pressure and heating simultaneously with the formation of the porous substrate.
[0012]
As described above, a polyethylene porous sheet or film is laminated and fused by pressing and heating to a porous substrate composed of a raw material mainly composed of ultrahigh molecular weight polyethylene, so that filtration resistance is small and a retainer is unnecessary. As a result, a filter element having excellent surface collection performance and easy removal of collected dust can be obtained, and furthermore, the sheet or film is strongly supported by the porous substrate, so that it has excellent long-term durability. .
[0013]
Embodiment 1
Ultra high molecular weight polyethylene powder is filled into the gap between the double cylindrical mold composed of the outer mold and the inner mold, and heated in a heating furnace controlled at 200 ° C. for 40 minutes. The mold was taken out from the mold to obtain a hollow cylindrical porous substrate having an outer diameter of 50 mm, a wall thickness of 3 mm, and an average pore diameter of 60 μm.
Next, a 100 μm-thick porous film made of ultra-high molecular weight polyethylene having a pore size of 1 μm was overlaid on the surface of the substrate, and the outside thereof was covered with a 50 mm inner diameter half-shape outer mold and pressed. After heating in a heating furnace controlled at 200 ° C. for 20 minutes, it is taken out from the half-shaped outer mold and the inner mold, and the ultra-high molecular weight polyethylene porous film is formed on the surface of the ultra-high molecular weight polyethylene porous substrate. Was obtained.
[0014]
Embodiment 2
A mixture of ultra-high-molecular-weight polyethylene powder and low-density polyethylene powder at a ratio of 90:10 was filled in the gap between the double-cylinder molds composed of the outer mold and the inner mold, and the temperature was adjusted to 200 ° C. After heating in a heating furnace for 40 minutes, the molded article was taken out of the outer mold together with the inner mold to obtain a hollow cylindrical porous substrate having an outer diameter of 50 mm, a wall thickness of 3 mm, and an average pore diameter of 60 μm.
Next, a 100 μm-thick porous film made of ultra-high molecular weight polyethylene having a pore size of 1 μm was overlaid on the surface of the substrate, and the outside thereof was covered with a 50 mm inner diameter half-shape outer mold and pressed. Then, after heating in a heating furnace controlled at 200 ° C. for 20 minutes, it is taken out from the half-shape outer mold and the inner mold, and the ultra-high molecular weight polyethylene porous film is fused to the surface of the polyethylene-based porous substrate. A filter element was obtained.
[0016]
[Embodiment 3 ]
Female mold of the inner bottom surface to the ultra-high molecular weight polyethylene film (pore size 1 [mu] m, thickness 100 [mu] m) laid was placing the male mold after filling the ultra high molecular weight polyethylene powder thereon.
Next, after the mold is heated to 200 ° C. and pressurized under a predetermined condition by a press machine, the mold is taken out of the mold, and a 500-mm square, 3 mm-thick ultra-high-molecular-weight polyethylene flat porous substrate is placed on the mold. A filter element to which a high molecular weight polyethylene porous film was fused was obtained.
[0017]
[Comparative Example 1]
Ultra-high molecular weight polyethylene powder is filled in the gap between the double cylindrical molds composed of the outer mold and the inner mold, and heated in a heating furnace controlled at 200 ° C. for 60 minutes. The mold was taken out from the mold to obtain a hollow cylindrical porous substrate having an outer diameter of 50 mm, a wall thickness of 3 mm, and an average pore diameter of 60 μm.
Next, the pores on the outer surface of the substrate were coated and filled with polytetrafluoroethylene (PTFE) fine particles having a particle size of 10 μm together with a binder to obtain a conventional filter element.
[0018]
[Comparative Example 2]
An ultra-high molecular weight polyethylene powder finer than that used in Example 1 was filled in the gap between the double cylindrical molds composed of the outer mold and the inner mold, and heated in a heating furnace controlled at 200 ° C. for 60 minutes. After that, the molded product was taken out from the outer mold and the inner mold to obtain a filter element having an outer diameter of 50 mm, a wall thickness of 3 mm, and an average pore diameter of 10 μm.
[0019]
For the samples obtained in Examples 1 to 4 and Comparative Examples 1 and 2, the properties (the state of the non-adhesive material falling off and the pressure loss) are shown in Table 1 below.
[0020]
[Table 1]
Figure 0003547187
[0021]
As shown in Table 1 above, the PTFE fine particles of Comparative Example 1 fell off, but in Examples 1 to 3 of the present invention, the film did not fall off or peel off from the porous substrate due to wiping off. In each of the examples, the pressure loss was smaller than that of the comparative example.
[0022]
【The invention's effect】
The present invention has the following effects because of the above configuration.
That is, the filter element of the present invention has a low filtration resistance, is excellent in self-sustainability, does not require a retainer, has excellent surface collection performance, is easy to remove collected dust, and has a sheet. Alternatively, since the film is firmly supported by the porous substrate, the film has excellent long-term durability.

Claims (1)

ガス状又は液状の媒体から微細な塵粒子を分離するフィルターエレメントであって、超高分子量ポリエチレンを主体原料とする焼結して成形した多孔質基体の表面に、該多孔質基体の孔径よりも小さい孔径のポリエチレン製多孔質シート又はフィルムを加圧、加熱により積層融着してなるプラスチック製フィルターエレメント。A filter element for separating fine dust particles from a gaseous or liquid medium, wherein the surface of a porous substrate formed by sintering and using ultra-high molecular weight polyethylene as a main material is larger than the pore diameter of the porous substrate. A plastic filter element obtained by laminating and fusing a polyethylene porous sheet or film having a small pore size with pressure and heat .
JP32290294A 1994-12-26 1994-12-26 Plastic filter element Expired - Lifetime JP3547187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32290294A JP3547187B2 (en) 1994-12-26 1994-12-26 Plastic filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32290294A JP3547187B2 (en) 1994-12-26 1994-12-26 Plastic filter element

Publications (2)

Publication Number Publication Date
JPH08173727A JPH08173727A (en) 1996-07-09
JP3547187B2 true JP3547187B2 (en) 2004-07-28

Family

ID=18148902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32290294A Expired - Lifetime JP3547187B2 (en) 1994-12-26 1994-12-26 Plastic filter element

Country Status (1)

Country Link
JP (1) JP3547187B2 (en)

Also Published As

Publication number Publication date
JPH08173727A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP3668283B2 (en) Porous multilayer plastic filter and manufacturing method thereof
US4366202A (en) Ceramic/organic web
US3893917A (en) Molten metal filter
JP2002513336A (en) Ink filter element for printer
CA2031827C (en) Process for producing multilayer polytetrafluoroethylene porous membrane
US4056586A (en) Method of preparing molten metal filter
US5571413A (en) Composite filter material
TW580420B (en) Abrasive article with optimally oriented abrasive particles and method of making the same
JPH11506987A (en) Porous composite
EP0450894B1 (en) Porous PTFE structures
EP1855780B1 (en) Composite filter media
US5677031A (en) Porous PTFE structures
JP2002514493A (en) Composite porous media
JP3547187B2 (en) Plastic filter element
JPS62155912A (en) Filter element for precision filtration
US7153565B1 (en) Laminate for container and container for adsorbent
JP2006150275A (en) Method for filter material
JP3648276B2 (en) Porous material for filter
WO1990015661A1 (en) Porous ceramic membrane and method
JPH1157377A (en) Adsorbent-encapsulating porous vessel
JP3793130B2 (en) Dust collector filter and manufacturing method thereof
EP1326703A1 (en) Laminates of asymmetric membranes
CN111467881A (en) Filter material and preparation method thereof
JPH08258198A (en) Porous sheet for suction fixation
JPH09313834A (en) Porous plastic filter for separating fine particle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

EXPY Cancellation because of completion of term