JP3546298B2 - Dissimilar material determination method and apparatus - Google Patents

Dissimilar material determination method and apparatus Download PDF

Info

Publication number
JP3546298B2
JP3546298B2 JP33591099A JP33591099A JP3546298B2 JP 3546298 B2 JP3546298 B2 JP 3546298B2 JP 33591099 A JP33591099 A JP 33591099A JP 33591099 A JP33591099 A JP 33591099A JP 3546298 B2 JP3546298 B2 JP 3546298B2
Authority
JP
Japan
Prior art keywords
noise
minimum value
maximum value
value range
test material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33591099A
Other languages
Japanese (ja)
Other versions
JP2001153843A (en
Inventor
敬一 東
俊夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP33591099A priority Critical patent/JP3546298B2/en
Publication of JP2001153843A publication Critical patent/JP2001153843A/en
Application granted granted Critical
Publication of JP3546298B2 publication Critical patent/JP3546298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば搬送ライン上を順次搬送される金属材料からなる被検材から異質の被検材を判定する異材判定方法および装置に関するものである。
【0002】
【従来の技術】
例えば、鋼管、丸棒鋼その他の条鋼材が製造される工場内では、同一搬送ライン上に、形状や寸法等が同一または類似する異材質の条鋼材が混入して搬送される場合がある。このため、このような搬送ラインでは、順次搬送される条鋼材などに対する異材判定検査が行われている。
【0003】
従来、この種の異材判定方法としては、例えば火花試験により判定する方法、発光分光を分析して判定する方法、インピーダンス、保磁力、透磁率等の物性値を測定して判定する方法等が知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、火花試験による判定方法にあっては、人による官能検査であるため、誤判定が生じ易いという問題があると共に、試験に時間がかかるという問題がある。また、発光分光による判定方法にあっては、発光分光分析装置を用いることからコストアップを招くという問題があると共に、分析に時間がかかるという問題があり、さらに分析に先立って被検材の測定面を平滑に仕上げる必要があるため、手間がかかるという問題もある。
【0005】
また、物性値による判定方法のうち、例えば特開昭57−69246号公報や特開昭57−128842号公報等に開示されているような渦流探傷を利用する方法では、インピーダンスが被検材の抵抗値、導電率、透磁率などに影響を受けるために判定の精度が低下するという問題がある。保磁力や透磁率を測定する方法では測定に多くの時間を必要とし測定能率が悪いという問題がある。さらに前記渦流探傷を利用する従来方法では、材質、形状、寸法等に応じた基準材を用いることから、予め多種類の基準材を用意しておき被検材に応じて交換することが必要となったり、場合によっては、成分組成や製造履歴による影響を考慮した校正が必要となる。
【0006】
本発明は、このような従来の問題点に鑑みてなされたもので、その第1の目的は、基準材が不要で、被検材の成分や製造履歴(結晶粒径、脱炭層など)等に影響されることがなく、異材を簡便かつ確実に判定できる異材判定方法を提供することにある。
さらに、本発明の第2の目的は、上記の異材判定方法を簡単かつ安価に実施できる異材判定装置を提供することにある。
【0007】
【課題を解決するための手段】
上記第1の目的を達成する請求項1に係る発明は、同一成分で同一圧延チャンスの磁性体からなる被検材ロットの異材判定に先立って、当該ロット初期の少なくとも1つの被検材について、被検材の長手方向に漏洩磁束のバックグランドノイズレベルを測定し、その測定ノイズレベルから、最大値、最小値、最大値−最小値のうちの少なくとも2つのノイズ特性の正常値範囲を設定し、
その後、他の被検材に対して長手方向に測定したノイズレベルから求まる、最大値、最小値、最大値−最小値のうちの少なくとも2つのノイズ特性と前記正常値範囲との比較に基づいて異材を判定することを特徴とするものである。
【0008】
請求項1の発明によると、ロット毎に初期の少なくとも1つの被検材の漏洩磁束のノイズレベルを測定して、ノイズ特性の正常値範囲を設定するので、しいて基準材を用いる必要はなく、成分組成や製造履歴についてもロット内での変動が少ないためにそれらによる影響を考慮する必要はない。そして、漏洩磁束ノイズレベルは、透磁率のみによって影響をうけ、抵抗値や導電率によっては影響されないので、判別精度が高くなる。このように、成分組成、製造履歴が等しい同一ロット内では、透磁率がほぼ一定で、ノイズレベルもほぼ同じとなるので、基準材を必要とすることなく、また特別な校正を行わずとも、正確な異材判別が可能になる。
しかも、漏洩磁束のノイズレベルは通常の漏洩磁束探傷装置を用いて測定でき、測定面の仕上げもショットブラストやレベラーを通しただけの面でよいので、異材の判別を簡便かつ安価に行うことができる。
【0009】
さらに、上記第2の目的を達成する請求項2に係る異材判定装置の発明は、漏洩磁束を検出して電気信号に変換する漏洩磁束検出手段と、
前記電気信号の出力から、被検材の欠陥に起因する出力をカットオフするバンドフィルターと、
カットオフした後の電気信号出力から、ノイズレベルの最大値および最小値を記憶するとともに、これら最大値と最小値から最大値−最小値を演算して、各ノイズ特性を求めるノイズ特性測定手段と、
得られた最大値、最小値および最大値−最小値のいずれか2つ以上のノイズ特性から、正常値範囲を設定する正常値範囲設定手段と、
前記正常値範囲と前記ノイズ特性測定手段による2つ以上のノイズ特性との比較に基づいて異材を判定する判定手段と、
同一成分で同一圧延チャンスの被検材ロットの初期の少なくとも1つの被検材の前記ノイズ特性測定手段による測定ノイズ特性に基づいて前記正常値範囲設定手段で正常値範囲を設定し、他の被検材に対しては前記判定手段において当該被検材の前記ノイズ特性測定手段による測定ノイズ特性と前記正常値範囲との比較に基づいて異材を判定するよう制御する制御手段とを有することを特徴とするものである。
【0010】
請求項2の発明によると、通常の漏洩磁束測定による探傷装置を利用できるので、簡単かつ安価に実施することが可能である。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1は、本発明に係る異材判定方法を実施する異材判定装置の一実施の形態を示す概略図である。本実施の形態では、搬送ライン1上を順次搬送される被検材2が通過するように、搬送ライン1に電磁石および磁電変換素子をそなえた漏洩磁束検出部3を設置する。漏洩磁束検出部3は、ノイズ特性測定部4に接続して、各被検材2の搬送方向の所定長さについて連続的または間欠的に漏洩磁束のバックグランドノイズ特性を測定するとともに、その測定ノイズ特性を判定部5に供給する。判定部5では、制御装置6による制御のもとにノイズ特性測定部4からのノイズ特性に基づいて異材を判定し、その判定結果を制御装置6に供給する。制御装置6では、判定部5での判定結果に基づいて、例えば図示しないマーキング装置を駆動して異材にマーキングを施したり、図示しない仕分装置を駆動して搬送ライン1から正規の条鋼材と異材とを振り分けるようにする。
【0012】
図2は、図1に示す異材判定装置の詳細な構成を示すブロック図である。漏洩磁束検出部3は、通常用いられる漏洩磁束探傷装置をそのまま用いることができ、図3に示すように、架台33に一対の電磁石31および磁電変換素子32を有して構成する。電磁石31により被検材2の表面に磁力線をとおし、被検材2の表面からもれる磁力線(漏洩磁束)を磁電変換素子32により検出して電気信号に変換する。また、必要に応じて、図示していない表示装置や印刷装置により、電気信号の出力を波形で確認することができる。検知した漏洩磁束を磁電変換素子32で変換した出力はノイズ測定部4に送られる。
ノイズ測定部4は、バンドフィルター41、極大値ピークメモリ42、極小値ピークメモリ43および差分器44を有して構成する。ノイズ測定部4では、まずバンドフィルター41にて、出力波形から被検材の欠陥に起因する出力波形をカットオフしてノイズのみの波形とする。こうして得られた一定区間内におけるノイズのみの電気信号から極大値および極小値を求めて、それぞれ極大値ピークメモリ42おおよび極小値ピークメモリ43に記憶するとともに、これらの値から差分器44にて極大値−極小値を演算する。
【0013】
また、判定部5は、スイッチ回路51、正常値範囲設定回路52および判定回路53を有して構成し、ノイズ測定部4から送られたノイズ特性(バックグランドノイズから求めた極大値、極小値および極大値−極小値のうちのいずれか2つの特性)を電気信号でうけとり、制御装置6による制御のもとにスイッチ回路51を介して正常値範囲設定回路52および判定回路53に選択的に供給する。正常値範囲設定回路52では、必要な判別レベルに応じて、上記いずれか2つのノイズ特性の正常値範囲を設定する。
【0014】
正常値範囲設定回路52で設定される正常値範囲は、判定回路53に供給して、スイッチ回路51を経て供給されるノイズ信号から得られるいずれか2つのノイズ特性と比較し、ノイズ特性が正常値範囲にあるときは正規の条鋼材と判定し、正常値範囲から外れているときは異材と判定して、その判定結果を制御装置6に供給する。
【0015】
次に、本実施の形態の動作について説明する。
先ず、同一成分で同一圧延チャンスの被検材ロットの異材判定に先立って、ノイズ測定部4の出力が正常値範囲設定回路52に供給されるように制御装置6によりスイッチ回路51を切り換える。その状態で、搬送ライン1上を搬送される当該ロット初期の1本または複数本の被検材2の長さ方向(搬送方向)の所定長さについてバックグランドノイズを測定する。そして、極大値ピークメモリ42、極小値ピークメモリ43および差分器44により得られたノイズ特性を、スイッチ回路51を経て正常値範囲設定回路52に供給して、正常値範囲を設定する。バックグランドノイズの測定長さ(区間)は大きくすれば精度が増すが、少なくともプローブまたは直棒1回転分以上は含まれるように測定することが望ましい。
なお、ノイズ特性を求めるに先立ち、予めバックグランドノイズのみの波形にしておくために、測定部4のバンドフィルター41により欠陥に起因する波形を除いておくことが必要である。例えば、へげ、割れなどの重大欠陥はS/Nが2以上として検出されるので、この場合にはバンドフィルター41ではS/N≧2のものがカットオフされるようにしきい値を定めればよい。
【0016】
バックグランドノイズのみの信号から正常値範囲を設定するには、まず、ロット初期の1本の被検材2を設定用として利用する場合、その被検材2について連続的または間欠的に得られる所定区間内のノイズから、極大値ピークメモリ42、極小値ピークメモリおよび差分器44により、極大値、極小値および極大値−極小値のうちの少なくとも2つのノイズ特性を求める。複数本の被検材2を利用する場合には、例えば同様にして複数本の被検材2のノイズ特性を求めそれらの平均値を用いる。
ここで、上記のノイズ特性を図4で示す。図4は、欠陥起因の波形を除いた、バックグランドノイズのみの波形を拡大して示したものである。図4において、aが極大値であり、bが極小値である。そして極大値−極小値すなわちa−bは差分器44の演算により求められる。
【0017】
こうして求められたa(極大値)、b(極小値)、a−bをもとに、判別レベルに応じて正常値範囲(判別基準)を設定する。このことについて、具体例で説明する。
図5は、JIS 45CとSUJ2の被検材について測定したバックグランドノイズの波形を示したものである。これら波形から各被検材ノイズ特性を求めると、S45Cで、a=10.0%、b=7.5 %、a−b=2.5 %、SUJ2で、a=16.3%、b=12.5%、a−b=3.8 %となる。このような2種の鋼が混在した被検材から、一方を異材として検出するためには、判定値A、B、Cをもうけて、次式のいずれか2つの式が成立すれば異材として判定する。なお、判定値A、B、Cはノイズの測定精度や必要な判定レベルに応じて定める。
|a−a|≧A…… (1)
|b−b|≧B…… (2)
|(a−b)−(a−b)|≧C…… (3)
上記2鋼種の場合には、a−a=6.3 %、b−b=5.0 %、(a−b)−(a−b)=1.3 %となるので、例えばA=3.0 %、B=3.0 %、C=1.0 %とすれば、両者が区別でき、異材の判別が可能になる。すなわち、この例においては、S45Cが正規の材料であるとしたときの、a、b、a−bの各ノイズ特性の正常値範囲は、a≦10.0+3.0 =13.0、b≦7.5 +3.0 =10.5、a−b≦2.5 +1.0 =3.5 とすればよい。
以上の正常値範囲の設定動作は、制御装置6の制御のもとに、被検材のロット毎に行なう。
【0018】
正常値範囲の設定が終了したら、その正常値範囲を判定回路53に供給すると共に、ノイズ測定部4で測定したノイズ特性の出力が判定回路53に供給されるように制御装置6によりスイッチ回路51を切り換える。この状態で、その後に漏洩磁束検出部3を通過する被検材2のノイズ特性をノイズ測定部4で測定してスイッチ回路51を経て判定回路53に供給し、ここで正常値範囲と比較して、当該被検材2が正規の条鋼材か異材かを判定する。
【0019】
以上のように、本実施の形態によれば、被検材2のノイズ特性がロットが同じであれば、漏洩磁束のバックグランドノイズは、成分の差、加熱条件の違いによる表面脱炭層の差、圧延温度や析出物の違いによる結晶粒径の差には影響されず、被検材2の透磁率のみに影響されることに着目して、漏洩磁束検出部3を用いてロット毎に初期の被検材2のノイズ特性を測定し、その測定ノイズ特性から正常値範囲を設定し、その後の被検材2はその測定ノイズ特性正常値範囲との比較に基づいて、基準材を用いることなく異材を判定するので、校正等の操作が不要となり、異材を常に簡単かつ確実に判定することが可能になる。
また、漏洩磁束の検出には、公知の探傷装置を利用できるので、簡単かつ安価にできる。
【0020】
【発明の効果】
以上のように、本発明による異材判定方法によれば、基準材を用いることなく、ロット毎に初期の被検材を利用してそのノイズ特性を測定して、その測定ノイズ特性に基づいて正常値範囲を設定し、その後の被検材はその測定ノイズ特性と正常値範囲との比較に基づいて異材を判定するようにしたので、操作性を向上できると共に、ロット間での被検材の成分差等に影響されることなく、異材を常に簡単かつ確実に判定することができる。
また、本発明による異材判定装置によれば、漏洩磁束を用いる探傷装置を利用して被検材のノイズ特性を測定することができるので、簡単かつ安価にできるる。
【図面の簡単な説明】
【図1】本発明に係る異材判定方法を実施する異材判定装置の一実施の形態を示す概略図である。
【図2】図1に示す異材判定装置の詳細な構成を示すブロック図である。
【図3】漏洩磁束検出部の詳細を示す摸式図である。
【図4】ノイズ特性の定義を説明する図である。
【図5】バックグランドノイズの測定例を示す図である。
【符号の説明】
1 搬送ライン
2 被検材
3 漏洩磁束検出部
4 ノイズ特性測定部
5 判定部
6 制御装置
31 電磁石
32 磁電変換素子
41 バンドフィルター
42 極大値ピークメモリ
43 極小値ピークメモリ
44 差分器
51 スイッチ回路
52 正常値範囲設定回路
53 判定回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for judging a different material from a test material made of a metal material sequentially conveyed on a conveying line, for example.
[0002]
[Prior art]
For example, in a factory where steel pipes, round bars and other bar materials are manufactured, there are cases where bar materials of different materials having the same or similar shape are mixed and conveyed on the same conveyance line. For this reason, in such a transport line, a different material determination inspection is performed on a strip steel material or the like that is sequentially transported.
[0003]
Conventionally, as this kind of different material determination method, for example, a method of determining by a spark test, a method of determining by analyzing emission spectrum, a method of determining by measuring physical property values such as impedance, coercive force, magnetic permeability, and the like are known. Have been.
[0004]
[Problems to be solved by the invention]
However, in the determination method based on the spark test, since it is a sensory test by a human, there is a problem that erroneous determination is likely to occur, and there is a problem that the test takes time. In addition, in the determination method based on emission spectroscopy, there is a problem that the cost is increased due to the use of the emission spectroscopy analyzer, and there is a problem that the analysis takes time. Since the surface needs to be finished smoothly, there is also a problem that it takes time and effort.
[0005]
Further, among the determination methods based on physical property values, in a method using eddy current flaw detection as disclosed in, for example, JP-A-57-69246 and JP-A-57-128842, the impedance of the test material is measured. There is a problem that the accuracy of the determination is reduced due to the influence of the resistance value, the conductivity, the magnetic permeability, and the like. The method of measuring the coercive force and the magnetic permeability has a problem that a long time is required for the measurement and the measurement efficiency is poor. Further, in the conventional method using the eddy current flaw detection, since reference materials corresponding to the material, shape, dimensions, etc. are used, it is necessary to prepare various kinds of reference materials in advance and replace them according to the test material. In some cases, it is necessary to perform calibration in consideration of the effects of the component composition and the manufacturing history.
[0006]
The present invention has been made in view of such conventional problems, and a first object of the present invention is to eliminate the need for a reference material, to provide a component of a test material, a production history (a crystal grain size, a decarburized layer, and the like). An object of the present invention is to provide a different material determination method that can easily and reliably determine a different material without being affected by a different material.
Further, a second object of the present invention is to provide a dissimilar material judging device which can execute the above dissimilar material judging method simply and inexpensively.
[0007]
[Means for Solving the Problems]
The invention according to claim 1, which achieves the first object, is characterized in that, prior to the determination of a different material of a test material lot composed of magnetic materials having the same components and the same rolling chance, at least one test material in the initial stage of the lot, The background noise level of the leakage magnetic flux is measured in the longitudinal direction of the test material, and a normal value range of at least two noise characteristics of a maximum value, a minimum value, and a maximum value-minimum value is set from the measured noise level. ,
Thereafter, a maximum value, a minimum value, and a minimum value obtained from the noise level measured in the longitudinal direction for the other test materials, based on a comparison between at least two noise characteristics of the noise characteristics and the normal value range. It is characterized by determining a different material.
[0008]
According to the first aspect of the present invention, the noise level of the leakage magnetic flux of at least one test material in the initial stage is measured for each lot and the normal value range of the noise characteristic is set, so that it is not necessary to use the reference material. In addition, since there is little variation in component composition and manufacturing history within a lot, there is no need to consider the effects of these. The leakage magnetic flux noise level is affected only by the magnetic permeability and is not affected by the resistance value or the conductivity, so that the discrimination accuracy is improved. As described above, in the same lot having the same component composition and manufacturing history, the magnetic permeability is substantially constant and the noise level is also substantially the same, so that no reference material is required, and no special calibration is required. Accurate different material discrimination becomes possible.
In addition, the noise level of the leakage magnetic flux can be measured using a normal leakage magnetic flux flaw detector, and the measurement surface can be finished only by passing through a shot blast or leveler. it can.
[0009]
Further, the invention of a dissimilar material determination device according to claim 2 which achieves the second object is a leakage magnetic flux detecting means for detecting a leakage magnetic flux and converting it into an electric signal,
From the output of the electrical signal, a band filter that cuts off the output due to the defect of the test material,
A noise characteristic measuring means for storing a maximum value and a minimum value of the noise level from the electric signal output after the cutoff and calculating a maximum value-minimum value from the maximum value and the minimum value to obtain each noise characteristic; ,
A normal value range setting means for setting a normal value range from any two or more noise characteristics of the obtained maximum value, minimum value, and maximum value-minimum value;
Determining means for determining a different material based on a comparison between the normal value range and two or more noise characteristics by the noise characteristic measuring means,
The normal value range setting means sets the normal value range based on the noise characteristics measured by the noise characteristic measuring means of at least one test material at the beginning of the test material lot having the same component and the same rolling chance. Control means for controlling the inspection material to determine a different material based on a comparison between the noise characteristic measured by the noise characteristic measurement means and the normal value range of the test material in the determination means. It is assumed that.
[0010]
According to the second aspect of the present invention, since a flaw detection device based on ordinary leakage magnetic flux measurement can be used, it can be implemented simply and inexpensively.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing one embodiment of a dissimilar material judging device for performing the dissimilar material judging method according to the present invention. In the present embodiment, a leakage magnetic flux detection unit 3 provided with an electromagnet and a magneto-electric conversion element is installed on the transport line 1 so that the test material 2 sequentially transported on the transport line 1 passes. The leakage magnetic flux detecting section 3 is connected to the noise characteristic measuring section 4 to continuously or intermittently measure the background noise characteristic of the leakage magnetic flux for a predetermined length in the transport direction of each test material 2 and to measure the background noise characteristic. The noise characteristics are supplied to the determination unit 5. The determination unit 5 determines a different material based on the noise characteristic from the noise characteristic measurement unit 4 under the control of the control device 6, and supplies the determination result to the control device 6. In the control device 6, on the basis of the result of the determination by the determination unit 5, for example, a marking device (not shown) is driven to apply marking to the different material, or a sorting device (not shown) is driven to send a regular steel material and a different material from the transport line 1. And sort them out.
[0012]
FIG. 2 is a block diagram showing a detailed configuration of the dissimilar material determination device shown in FIG. The leakage magnetic flux detection unit 3 can use a commonly used leakage magnetic flux flaw detection device as it is, and as shown in FIG. 3, is configured to include a pair of electromagnets 31 and magnetoelectric conversion elements 32 on a gantry 33. The magnetic field lines are passed through the surface of the test material 2 by the electromagnet 31, and the magnetic field lines (leakage magnetic flux) leaking from the surface of the test material 2 are detected by the magnetoelectric conversion element 32 and converted into electric signals. If necessary, the output of the electric signal can be confirmed by the waveform using a display device or a printing device (not shown). The output obtained by converting the detected leakage magnetic flux by the magneto-electric conversion element 32 is sent to the noise measuring unit 4.
The noise measuring unit 4 includes a band filter 41, a maximum value peak memory 42, a minimum value peak memory 43, and a differentiator 44. In the noise measuring section 4, first, the band filter 41 cuts off the output waveform caused by the defect of the test material from the output waveform to obtain a waveform including only noise. The maximum value and the minimum value are obtained from the noise-only electric signal within the certain section thus obtained, and stored in the maximum value peak memory 42 and the minimum value peak memory 43, respectively. The maximum value-the minimum value is calculated.
[0013]
The determination unit 5 includes a switch circuit 51, a normal value range setting circuit 52, and a determination circuit 53. The noise characteristics (the maximum value and the minimum value obtained from the background noise) transmitted from the noise measurement unit 4 are included. And any one of the maximum value and the minimum value) is received by an electric signal, and selectively transmitted to the normal value range setting circuit 52 and the determination circuit 53 via the switch circuit 51 under the control of the control device 6. Supply. The normal value range setting circuit 52 sets a normal value range of any one of the two noise characteristics according to a necessary determination level.
[0014]
The normal value range set by the normal value range setting circuit 52 is supplied to the determination circuit 53, and is compared with any two noise characteristics obtained from the noise signal supplied through the switch circuit 51. If it is within the value range, it is determined to be a normal steel bar, and if it is out of the normal value range, it is determined to be a different material, and the determination result is supplied to the control device 6.
[0015]
Next, the operation of the present embodiment will be described.
First, prior to the determination of a different material of a test material lot having the same component and the same rolling chance, the control device 6 switches the switch circuit 51 so that the output of the noise measuring unit 4 is supplied to the normal value range setting circuit 52. In this state, the background noise is measured for a predetermined length in the length direction (transport direction) of one or more test materials 2 at the beginning of the lot conveyed on the transport line 1. Then, the noise characteristics obtained by the maximum value peak memory 42, the minimum value peak memory 43, and the differentiator 44 are supplied to the normal value range setting circuit 52 via the switch circuit 51, and the normal value range is set. The accuracy is increased by increasing the measurement length (section) of the background noise, but it is desirable to measure so as to include at least one rotation of the probe or the straight rod.
Prior to obtaining the noise characteristic, it is necessary to remove the waveform caused by the defect by the band filter 41 of the measuring unit 4 in order to make a waveform of only the background noise in advance. For example, a serious defect such as a barb or a crack is detected as having an S / N of 2 or more. In this case, the threshold value is set so that the band filter 41 cuts off S / N ≧ 2. Just fine.
[0016]
In order to set a normal value range from a signal of only background noise, first, when one test material 2 at the beginning of a lot is used for setting, the test material 2 is obtained continuously or intermittently. From the noise in the predetermined section, at least two noise characteristics of the maximum value, the minimum value, and the maximum value-minimum value are obtained by the maximum value peak memory 42, the minimum value peak memory, and the differentiator 44. When a plurality of test materials 2 are used, for example, noise characteristics of the plurality of test materials 2 are obtained in the same manner, and an average value thereof is used.
Here, the above noise characteristics are shown in FIG. FIG. 4 is an enlarged view of the waveform of only the background noise excluding the waveform due to the defect. In FIG. 4, a is the maximum value and b is the minimum value. Then, the maximum value-the minimum value, that is, ab is obtained by the operation of the difference unit 44.
[0017]
Based on the thus obtained a (maximum value), b (minimum value) and ab, a normal value range (criterion) is set according to the discrimination level. This will be described with a specific example.
FIG. 5 shows the waveform of the background noise measured for the test materials of JIS 45C and SUJ2. When seeking the target Kenzai noise characteristics from these waveforms, at S45C, a 1 = 10.0%, b 1 = 7.5%, a 1 -b 1 = 2.5%, with SUJ2, a 2 = 16.3%, b 2 = 12.5 %, A 2 −b 2 = 3.8%. In order to detect one of them as a dissimilar material from a test material in which two types of steels are mixed, a judgment value A, B, and C are provided, and if any one of the following expressions is satisfied, the dissimilar material is determined. judge. Note that the determination values A, B, and C are determined according to noise measurement accuracy and a required determination level.
| A 1 −a 2 | ≧ A (1)
│b 1 −b 2 │ ≧ B (2)
| (A 1 −b 1 ) − (a 2 −b 2 ) | ≧ C (3)
In the case of the 2 grades, a 1 -a 2 = 6.3% , b 1 -b 2 = 5.0%, (a 1 -b 1) - Since the (a 2 -b 2) = 1.3 %, for example A = 3.0%, B = 3.0%, and C = 1.0%, the two can be distinguished from each other, and the different materials can be distinguished. That is, in this example, when S45C is a regular material, the normal value ranges of the noise characteristics of a, b, and ab are a ≦ 10.0 + 3.0 = 13.0, b ≦ 7.5 + 3. 0 = 10.5, a−b ≦ 2.5 + 1.0 = 3.5.
The above setting operation of the normal value range is performed for each lot of the test material under the control of the control device 6.
[0018]
When the setting of the normal value range is completed, the normal value range is supplied to the determination circuit 53, and the control device 6 controls the switch circuit 51 so that the output of the noise characteristic measured by the noise measuring unit 4 is supplied to the determination circuit 53. Switch. In this state, the noise characteristic of the test material 2 that subsequently passes through the leakage magnetic flux detection unit 3 is measured by the noise measurement unit 4 and supplied to the determination circuit 53 via the switch circuit 51, where it is compared with the normal value range. Then, it is determined whether the test material 2 is a legitimate steel bar or a different material.
[0019]
As described above, according to the present embodiment, if the noise characteristics of the test materials 2 are the same in the lot, the background noise of the leakage magnetic flux is the difference between the components and the difference in the surface decarburized layer due to the difference in the heating conditions. Focusing on the fact that it is not affected by the difference in the crystal grain size due to the difference in the rolling temperature or the precipitate but only by the magnetic permeability of the test material 2, The noise characteristic of the test material 2 is measured, a normal value range is set from the measured noise characteristic, and the test material 2 thereafter uses the reference material based on the comparison with the measured noise characteristic normal value range. Since the dissimilar material is determined without any need, an operation such as calibration is not required, and the dissimilar material can be always easily and reliably determined.
Further, a known flaw detection device can be used for detecting the leakage magnetic flux, so that it can be simple and inexpensive.
[0020]
【The invention's effect】
As described above, according to the dissimilar material determination method of the present invention, the noise characteristics are measured using the initial test material for each lot without using the reference material, and the noise characteristics are measured based on the measured noise characteristics. The value range is set, and for the test material thereafter, different materials are determined based on the comparison between the measured noise characteristic and the normal value range, so that operability can be improved and the test material between lots can be improved. Dissimilar materials can always be determined easily and reliably without being affected by component differences and the like.
Further, according to the apparatus for judging a different material according to the present invention, the noise characteristics of the test material can be measured using a flaw detection device using a leakage magnetic flux, so that it is simple and inexpensive.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a dissimilar material judging device for performing a dissimilar material judging method according to the present invention.
FIG. 2 is a block diagram showing a detailed configuration of the dissimilar material determination device shown in FIG.
FIG. 3 is a schematic diagram showing details of a leakage magnetic flux detection unit.
FIG. 4 is a diagram illustrating the definition of noise characteristics.
FIG. 5 is a diagram illustrating a measurement example of background noise.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conveyance line 2 Test material 3 Leakage magnetic flux detection part 4 Noise characteristic measurement part 5 Judgment part 6 Control device 31 Electromagnet 32 Magnetoelectric conversion element 41 Band filter 42 Maximum value peak memory 43 Minimum value peak memory 44 Differentiator 51 Switch circuit 52 Normal Value range setting circuit 53 Judgment circuit

Claims (2)

同一成分で同一圧延チャンスの磁性体からなる被検材ロットの異材判定に先立って、当該ロット初期の少なくとも1つの被検材について、被検材の長手方向に漏洩磁束のバックグランドノイズレベルを測定し、その測定ノイズレベルから、最大値、最小値、最大値−最小値のうちの少なくとも2つのノイズ特性の正常値範囲を設定し、
その後、他の被検材に対して長手方向に測定したノイズレベルから求まる、最大値、最小値、最大値−最小値のうちの少なくとも2つのノイズ特性と前記正常値範囲との比較に基づいて異材を判定することを特徴とする異材判定方法。
Prior to determining a different material of a test material lot composed of magnetic materials having the same component and the same rolling chance, a background noise level of a leakage magnetic flux is measured in a longitudinal direction of the test material for at least one test material at an initial stage of the lot. Setting a normal value range of at least two noise characteristics of the maximum value, the minimum value, and the maximum value-minimum value from the measured noise level;
Thereafter, a maximum value, a minimum value, and a minimum value obtained from the noise level measured in the longitudinal direction for the other test materials, based on a comparison between at least two noise characteristics of the noise characteristics and the normal value range. A dissimilar material judging method characterized by judging a dissimilar material.
漏洩磁束を検出して電気信号に変換する漏洩磁束検出手段と、
前記電気信号の出力から、被検材の欠陥に起因する出力をカットオフするバンドフィルターと、
カットオフした後の電気信号出力から、ノイズレベルの最大値および最小値を記憶するとともに、これら最大値と最小値から最大値−最小値を演算して、各ノイズ特性を求めるノイズ特性測定手段と、
得られた最大値、最小値および最大値−最小値のいずれか2つ以上のノイズ特性から、正常値範囲を設定する正常値範囲設定手段と、
前記正常値範囲と前記ノイズ特性測定手段による2つ以上のノイズ特性との比較に基づいて異材を判定する判定手段と、
同一成分で同一圧延チャンスの被検材ロットの初期の少なくとも1つの被検材の前記ノイズ特性測定手段による測定ノイズ特性に基づいて前記正常値範囲設定手段で正常値範囲を設定し、他の被検材に対しては前記判定手段において当該被検材の前記ノイズ特性測定手段による測定ノイズ特性と前記正常値範囲との比較に基づいて異材を判定するよう制御する制御手段とを有することを特徴とする異材判定装置。
A leakage magnetic flux detecting means for detecting the leakage magnetic flux and converting it into an electric signal;
From the output of the electrical signal, a band filter that cuts off the output due to the defect of the test material,
A noise characteristic measuring means for storing a maximum value and a minimum value of the noise level from the electric signal output after the cutoff and calculating a maximum value-minimum value from the maximum value and the minimum value to obtain each noise characteristic; ,
A normal value range setting means for setting a normal value range from any two or more noise characteristics of the obtained maximum value, minimum value, and maximum value-minimum value;
Determining means for determining a different material based on a comparison between the normal value range and two or more noise characteristics by the noise characteristic measuring means,
The normal value range setting means sets the normal value range based on the noise characteristics measured by the noise characteristic measuring means of at least one test material at the beginning of the test material lot having the same component and the same rolling chance. Control means for controlling the inspection material to determine a different material based on a comparison between the noise characteristic measured by the noise characteristic measurement means and the normal value range of the test material in the determination means. Dissimilar material determination device.
JP33591099A 1999-11-26 1999-11-26 Dissimilar material determination method and apparatus Expired - Fee Related JP3546298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33591099A JP3546298B2 (en) 1999-11-26 1999-11-26 Dissimilar material determination method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33591099A JP3546298B2 (en) 1999-11-26 1999-11-26 Dissimilar material determination method and apparatus

Publications (2)

Publication Number Publication Date
JP2001153843A JP2001153843A (en) 2001-06-08
JP3546298B2 true JP3546298B2 (en) 2004-07-21

Family

ID=18293744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33591099A Expired - Fee Related JP3546298B2 (en) 1999-11-26 1999-11-26 Dissimilar material determination method and apparatus

Country Status (1)

Country Link
JP (1) JP3546298B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091394B2 (en) 2008-03-31 2012-01-10 Sumitomo Metal Industries, Ltd. Foreign pipe or tube determining method

Also Published As

Publication number Publication date
JP2001153843A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
RU2644026C1 (en) Method and device for testing using scattering flows
US8125219B2 (en) Method for determining and evaluating eddy-current displays, in particular cracks, in a test object made from an electrically conductive material
US6424151B2 (en) Method and apparatus for evaluation of eddy current testing signal
EP2574911B1 (en) Method and arrangement for crack detection in a metallic material
US6570379B2 (en) Method for inspecting an object of electrically conducting material
JP2003240761A (en) Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen
US5391988A (en) Method and apparatus for detecting flaws within a conductive object while cancelling the effects of variation in distance between the detection apparatus and the conductive object
US10132906B2 (en) Multi-element sensor array calibration method
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
JP3546298B2 (en) Dissimilar material determination method and apparatus
JP4715034B2 (en) Eddy current flaw detector
JP3584819B2 (en) Dissimilar material determination method and apparatus
US8941376B2 (en) Method for automated measurement of the residual magnetic field strength of magnetized ferromagnetic workpieces
JP4831298B2 (en) Hardening depth measuring device
CN113532255B (en) Method and device for detecting thickness of magnetic leakage and eddy current
JP4019964B2 (en) Leakage magnetic flux inspection method and apparatus
JPH04221757A (en) Defect detecting device
JP2004354282A (en) Magnetic flux leakage flaw detection apparatus
JPH11211674A (en) Method and apparatus for inspection of flaw on surface
CN115420187B (en) Method for detecting pulsed eddy current of positions and diameters of steel bars based on feature quantity extraction
JP5365938B2 (en) Metal material dissimilarity judgment method and apparatus
JP2001059836A (en) Method and apparatus for eddy-current flaw detection
JPH10206395A (en) Nondestructive detecting method of eddy current system
JPH0792127A (en) Method and equipment for measuring crack in insulation coating
JPH0481653A (en) Eddy current flaw detection method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees