JP3546978B2 - Method for producing modified polyester resin - Google Patents

Method for producing modified polyester resin Download PDF

Info

Publication number
JP3546978B2
JP3546978B2 JP29862595A JP29862595A JP3546978B2 JP 3546978 B2 JP3546978 B2 JP 3546978B2 JP 29862595 A JP29862595 A JP 29862595A JP 29862595 A JP29862595 A JP 29862595A JP 3546978 B2 JP3546978 B2 JP 3546978B2
Authority
JP
Japan
Prior art keywords
group
polyester resin
molecular weight
acid
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29862595A
Other languages
Japanese (ja)
Other versions
JPH09136948A (en
Inventor
剛志 八塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP29862595A priority Critical patent/JP3546978B2/en
Publication of JPH09136948A publication Critical patent/JPH09136948A/en
Application granted granted Critical
Publication of JP3546978B2 publication Critical patent/JP3546978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は塗料、接着剤、コーティング剤等の用途に適したポリマーの末端以外に官能基を有する変性ポリエステル樹脂の製造方法に関するものである。
【0002】
【従来の技術】
ポリエステル樹脂は機械的特性や耐熱性が優れ、原料の選択により多様な物性が得られること等から塗料、接着剤、コーティング剤あるいは成型品等に用いられている。しかしポリエステル樹脂は化学反応に寄与する官能基は一般的にポリマーの末端の水酸基やカルボン酸基だけである。末端基の数を増やすために三官能以上の分岐剤を原料の一部とする分岐状ポリエステル樹脂が知られている。硬化剤との反応性の向上、極性の高い材料への接着性の改良等のためにポリマーの末端以外に水酸基やカルボン酸基等の官能基を導入することが有効であることが知られている。そのための方法としては、ポリエステル樹脂ではトリメチロールプロパン、グリセリン、トリメリット酸、ペンタエリスリトール、ジペンタエリスリトール等の三官能以上の成分を共重合する方法やポリエステル樹脂に無水フタル酸、無水トリメリット酸のような酸無水物を付加して酸価を高めることが一般的に用いられている。
【0003】
【発明が解決しようとする課題】
ポリエステル樹脂の末端以外に水酸基やカルボン酸基等の官能基を導入するためにトリメチロールプロパン、グリセリン、トリメリット酸、ペンタエリスリトール、ジペンタエリスリトール等の三官能以上の成分を共重合する方法や、無水トリメリット酸や無水ピロメリット酸をポリエステル樹脂に後付加する方法では、分岐点濃度が高くなればなる程ゲル化の危険性があり、得られるポリマーの分子量は高くできない。またアミノ基を有するエステル形成性原料を使用してポリエステル樹脂中にアミノ基を導入することは、3級のアミノ基の場合でも高分子量の樹脂は得にくい。
本発明の目的はポリマーの末端以外に高濃度の水酸基、カルボン酸基あるいはアミノ基を有するポリエステル樹脂を容易に製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明者はポリエステル樹脂の製造方法を鋭意検討した結果、ポリエステル樹脂を形成するエステル結合を利用することにより、水酸基、カルボン酸基、アミノ基等の官能基を高濃度で導入できることを見いだし、本発明に到達した。すなわち本発明は、数平均分子量5,000〜100,000のポリエステル樹脂(A)を、1分子中に下記のXから選ばれる官能基1種以上と下記のYから選ばれる官能基1種以上とを有する数平均分子量が300〜15,000である化合物(B)で解重合することを特徴とする変性ポリエステル樹脂の製造方法である。X:1級OH基、2級OH基、1級COOH基、2級COOH基、1級アミノ基、2級アミノ基
Y:2級OH基、3級OH基、2級COOH基、3級COOH基、3級アミノ基(ただし、XとYとは異なる。)
【0005】
ポリエステル樹脂(A)の解重合で使用する化合物(B)はXの群から選ばれる官能基を1種以上とYの群から選ばれる官能基を1種以上有する。Xの群から選ばれる官能基はポリエステル樹脂(A)中のエステル結合と反応してエステル交換あるいはアミド化反応を起こさせる。Yの群から選ばれる官能基がエステル交換反応しうる官能基である場合には、XはYの群から選ばれる官能基よりもエステル交換反応性が高いものが良い。Xとしては1級OH基、1級COOH基、1級アミノ基が好ましく、特に1級OH基が好ましい。Xの群から選ばれる官能基は化合物(B)1分子中に1〜10個の範囲が好ましく、特に1〜5個が好ましい。Yの群から選ばれる官能基は高濃度の水酸基、カルボン酸基あるいはアミノ基をポリエステル樹脂(A)中に導入するために利用される。Yの群から選ばれる官能基は、化合物(B)1分子中に1個以上、特に5個以上が好ましく、
Xの群から選ばれる官能基よりも多く含まれるほうがよい。
【0006】
化合物(B)の分子量は300〜15,000の範囲のものを用い、特に500〜5,000が好ましい。分子量が300以下では解重合によるポリエステル樹脂(A)の分子量の低下が大きく、分子量が15,000を超えるとポリエステル樹脂(A)との相溶性が悪くなりすぎ、解重合が円滑に進行しない。化合物(B)はX、Yの群から選ばれる官能基を分子中に高濃度で含み、比較的分子量の高い化合物である。そのため、ポリエステル樹脂(A)との相溶性は良くなく、OH基、COOH基やアミノ基等のエステル結合を分解できる官能基を多量に含んでも、解重合による分子量低下やゲル化は実用上問題とならない程度までに制御できる。
【0007】
解重合で使用する化合物(B)の具体的な例としてはHO−(CH −CHOH−CH O)n Hの一般式で表されるポリグリセリン、Xから選ばれる官能基とYから選ばれる官能基を有するモノマーを共重合したアクリル系あるいはオレフィン系共重合体、セルロース、キトサン等の天然高分子あるいはその部分変性物等が挙げられ、ポリグリセリン化合物、共重合アクリル系化合物が好ましい。
【0008】
本発明において解重合のために使用する化合物(B)は得られた変性ポリエステル樹脂(A)中で1〜50重量%の範囲になるように使用することが望ましく、5〜30重量(wt)%が特に望ましい。1重量%未満では変性による効果が見られず、50重量%を超えるとポリエステル樹脂(A)の分子量の低下が非常に大きくなる。
【0009】
本発明で使用する数平均分子量5,000〜100,000のポリエステル樹脂(A)のカルボン酸成分としては、テレフタル酸、イソフタル酸、オルソフタル酸、1,5−ナフタル酸、2,6−ナフタル酸、4,4’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、ダイマー酸等の脂肪族二塩基酸、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸等の脂環族二塩基酸が挙げられ、特にテレフタル酸、イソフタル酸、アジピン酸、セバシン酸が望ましい。
【0010】
グリコール成分はエチレングリコ−ル、プロピレングリコ−ル、1,3−プロパンジオ−ル、1,4−ブタンジオ−ル、1,3−ブタンジオール、1,2−ブタンジオール、2−メチル−1,3−プロパンジオール、1,5−ペンタンジオ−ル、1,6−ヘキサンジオ−ル、3−メチル−1,5−ペンタンジオール、ネオペンチルグリコ−ル、ジエチレングリコ−ル、ジプロピレングリコ−ル、2,2,4−トリメチル−1,3−ペンタンジオ−ル、シクロヘキサンジメタノ−ル、ネオペンチルヒドロキシピバリン酸エステル、ビスフェノ−ルAのエチレンオキサイド付加物およびプロピレンオキサイド付加物、水素化ビスフェノ−ルAのエチレンオキサイド付加物およびプロピレンオキサスド付加物、1,9−ノナンジオール、2−メチルオクタンジオール、1,10−ドデカンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、トリシクロデカンジメタノール等が挙げられ、これらのうちエチレングリコ−ル、ネオペンチルグリコ−ル、シクロヘキサンジメタノ−ル、ネオペンチルヒドロキシピバリン酸エステル、2−ブチル−2−エチル−1,3プロパンジオール、トリシクロデカンジメタノールが好ましい。また、ポリテトラメチレングリコール、ポリプロピレングリコール、ポリエチレングリコール等のポリエーテルも挙げられる。
【0011】
本発明で使用するポリエステル樹脂(A)の数平均分子量は5,000〜100,000の範囲のもの、好ましくは数平均分子量10,000〜40,000を使用する。本発明での解重合により得られる変性ポリエステル樹脂の分子量はもとの分子量より低下するため、ポリエステル樹脂(A)の数平均分子量が5,000未満では機械的特性が悪い。また、ポリエステル樹脂(A)の数平均分子量が100,000を超えると、溶融粘度が高くなりすぎ、解重合が均一に進行しない。
【0012】
本発明におけるポリエステル樹脂(A)の化合物(B)による変性は溶融状態でも溶媒中でもかまわないが、エステル交換反応やアミド化反応が起こる温度で、溶融状態で行うのが、反応効率から望ましい。変性に用いる装置はニーダー、押し出し機、反応釜等が挙げられる。ポリエステル重合反応と連続して変性を実施しても別個に行ってもよい。
解重合反応において通常用いられているエステル交換反応やアミド化反応の触媒を用いてもよい。
【0013】
【作用】
本発明のポリエステル樹脂の変性は、ポリエステル樹脂中に高濃度で存在するエステル結合に着目し、特定の官能基を有する比較的分子量の高い化合物でポリエステル樹脂を解重合するものである。ポリエステル樹脂と解重合に使用する化合物との相溶性が良くないことを利用しているため、ポリエステル樹脂の分子量の低下が小さく、また、解重合中にゲル化することがない。
【0014】
【実施例】
以下実施例により本発明を具体的に例示する。実施例中に単に部とあるのは重量部を示す。
実施例1
ジメチルテレフタレート194部、ジメチルイソフタレート194部、エチレングリコール149部、ネオペンチルグリコール166部、テトラブチルチタネート0.07部をオートクレーブに仕込み、180〜210℃で4時間エステル交換反応を実施し、次いで反応系を20分かけて5mmHgまで減圧し、この間270℃まで昇温した。更に、270℃で重縮合反応を100分間行い、最終的に圧力は0.5mmHgまでの減圧度に至った。窒素ガスにより常圧にもどし、220℃まで冷却した後、分子量760のポリグリセリン(PGL−10)100部を投入し、30分間反応させ若干不透明な変性ポリエステル樹脂(1)を得た。得られたポリエステル樹脂(1)と変性前のポリエステル樹脂の分子量をテトラヒドロフラン(THF)溶液でのゲル浸透クロマトグラフィーによる分析により、また、樹脂の酸価(当量/トン)を1/10規定KOHエタノール溶液での滴定による分析により求めた。また、変性前後のポリエステル樹脂の組成分析をNMRにより行った。さらに、ポリエステル樹脂(1)をメチルエチルケトン/トルエン=1/1溶液に固形分濃度が20%になるように80℃で溶解し、溶液の保存性を1週間4℃に放置して観察した。溶液は溶解初期から濁ってるが、層分離や沈澱の発生は見られなかった。結果を表1に示す。
【0015】
さらに、ポリエステル樹脂(1)のメチルエチルケトン/トルエン=1/1の固形分濃度20%溶液にメラミン樹脂(住友化学社製「スミマールM−40S」)を固形分重量比率で100対20になるように加え、硬化触媒としてP−トルエンスルホン酸をポリエステル樹脂に対し0.1重量%添加した。この溶液を脱脂した冷延鋼板に乾燥後の厚みで10μmになるように塗布し150℃で2分間乾燥させた。得られた塗膜の硬化性をキシレン擦りにより評価した。結果を表3に示す。
【0016】
実施例2〜4
実施例1と同様に、ただし実施例1で用いたポリグリセリン (PGL−10) の代わりに分子量1,500のポリグリセリン(PGL−20)を表1に記載した割合で使用して変性ポリエステル樹脂(2)を得た。変性前後の分析値を表1に示す。同様にして表1に記載したポリグリセリンにより変性ポリエステル樹脂(3)及び(4)を得た。
【0017】
比較例1
実施例1で用いたポリグリセリンを、実施例1のエステル交換反応が終了した後に添加し、ついで重縮合反応を実施例1と同じ条件で行った。反応系を20分かけて5mmHgまで減圧し270℃まで昇温した時点でゲル化した。
【0018】
比較例2
実施例1と同様にエステル交換反応を行い、ついで重縮合反応を開始して分子量が3,800の時点で重縮合反応を終了し、実施例1と同様にポリグリセリンにより変性した。得られた変性ポリエステル樹脂の分析結果を表1に示す。
【0019】
比較例3〜4
実施例1と同様に、ただし実施例1で用いたポリグリセリン(PGL−10)の代わりに分子量166のジグリセリン、分子量240のトリグリセリンを用いて解重合した。得られたポリエステル樹脂の分析結果を表1に示す。
【0020】
比較例5
実施例1でのポリグリセリン添加前のポリエステル樹脂(分子量23,000、酸価12当量/トン )のメチルエチルケトン/トルエン=1/1の固形分濃度20%の溶液に実施例2で用いたポリグリセリンをポリエステル樹脂とポリグリセリンの重量比率が75:25となるように室温で添加した。得られた溶液は1日後2層に分離した。
【0021】
実施例5〜7
樹脂1トン当り酸価が8当量、分子量25,000のポリエステル樹脂(組成:テレフタル酸/イソフタル酸/2−メチル−1,3−プロピレングリコール=50/50/100モル比)と表2に示した共重合樹脂−1を用いて、2軸押し出し機により混合温度225℃、混合時間5分で変性した。得られた変性ポリエステル樹脂(5)の分析結果を表2に示す。同様に、共重合樹脂−2及び共重合樹脂−3を用いて変性ポリエステル樹脂(6)及び(7)の分析結果を表2に示す。また、実施例1と同様にメチルエチルケトン/トルエン=1/1の固形分濃度20%溶液の保存性を1週間4℃に放置して観察した。さらに実施例1と同様にメラミン樹脂での硬化性を調べた。結果を表2と3に示す。
【0022】
比較例6〜7
実施例5で用いたポリエステル樹脂を表2に示した化合物により、実施例5と同じ条件で変性した。ただし、比較例6では変性に用いた化合物が分子量6,000のポリエチレングリコールで分子中には末端に1級のOH基だけがあり、比較例7では用いた化合物中には3級のカルボン酸のみが存在する。比較例7で得た樹脂のメチルエチルケトン/トルエン溶液は一日後、層分離を起こした。
【0023】
【表1】

Figure 0003546978
【0024】
変性剤(B)の比率(wt%)は、変性ポリエステル中の変性剤の重量%を表す。
表中の略号は以下の通り。
T :テレフタル酸
I :イソフタル酸
EG :エチレングリコール
NPG :ネオペンチルグリコール
【0025】
【表2】
Figure 0003546978
【0026】
表中の略号は以下の通り。
共重合樹脂−1:スチレン/メタクリル2−ヒドロキシエチルメタクリレート(50/40/10モル比)
共重合樹脂−2:スチレン/メタクリル酸/アクリル酸(50/40/10モル比)
共重合樹脂−3:メチルメタアクリレート/ジメチルアミノエチルメタアクリレート/2−ヒドロキシエチルメタクリレート (75/15/10モル比)
共重合樹脂−4:スチレン/メタクリル酸(60/40モル比)
【0027】
【表3】
Figure 0003546978
【0028】
硬化性:塗膜をキシレンを含浸させたウェスで擦り、鋼板が見えるまでの擦り回数を測定した。
○:50回以上;△:50〜10回;×:10回以下
【0029】
【発明の効果】
本発明におけるポリエステル樹脂の変性により、ポリエステル樹脂に水酸基、カルボキシル基あるいはアミノ基を高濃度で導入することができ、かつ、ポリエステル樹脂と変性剤との相溶性の悪さ加減を利用しているため、分子量の低下が小さく、かつゲル化が起こることもない。[0001]
[Industrial applications]
The present invention relates to a method for producing a modified polyester resin having a functional group other than the terminal of a polymer suitable for applications such as paints, adhesives, and coating agents.
[0002]
[Prior art]
Polyester resins are used in paints, adhesives, coating agents, molded products, and the like because they have excellent mechanical properties and heat resistance, and various properties can be obtained by selecting raw materials. However, in the polyester resin, the functional groups that contribute to the chemical reaction are generally only a hydroxyl group or a carboxylic acid group at the terminal of the polymer. In order to increase the number of terminal groups, a branched polyester resin using a trifunctional or higher functional branching agent as a part of a raw material is known. It is known that it is effective to introduce a functional group such as a hydroxyl group or a carboxylic acid group other than the terminal of the polymer for the purpose of improving reactivity with a curing agent, improving adhesiveness to a highly polar material, and the like. I have. As a method for that, in the polyester resin trimethylolpropane, glycerin, trimellitic acid, pentaerythritol, dipentaerythritol or other trifunctional or more functional components copolymerized polyester resin phthalic anhydride, trimellitic anhydride It is generally used to increase the acid value by adding such an acid anhydride.
[0003]
[Problems to be solved by the invention]
A method of copolymerizing trifunctional or more components such as trimethylolpropane, glycerin, trimellitic acid, pentaerythritol, and dipentaerythritol to introduce a functional group such as a hydroxyl group or a carboxylic acid group other than the terminal of the polyester resin, In the method of post-adding trimellitic anhydride or pyromellitic anhydride to the polyester resin, the higher the branch point concentration, the higher the risk of gelation, and the resulting polymer cannot have a high molecular weight. In addition, when an amino group is introduced into a polyester resin using an ester-forming raw material having an amino group, it is difficult to obtain a high molecular weight resin even with a tertiary amino group.
An object of the present invention is to provide a method for easily producing a polyester resin having a high concentration of a hydroxyl group, a carboxylic acid group or an amino group in addition to the terminal of the polymer.
[0004]
[Means for Solving the Problems]
As a result of intensive studies of the method for producing a polyester resin, the present inventors have found that functional groups such as a hydroxyl group, a carboxylic acid group, and an amino group can be introduced at a high concentration by using an ester bond that forms the polyester resin. The invention has been reached. That is, the present invention provides a polyester resin (A) having a number-average molecular weight of 5,000 to 100,000, in which one or more functional groups selected from the following X and one or more functional groups selected from the following Y in one molecule. And depolymerizing with a compound (B) having a number average molecular weight of 300 to 15,000 having the following formula: X: Primary OH group, secondary OH group, primary COOH group, secondary COOH group, primary amino group, secondary amino group Y: secondary OH group, tertiary OH group, secondary COOH group, tertiary COOH group, tertiary amino group (X and Y are different.)
[0005]
The compound (B) used in the depolymerization of the polyester resin (A) has one or more functional groups selected from the group X and one or more functional groups selected from the group Y. The functional group selected from the group of X reacts with an ester bond in the polyester resin (A) to cause transesterification or amidation reaction. When the functional group selected from the group Y is a functional group capable of transesterification, X preferably has a higher transesterification reactivity than the functional group selected from the group Y. X is preferably a primary OH group, a primary COOH group, or a primary amino group, and particularly preferably a primary OH group. The number of functional groups selected from the group of X is preferably in the range of 1 to 10, more preferably 1 to 5, in one molecule of the compound (B). The functional group selected from the group of Y is used to introduce a high concentration of a hydroxyl group, a carboxylic acid group or an amino group into the polyester resin (A). The functional group selected from the group of Y is preferably one or more, particularly preferably five or more in one molecule of the compound (B),
It is better to include more than the functional groups selected from the group of X.
[0006]
The molecular weight of the compound (B) is in the range of 300 to 15,000, particularly preferably 500 to 5,000. If the molecular weight is 300 or less, the decrease in the molecular weight of the polyester resin (A) due to depolymerization is large, and if the molecular weight exceeds 15,000, the compatibility with the polyester resin (A) becomes too poor, and the depolymerization does not proceed smoothly. The compound (B) is a compound having a high concentration of a functional group selected from the group of X and Y in the molecule and having a relatively high molecular weight. Therefore, the compatibility with the polyester resin (A) is not good, and even if a large amount of a functional group capable of decomposing an ester bond such as an OH group, a COOH group or an amino group is contained, a decrease in molecular weight or gelation due to depolymerization is a practical problem. It can be controlled to the extent that it does not become.
[0007]
Specific examples of the compound (B) used in the depolymerization include polyglycerin represented by a general formula of HO— (CH 2 —CHOH—CH 2 O) n H, a functional group selected from X and a group selected from Y. Acrylic or olefin copolymers obtained by copolymerizing a monomer having a functional group to be used, natural polymers such as cellulose and chitosan, or partially modified products thereof, and the like, and polyglycerin compounds and copolymerized acrylic compounds are preferable.
[0008]
In the present invention, the compound (B) used for depolymerization is desirably used in an amount of 1 to 50% by weight in the obtained modified polyester resin (A), and 5 to 30% by weight (wt). % Is particularly desirable. If the amount is less than 1% by weight, the effect of the modification is not observed, and if it exceeds 50% by weight, the decrease in the molecular weight of the polyester resin (A) becomes extremely large.
[0009]
The carboxylic acid component of the polyester resin (A) having a number average molecular weight of 5,000 to 100,000 used in the present invention includes terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid 4,4′-diphenyldicarboxylic acid, 2,2′-diphenyldicarboxylic acid, aromatic dicarboxylic acids such as 4,4′-diphenyletherdicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, Aliphatic dibasic acids such as dimer acid and the like, alicyclic dibasic acids such as 1,4-cyclohexanedicarboxylic acid and 1,3-cyclohexanedicarboxylic acid, and particularly terephthalic acid, isophthalic acid, adipic acid, and sebacic acid desirable.
[0010]
The glycol components are ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,2-butanediol, 2-methyl-1, 3-propanediol, 1,5-pentaneddiol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 2, 2,4-trimethyl-1,3-pentaneddiol, cyclohexanedimethanol, neopentyl hydroxypivalate, ethylene oxide adduct and propylene oxide adduct of bisphenol A, ethylene of hydrogenated bisphenol A Oxide adduct and propylene oxas adduct, 1,9-nonanediol, 2-methyl Butanediol, 1,10-dodecanediol, 2-butyl-2-ethyl-1,3-propanediol, tricyclodecanedimethanol, and the like. Of these, ethylene glycol, neopentyl glycol, and cyclohexanediol Methanol, neopentyl hydroxypivalate, 2-butyl-2-ethyl-1,3 propanediol, and tricyclodecane dimethanol are preferred. Further, polyethers such as polytetramethylene glycol, polypropylene glycol, and polyethylene glycol are also included.
[0011]
The number average molecular weight of the polyester resin (A) used in the present invention is in the range of 5,000 to 100,000, preferably 10,000 to 40,000. Since the molecular weight of the modified polyester resin obtained by the depolymerization in the present invention is lower than the original molecular weight, if the number average molecular weight of the polyester resin (A) is less than 5,000, the mechanical properties are poor. On the other hand, when the number average molecular weight of the polyester resin (A) exceeds 100,000, the melt viscosity becomes too high, and the depolymerization does not proceed uniformly.
[0012]
The modification of the polyester resin (A) with the compound (B) in the present invention may be carried out in a molten state or in a solvent, but it is desirable to carry out the modification in a molten state at a temperature at which a transesterification reaction or an amidation reaction occurs. Examples of an apparatus used for denaturation include a kneader, an extruder, and a reaction vessel. The modification may be performed continuously or separately from the polyester polymerization reaction.
A catalyst for a transesterification reaction or an amidation reaction generally used in a depolymerization reaction may be used.
[0013]
[Action]
The modification of the polyester resin of the present invention focuses on an ester bond present at a high concentration in the polyester resin, and depolymerizes the polyester resin with a compound having a specific functional group and a relatively high molecular weight. Since the fact that the compatibility between the polyester resin and the compound used in the depolymerization is not good is used, the decrease in the molecular weight of the polyester resin is small, and no gelation occurs during the depolymerization.
[0014]
【Example】
Hereinafter, the present invention will be specifically illustrated by way of examples. In the examples, “parts” means “parts by weight”.
Example 1
194 parts of dimethyl terephthalate, 194 parts of dimethyl isophthalate, 149 parts of ethylene glycol, 166 parts of neopentyl glycol and 0.07 part of tetrabutyl titanate were charged into an autoclave, and transesterification was carried out at 180 to 210 ° C. for 4 hours, followed by reaction. The system was evacuated to 5 mmHg over 20 minutes, during which time the temperature was raised to 270 ° C. Further, a polycondensation reaction was performed at 270 ° C. for 100 minutes, and finally the pressure reached a degree of pressure reduction to 0.5 mmHg. After returning to normal pressure with nitrogen gas and cooling to 220 ° C., 100 parts of polyglycerin (PGL-10) having a molecular weight of 760 was charged and reacted for 30 minutes to obtain a slightly opaque modified polyester resin (1). The molecular weights of the obtained polyester resin (1) and the unmodified polyester resin were analyzed by gel permeation chromatography in a tetrahydrofuran (THF) solution, and the acid value (equivalent / ton) of the resin was determined to be 1/10 N KOH ethanol. It was determined by analysis by titration with a solution. The composition of the polyester resin before and after the modification was analyzed by NMR. Further, the polyester resin (1) was dissolved in a methyl ethyl ketone / toluene = 1/1 solution at 80 ° C. so that the solid content concentration became 20%, and the storage stability of the solution was observed by leaving it at 4 ° C. for one week. The solution was cloudy from the initial stage of dissolution, but no layer separation or precipitation was observed. Table 1 shows the results.
[0015]
Further, a melamine resin (“Sumimar M-40S” manufactured by Sumitomo Chemical Co., Ltd.) is added to a 20% solid content concentration solution of the polyester resin (1) in methyl ethyl ketone / toluene = 1/1 so that the weight ratio of the solid content becomes 100: 20. In addition, 0.1% by weight of P-toluenesulfonic acid was added as a curing catalyst to the polyester resin. This solution was applied to a degreased cold-rolled steel sheet so as to have a thickness after drying of 10 μm, and dried at 150 ° C. for 2 minutes. The curability of the obtained coating film was evaluated by xylene rubbing. Table 3 shows the results.
[0016]
Examples 2 to 4
Modified polyester resin in the same manner as in Example 1 except that polyglycerin (PGL-20) having a molecular weight of 1,500 was used in place of the polyglycerin (PGL-10) used in Example 1 at a ratio shown in Table 1. (2) was obtained. The analytical values before and after denaturation are shown in Table 1. Similarly, modified polyester resins (3) and (4) were obtained with polyglycerin shown in Table 1.
[0017]
Comparative Example 1
The polyglycerin used in Example 1 was added after the transesterification reaction of Example 1 was completed, and the polycondensation reaction was performed under the same conditions as in Example 1. The reaction system was reduced in pressure to 5 mmHg over 20 minutes and gelled when heated to 270 ° C.
[0018]
Comparative Example 2
The transesterification reaction was carried out in the same manner as in Example 1, and then the polycondensation reaction was started. When the molecular weight reached 3,800, the polycondensation reaction was terminated, and the product was modified with polyglycerin as in Example 1. Table 1 shows the analysis results of the modified polyester resin obtained.
[0019]
Comparative Examples 3 and 4
Depolymerization was performed in the same manner as in Example 1 except that diglycerin having a molecular weight of 166 and triglycerin having a molecular weight of 240 were used instead of the polyglycerin (PGL-10) used in Example 1. Table 1 shows the analysis results of the obtained polyester resin.
[0020]
Comparative Example 5
Polyglycerol used in Example 2 in a solution of the polyester resin (molecular weight 23,000, acid value 12 equivalents / ton) of methyl ethyl ketone / toluene = 1/1 with a solid concentration of 20% before addition of polyglycerin in Example 1 Was added at room temperature such that the weight ratio of the polyester resin to the polyglycerin was 75:25. The resulting solution separated into two layers after one day.
[0021]
Examples 5 to 7
Table 2 shows a polyester resin having an acid value of 8 equivalents and a molecular weight of 25,000 per ton of resin (composition: terephthalic acid / isophthalic acid / 2-methyl-1,3-propylene glycol = 50/50/100 molar ratio). The copolymer resin-1 was denatured by a twin screw extruder at a mixing temperature of 225 ° C. for a mixing time of 5 minutes. Table 2 shows the analysis results of the modified polyester resin (5) obtained. Similarly, Table 2 shows the analysis results of modified polyester resins (6) and (7) using copolymer resin-2 and copolymer resin-3. Also, as in Example 1, the storage stability of a 20% solution of methyl ethyl ketone / toluene = 1/1 solid content was observed at 4 ° C. for one week. Further, the curability with a melamine resin was examined in the same manner as in Example 1. The results are shown in Tables 2 and 3.
[0022]
Comparative Examples 6 and 7
The polyester resin used in Example 5 was modified with the compounds shown in Table 2 under the same conditions as in Example 5. However, in Comparative Example 6, the compound used for modification was polyethylene glycol having a molecular weight of 6,000, and the molecule had only a primary OH group at the terminal. In Comparative Example 7, the compound used was tertiary carboxylic acid. Only exists. After one day, the resin obtained in Comparative Example 7 in a methyl ethyl ketone / toluene solution was subjected to layer separation.
[0023]
[Table 1]
Figure 0003546978
[0024]
The ratio (wt%) of the modifier (B) represents the weight% of the modifier in the modified polyester.
Abbreviations in the table are as follows.
T: terephthalic acid I: isophthalic acid EG: ethylene glycol NPG: neopentyl glycol
[Table 2]
Figure 0003546978
[0026]
Abbreviations in the table are as follows.
Copolymer resin-1: styrene / methacryl 2-hydroxyethyl methacrylate (50/40/10 molar ratio)
Copolymer resin-2: styrene / methacrylic acid / acrylic acid (50/40/10 molar ratio)
Copolymer resin-3: methyl methacrylate / dimethylaminoethyl methacrylate / 2-hydroxyethyl methacrylate (75/15/10 molar ratio)
Copolymer resin-4: styrene / methacrylic acid (60/40 molar ratio)
[0027]
[Table 3]
Figure 0003546978
[0028]
Curability: The coating film was rubbed with a cloth impregnated with xylene, and the number of times of rubbing until the steel sheet was visible was measured.
:: 50 times or more; Δ: 50 to 10 times; ×: 10 times or less
【The invention's effect】
By the modification of the polyester resin in the present invention, a hydroxyl group, a carboxyl group or an amino group can be introduced at a high concentration into the polyester resin, and the poor compatibility between the polyester resin and the modifying agent is used, and The decrease in molecular weight is small, and gelation does not occur.

Claims (1)

数平均分子量5,000〜100,000のポリエステル樹脂(A)を、1分子中に下記のXから選ばれる官能基1種以上と下記のYから選ばれる官能基1種以上とを有する数平均分子量が300〜15,000である化合物(B)で解重合することを特徴とする変性ポリエステル樹脂の製造方法。
X:1級OH基、2級OH基、1級COOH基、2級COOH基、1級アミノ基、2級アミノ基
Y:2級OH基、3級OH基、2級COOH基、3級COOH基、3級アミノ基(ただし、XとYとは異なる。)
A polyester resin (A) having a number average molecular weight of 5,000 to 100,000 has a number average having at least one functional group selected from the following X and at least one functional group selected from the following Y in one molecule. A method for producing a modified polyester resin, comprising depolymerizing with a compound (B) having a molecular weight of 300 to 15,000.
X: Primary OH group, secondary OH group, primary COOH group, secondary COOH group, primary amino group, secondary amino group Y: secondary OH group, tertiary OH group, secondary COOH group, tertiary COOH group, tertiary amino group (however, X and Y are different)
JP29862595A 1995-11-16 1995-11-16 Method for producing modified polyester resin Expired - Fee Related JP3546978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29862595A JP3546978B2 (en) 1995-11-16 1995-11-16 Method for producing modified polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29862595A JP3546978B2 (en) 1995-11-16 1995-11-16 Method for producing modified polyester resin

Publications (2)

Publication Number Publication Date
JPH09136948A JPH09136948A (en) 1997-05-27
JP3546978B2 true JP3546978B2 (en) 2004-07-28

Family

ID=17862162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29862595A Expired - Fee Related JP3546978B2 (en) 1995-11-16 1995-11-16 Method for producing modified polyester resin

Country Status (1)

Country Link
JP (1) JP3546978B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348366A (en) * 2001-03-19 2002-12-04 Toyobo Co Ltd Manufacturing method of biodegradable polyester
JP4934911B2 (en) * 2001-03-19 2012-05-23 東洋紡績株式会社 Biodegradable polyester and coating
WO2020230692A1 (en) 2019-05-15 2020-11-19 東洋紡株式会社 Modified copolymer polyester resin and aqueous dispersion thereof

Also Published As

Publication number Publication date
JPH09136948A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
CN107922597B (en) Polyester composition
JP3546978B2 (en) Method for producing modified polyester resin
JP4975296B2 (en) Polylactic acid copolymer resin and method for producing the same
JPWO2018180335A1 (en) Polyester resin with excellent storage stability
JPH0569151B2 (en)
AU708869B2 (en) Amourphous and/or semicrystalline copolyesters containing beta-hydroxyalkylamide groups, method for their manufacture, and utilisation of the esters
JP2000504362A (en) Low release binder for coatings
JP7423917B2 (en) Polyester resin with excellent pigment dispersibility and thermal stability
JP7201978B2 (en) Polyester resin and method for producing polyester resin
JP3424857B2 (en) Polyester resin, its production method, paint and adhesive
JP7415282B2 (en) Copolymerized polyester and water dispersion
JP3374616B2 (en) Method for producing aliphatic polyester copolymer
JPH06128363A (en) Thermoplastic polyester elastomer
TW202225254A (en) Crosslinked aromatic polyester resin composition and production method therefor
EP4085082A1 (en) Hybrid alkyd-acrylic based pressure sensitive adhesives and methods of making and using thereof
JP3770350B2 (en) High molecular weight unsaturated polyester resin and method for producing the same
JP2001354842A (en) Polyester composition for calender forming
JPH08120061A (en) Branched polyester and its production
JP2895441B2 (en) Polyester resin composition and use thereof
JP2002121363A (en) Polyester composition, use of its aqueous solution or aqueous dispersion and its use
JPH05271615A (en) Coating composition containing polyfunctional polycarbonatepolyol
JP2001040278A (en) Composition for coating inner surface of can
JP3847849B2 (en) Polyester resin composition for powder coating and powder coating
JP2004083759A (en) Thermosetting coating composition
JP3753061B2 (en) Production method of copolyester

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees