JP3545545B2 - Molded beverage containers - Google Patents

Molded beverage containers Download PDF

Info

Publication number
JP3545545B2
JP3545545B2 JP23159096A JP23159096A JP3545545B2 JP 3545545 B2 JP3545545 B2 JP 3545545B2 JP 23159096 A JP23159096 A JP 23159096A JP 23159096 A JP23159096 A JP 23159096A JP 3545545 B2 JP3545545 B2 JP 3545545B2
Authority
JP
Japan
Prior art keywords
container
strength
mouth
molded
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23159096A
Other languages
Japanese (ja)
Other versions
JPH1076565A (en
Inventor
寛典 末澤
新一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP23159096A priority Critical patent/JP3545545B2/en
Publication of JPH1076565A publication Critical patent/JPH1076565A/en
Application granted granted Critical
Publication of JP3545545B2 publication Critical patent/JP3545545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐衝撃性スチレン系樹脂で成形された飲料用成形容器に関する。更に詳しくは、特定の耐衝撃性スチレン系樹脂で成形された、口部強度に優れた飲料用成形容器に関する。
【0002】
【従来の技術】
従来から、発酵乳、乳酸菌飲料及び乳飲料の包装容器として耐衝撃性スチレン系樹脂をインジェクションブロー成形してなる成形容器が使用されている。
【0003】
インジェクションブロー成形とは、まず射出成形によって有底のパリソンを成形し、このパリソンが軟らかいうちにコア(射出成形の雄金型)につけたままブロー成形金型に移行させ、コアから圧気を送り込んで中空成形品を得る成形方法である。
【0004】
この成形方法は、一般の射出成形と比較してコアからの離型には高温が必要で、且つ、その温度幅は狭い。つまり、コア温度が低すぎる場合にはブロー成形時のコアからの離型が困難となり、成形品の型再現性が不十分となる。一方、コア温度が高すぎる場合には成形品の肉厚が変動し偏ったものとなり、著しい場合にはしわを生じるなどの不都合が発生する。このようなインジェクションブロー成形に特有の高温離型の問題を解決し、安定した成形を可能とするスチレン系樹脂として、高級脂肪酸の金属塩またはアミド類とミネラルオイルを含有した組成物が、特公昭48−1236号公報に開示されている。
【0005】
また、インジェクションブロー成形による成形容器は、薄肉成形品であることから容器強度面、特に、口部の強度が問題なる場合が多い。つまり、インジェクションブロー成形した後、その成形品を空送する時、貯蔵する時、成形品に印刷する時、内容物を充填する時、或いは口部をシールする時などに、容器口部の破壊を起こすことがあり、樹脂の改良を要望されていた。この問題、及び、上述の高温離型性の問題を解決する方法として、特公昭57−42654号公報が開示されている。
【0006】
これらの方法によって、インジェクションブロー成形における高温離型は実用上ほぼ満足できるレベルまで改良されたが、成形容器の口部強度については、更なる改良を求められているのが現状である。
【0007】
容器強度として口部強度と同様に重要になるものが座屈強度である。座屈強度は、製品を積み重ねた場合の変形、製品輸送時の変形に関係し、座屈強度は高いことが望ましい。
【0008】
しかしながら口部強度と座屈強度は相反する性質であり、この二つの性質の内、どちらを重要視するかによって使用される樹脂は異なるのが現状である。
【0009】
口部強度を改良するために単純にゴム成分を増加させた場合には、口部強度は改良されるものの座屈強度が大幅に低下し、実用上問題となる。また、座屈強度を改良するために単純にゴム成分を減少させた場合には、座屈強度は改良されるものの口部強度が大幅に低下し、実用上問題になる。つまり、口部強度と座屈強度の両者を高いレベルで同時に満足させた飲料用成形容器が望まれているのである。
【0010】
【発明が解決しようとする課題】
本発明の目的は、上記問題を解決し、口部強度と座屈強度が共に高レベルな飲料用成形容器を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、以上のようなインジェクションブロー成形容器の口部強度と座屈強度の問題点を克服するために鋭意検討を重ねた結果、特定の耐衝撃性スチレン系樹脂からインジェクションブロー成形された成形容器は、座屈強度の低下が少なく、口部強度が大幅に改良されることを見出し本発明に至った。
【0012】
即ち、本発明は、ゲル含有量が16〜21重量%、内包するゴム粒子径が2.0〜3.5μm、メルトフローレートが4.0〜10.0g/10分、及び、ビカット軟化点が93〜102℃である耐衝撃性スチレン系樹脂をインジェクションブロー成形してなることを特徴とする飲料用成形容器である。
【0013】
【発明の実施の形態】
本発明において用いる耐衝撃性スチレン系樹脂とは、一般にHIPS(high impact polystyrene)と呼ばれる、ゴムを用いてスチレン系樹脂の耐衝撃性を改良したものである。
【0014】
本発明における耐衝撃性スチレン系樹脂のゲル含有量は16〜21重量%、好ましくは、17〜20重量%である。ゲル含有量が16重量%未満の場合には、容器の座屈強度は高くなるが口部強度が大幅に低下する。一方、ゲル含有量が21重量%を超える場合には、口部強度は高くなるが、容器の座屈強度が大幅に低下する。
【0015】
本発明における耐衝撃性スチレン系樹脂の内包するゴム粒子径は2.0〜3.5μm、好ましくは、2.3〜3.2μmである。ゴム粒子径が2.0μm未満の場合には、容器の口部強度が低下する。一方、ゴム粒子径が3.5μmを超える場合には、容器の座屈強度が低下する。
【0016】
本発明における耐衝撃性スチレン系樹脂のメルトフローレートは4.0〜10.0g/10分、好ましくは、5.0〜9.0g/10分である。メルトフローレートが4.0g/10分未満の場合には、立ち上げ時にブロー不足が発生しやすく、さらに容器の口部衝撃強度は低下しやすい。メルトフローレートが10g.0/10分を超える場合には、成形時に糸曳きが発生しやすい。
【0017】
本発明における耐衝撃性スチレン系樹脂のビカット軟化点は93〜102℃、好ましくは、95〜100℃である。ビカット軟化点が93℃未満の場合には、成形時に糸曳きが発生しやすい。一方、ビカット軟化点が102℃を超える場合には、糸曳きは発生しにくいものの、立ち上げ時にブロー不足が発生しやすく、さらに容器の口部衝撃強度は低下しやすい。
【0018】
また本発明の成形容器は、その側面に2本のパーティングラインを有することが望ましい。このパーティングラインは、該容器にシュリンクラベルをかぶせた場合にそのラベルの滑りを抑制し、ラベルの位置ずれを防止する効果がある。
【0019】
本発明における耐衝撃性スチレン系樹脂中の残留モノマーは300ppm以下であることが好ましく、更に好ましくは250ppm以下である。残留モノマーが300ppmを超える場合には、容器にモノマー臭がする場合がある。
【0020】
離型性の観点から、本発明における耐衝撃性スチレン系樹脂に離型剤を配合することが望ましく、該離型剤としては、高級脂肪酸と高級脂肪酸金属塩の混合物が挙げられその重量比率が1/3〜3.5であり、また配合量は、樹脂100重量部に対して0.1〜0.4重量部であることが好ましい。配合量が0.1重量部未満の場合には、離型性に劣る。一方配合量が0.4重量部を超える場合には、樹脂の熱変色、熱劣化が起こりやすい。ここで高級脂肪酸とは、炭素数が12〜22の飽和直鎖カルボン酸である。また、高級脂肪酸金属塩とは、上記高級脂肪酸の金属塩であって、金属の種類には特に制限はないが、アルミニウム、カルシウム、マグネシウム、亜鉛等が例として挙げられる。
【0021】
また、成形流動性の観点から本発明における耐衝撃性スチレン系樹脂100重量部にミネラルオイルを1.0〜5.0重量部配合することが望ましい。配合量が1.0重量部未満の場合には、容器口部Dupont衝撃強度が低下する。一方配合量が5.0重量部を超える場合には、成形時に糸曳きが発生しやすい。
【0022】
その他、容器の透明性をコントロールするため、本発明における耐衝撃性スチレン系樹脂に顔料等を配合することもできる。
【0023】
【実施例】
以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれら実施例によって何ら制限されるものではない。尚、樹脂および容器の各物性は次に示す方法に従って求める。
【0024】
(1)ゲル含有量
精秤した樹脂1.0gとトルエン20mlを入れた沈殿管を1時間振とうし、遠心分離機によりトルエンで膨潤した不溶部分と溶液部分に分離する。次に溶液部分を取り除き不溶部分を160℃、常圧下で45分、及び、160℃、20mmHg以下で15分の条件でトルエンを蒸発、乾固し重量を測定し、下式によりゲル含有量を計算する。
【0025】
【数1】

Figure 0003545545
【0026】
(2)ゴム粒子径
チオシアン酸アンモニウムを1容積%含有するジメチルホルムアミドに樹脂を溶解し、粒径分布測定装置(日科機社製コールターカウンターマルチサイザー)により体積平均粒子径を求める。
【0027】
(3)ビカット軟化点
ASTM−D1525に準拠した方法で測定する。
【0028】
(4)メルトフローレート
ISO−R1133に準拠し、200℃、5Kgの条件で測定する。
【0029】
(5)残留スチレンモノマー
ガスクロマトグラフィー法で測定する。
【0030】
(6)容器の口部Dupont衝撃強度
Dupont衝撃強度測定装置を用い、容器のパーティングライン上の口部側面の強度を測定する。荷重は200g、ミサイル先端径は1/2インチとし、測定は、容器を金型面、容器番号別に分け、各容器番号毎に6個について割れの発生する最低値を測定し、その後、全平均値を出す。
【0031】
(7)容器の口部Dupont衝撃50%強度
Dupont衝撃強度測定装置を用い、容器のパーティングライン上の口部側面の強度を測定する。荷重は200g、ミサイル先端径は1/2インチとし、測定は、3ショット分の容器について実施し、平均値を求める。
【0032】
(8)容器の口部圧縮強度
引張圧縮試験機の圧縮用治具を平板にし、容器を横、パーティングラインが上、かつ口部フランジが垂直に当たるようにして200mm/分の速度で圧縮し、破壊に至るまでの最大荷重を口部圧縮強度とする。測定には、2ショット分の容器を使用し、測定値を平均する。
【0033】
(9)容器の座屈強度
引張圧縮試験機の圧縮用治具を平板にし、容器が垂直に当たるようにして200mm/分の速度で圧縮し、降伏時の荷重を座屈強度とする。測定には、2ショット分の容器を使用し、測定値を平均する。
【0034】
また、本発明の実施例及び比較例に使用する耐衝撃性スチレン系樹脂の内容を表1に示す。
【0035】
【表1】
Figure 0003545545
*上記耐衝撃性スチレン系樹脂A〜Fには、ステアリン酸/ステアリン酸カルシウムが 1/3の混合比率で樹脂100重量部に対し0.3重量部配合されている。また、ミネラルオイルがA〜Eには樹脂100重量部に対し、3.5重量部配合されており、Fには1.5重量部配合されている。
【0036】
[実施例1〜3,比較例1〜3]
表1に記載の耐衝撃性スチレン系樹脂を用いて、SG125−NP[住友重機械工業(株)製]によって下記の成形条件で、口径43mm、胴径48mm、高さ90mmで、円状パーティングラインが底部から10mmの高さにあり、側面に2本のパーティングラインを有する内容積138cmの飲料用成形容器をインジェクションブロー成形した。
【0037】
・シリンダー温度(ノズル側から):240−240−240−220℃
・ホットランナー温度:240℃
・コア加熱温度:150℃
・キャビティー温度:50℃
成形された容器の口部Dupont衝撃強度、及び座屈強度を所定の方法で測定した。結果を表2に示す。
【0038】
【表2】
Figure 0003545545
【0039】
[実施例4〜6,比較例4〜6]
表1に記載の耐衝撃性スチレン系樹脂を用いて、NEP260/700/50S[住友重機械工業(株製]によって下記の成形条件で、口径43mm、胴径48mm、高さ90mmで、円状パーティングラインが底部から3mmの高さにあり、側面に2本のパーティングラインを有する内容積138cm の飲料用成形容器をインジェクションブロー成形した。
【0040】
・シリンダー温度(ノズル側から):240−240−240−240−175℃
・ホットランナー温度:245℃
・コア加熱温度:155℃
・キャビティー温度:50℃
成形された容器の口部Dupont衝撃強度、及び座屈強度を所定の方法で測定した。結果を表3に示す。
【0041】
【表3】
Figure 0003545545
【0042】
[実施例7〜9,比較例7〜9]
表1に記載の耐衝撃性スチレン系樹脂を用いて、SG125−NP[住友重機械工業(株)製]によって下記の成形条件で、口径35mm、胴径40mm、高さ80mmで、側面に2本のパーティングラインを有する内容積86cmの飲料用成形容器をインジェクションブロー成形した。
【0043】
・シリンダー温度(ノズル側から):240−240−240−220℃
・ホットランナー温度:240℃
・コア加熱温度:150℃
・キャビティー温度:50℃
成形された容器の口部圧縮強度、及び座屈強度を所定の方法で測定した。結果を表4に示す。
【0044】
【表4】
Figure 0003545545
【0045】
[実施例10〜12,比較例10〜12]
表1に記載の耐衝撃性スチレン系樹脂を用いて、SG125−NP[住友重機械工業(株)製]によって下記の成形条件で、口径23.5mm、胴径38.5mm、高さ74.5mm、重量3.2gで、側面に2本のパーティングラインを有する内容積68cmの飲料用成形容器をインジェクションブロー成形した。
【0046】
・シリンダー温度(ノズル側から):240−240−240−220℃
・ホットランナー温度:240℃
・コア加熱温度:150℃
・キャビティー温度:50℃
成形された容器の口部Dupont衝撃50%強度、及び座屈強度を所定の方法で測定した。結果を表5に示す。
【0047】
【表5】
Figure 0003545545
【0048】
[実施例13〜15,比較例13〜15]
表1に記載の耐衝撃性スチレン系樹脂を用いて、NEP260/700/50S[住友重機械工業(株)製]によって下記の成形条件で、口径23.5mm、胴径38.5mm、高さ74.5mm、重量3.6gで、側面に2本のパーティングラインを有する内容積68cmの飲料用成形容器をインジェクションブロー成形した。
【0049】
・シリンダー温度(ノズル側から):240−240−240−240−175℃
・ホットランナー温度:245℃
・コア加熱温度:155℃
・キャビティー温度:50℃
成形された容器の口部Dupont衝撃50%強度、及び座屈強度を所定の方法で測定した。結果を表6に示す。
【0050】
【表6】
Figure 0003545545
【0051】
【発明の効果】
本発明の飲料用成形容器は、従来の容器に比較して座屈強度の低下が少なく、口部強度が大幅に改良される。従って、本発明の成形容器を空送する時、貯蔵する時、成形品に印刷する時、内容物を充填する時、或いは口部をシールする時などに発生する容器口部の破壊不良が低減し、かつ、輸送時の容器の変形、破損等の不良が低減する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molded beverage container molded from an impact-resistant styrene resin. More specifically, the present invention relates to a molded beverage container which is molded from a specific impact-resistant styrene resin and has excellent mouth strength.
[0002]
[Prior art]
BACKGROUND ART Conventionally, a molded container formed by injection blow molding of an impact-resistant styrene-based resin has been used as a packaging container for fermented milk, lactic acid bacteria beverages, and milk beverages.
[0003]
Injection blow molding means that a bottomed parison is first formed by injection molding, and while this parison is soft, it is transferred to a blow molding mold while being attached to a core (male mold for injection molding), and compressed air is sent from the core. This is a molding method for obtaining a hollow molded article.
[0004]
This molding method requires a high temperature for releasing from the core and has a narrow temperature range as compared with general injection molding. That is, if the core temperature is too low, it is difficult to release the core from the core during blow molding, and the mold reproducibility of the molded product becomes insufficient. On the other hand, if the core temperature is too high, the thickness of the molded article fluctuates and becomes uneven, and if it is extremely high, inconveniences such as generation of wrinkles occur. A composition containing a metal salt or amide of a higher fatty acid and a mineral oil as a styrene-based resin capable of solving the problem of high-temperature demolding peculiar to the injection blow molding and enabling stable molding is disclosed in No. 48-1236.
[0005]
Further, since a molded container formed by injection blow molding is a thin-walled molded product, the strength of the container, particularly the strength of the mouth, often becomes a problem. In other words, after injection blow molding, when the molded product is transported by air, stored, printed on the molded product, filled with contents, or sealed at the mouth, the mouth of the container is destroyed. And there was a demand for improvement of the resin. Japanese Patent Publication No. 57-42654 discloses a method for solving this problem and the above-mentioned problem of high-temperature releasability.
[0006]
By these methods, high-temperature release in injection blow molding has been improved to a practically satisfactory level. However, at present, further improvement is required for the strength of the mouth of a molded container.
[0007]
What becomes as important as container strength as container strength is buckling strength. The buckling strength is related to the deformation when the products are stacked and the deformation during transportation of the products, and it is desirable that the buckling strength is high.
[0008]
However, the mouth strength and the buckling strength are contradictory properties, and at present, the resin used differs depending on which of the two properties is important.
[0009]
When the rubber component is simply increased in order to improve the mouth strength, the mouth strength is improved, but the buckling strength is greatly reduced, which is a practical problem. Further, when the rubber component is simply reduced to improve the buckling strength, the buckling strength is improved but the mouth strength is greatly reduced, which is a practical problem. That is, there is a demand for a molded beverage container that simultaneously satisfies both the mouth strength and the buckling strength at a high level.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems and to provide a molded beverage container having a high level of both mouth strength and buckling strength.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to overcome the problems of mouth strength and buckling strength of the injection blow molded container as described above, and as a result, injection blow molded from a specific impact resistant styrene resin. It has been found that the molded container has a small decrease in buckling strength, and the mouth strength is greatly improved, leading to the present invention.
[0012]
That is, in the present invention, the gel content is 16 to 21% by weight, the rubber particle diameter included is 2.0 to 3.5 μm, the melt flow rate is 4.0 to 10.0 g / 10 min, and the Vicat softening point A molded container for beverages, which is obtained by subjecting an impact-resistant styrene resin having a temperature of 93 to 102 ° C. to injection blow molding.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The impact-resistant styrene-based resin used in the present invention is generally referred to as HIPS (high impact polystyrene), and is obtained by using rubber to improve the impact resistance of the styrene-based resin.
[0014]
The gel content of the impact-resistant styrenic resin in the present invention is 16 to 21% by weight, preferably 17 to 20% by weight. If the gel content is less than 16% by weight, the buckling strength of the container will be high, but the mouth strength will be greatly reduced. On the other hand, when the gel content exceeds 21% by weight, the mouth part strength is increased, but the buckling strength of the container is greatly reduced.
[0015]
The rubber particle diameter included in the impact-resistant styrenic resin in the present invention is 2.0 to 3.5 μm, preferably 2.3 to 3.2 μm. When the rubber particle diameter is less than 2.0 μm, the strength at the mouth of the container decreases. On the other hand, when the rubber particle diameter exceeds 3.5 μm, the buckling strength of the container decreases.
[0016]
The melt flow rate of the impact-resistant styrenic resin in the present invention is 4.0 to 10.0 g / 10 minutes, preferably 5.0 to 9.0 g / 10 minutes. When the melt flow rate is less than 4.0 g / 10 minutes, insufficient blow is likely to occur at the time of startup, and the impact strength at the mouth of the container tends to decrease. Melt flow rate is 10 g. If it exceeds 0/10 minutes, stringing is likely to occur during molding.
[0017]
The Vicat softening point of the impact-resistant styrenic resin in the present invention is 93 to 102 ° C, preferably 95 to 100 ° C. If the Vicat softening point is less than 93 ° C., stringing tends to occur during molding. On the other hand, when the Vicat softening point exceeds 102 ° C., although stringing is unlikely to occur, insufficient blow is likely to occur at the time of startup, and the mouth impact strength of the container tends to decrease.
[0018]
It is desirable that the molded container of the present invention has two parting lines on its side. This parting line has the effect of preventing the label from slipping when the container is covered with a shrink label and preventing the label from shifting.
[0019]
The residual monomer in the impact-resistant styrenic resin in the present invention is preferably at most 300 ppm, more preferably at most 250 ppm. When the residual monomer exceeds 300 ppm, the container may have a monomer odor.
[0020]
From the viewpoint of releasability, it is desirable to mix a release agent with the impact-resistant styrenic resin in the present invention, and the release agent includes a mixture of a higher fatty acid and a metal salt of a higher fatty acid, and the weight ratio thereof is It is preferably 1/3 to 3.5, and the amount is preferably 0.1 to 0.4 parts by weight based on 100 parts by weight of the resin. When the amount is less than 0.1 part by weight, the releasability is poor. On the other hand, if the amount exceeds 0.4 parts by weight, thermal discoloration and thermal deterioration of the resin are likely to occur. Here, the higher fatty acid is a saturated linear carboxylic acid having 12 to 22 carbon atoms. The higher fatty acid metal salt is a metal salt of the above higher fatty acid, and the kind of the metal is not particularly limited, and examples thereof include aluminum, calcium, magnesium, and zinc.
[0021]
Further, from the viewpoint of molding fluidity, it is desirable to mix 1.0 to 5.0 parts by weight of a mineral oil with 100 parts by weight of the impact-resistant styrene resin in the present invention. If the amount is less than 1.0 part by weight, the Dupont impact strength at the mouth of the container decreases. On the other hand, when the compounding amount exceeds 5.0 parts by weight, stringing tends to occur during molding.
[0022]
In addition, in order to control the transparency of the container, a pigment or the like can be added to the impact-resistant styrenic resin of the present invention.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. In addition, each physical property of a resin and a container is calculated | required according to the following method.
[0024]
(1) Gel content A precipitating tube containing 1.0 g of precisely weighed resin and 20 ml of toluene is shaken for 1 hour, and separated by a centrifuge into an insoluble portion swollen with toluene and a solution portion. Next, the solution portion was removed, the insoluble portion was removed at 160 ° C. under normal pressure for 45 minutes, and toluene was evaporated and dried under the conditions of 160 ° C. and 20 mmHg or less for 15 minutes, and the weight was measured. calculate.
[0025]
(Equation 1)
Figure 0003545545
[0026]
(2) Rubber Particle Size The resin is dissolved in dimethylformamide containing 1% by volume of ammonium thiocyanate, and the volume average particle size is determined by a particle size distribution measuring device (Coulter Counter Multisizer manufactured by Nikkaki Co., Ltd.).
[0027]
(3) Vicat softening point Measured by a method based on ASTM-D1525.
[0028]
(4) Melt flow rate Measured at 200 ° C. and 5 kg in accordance with ISO-R1133.
[0029]
(5) The residual styrene monomer is measured by gas chromatography.
[0030]
(6) Mouth Dupont Impact Strength of Container Using a Dupont impact strength measuring device, the strength of the side of the mouth on the parting line of the container is measured. The load was 200 g, the missile tip diameter was 1/2 inch, and the measurement was performed by dividing the containers by mold surface and container number. Give value.
[0031]
(7) 50% strength of Dupont impact at the mouth of the container The strength of the side of the mouth on the parting line of the container is measured using a Dupont impact strength measuring device. The load is 200 g, the diameter of the missile tip is 測定 inch, and the measurement is performed on a container for three shots to determine an average value.
[0032]
(8) Compressive strength of the mouth of the container The compression jig of the tensile compression tester is made into a flat plate, and the container is compressed at a speed of 200 mm / min so that the side, the parting line is up, and the flange at the mouth is vertical. The maximum load to failure is defined as the mouth compressive strength. For the measurement, a container for two shots is used, and the measured values are averaged.
[0033]
(9) Buckling strength of container The compression jig of the tensile-compression tester is made into a flat plate, and the container is compressed at a speed of 200 mm / min so that the container hits vertically, and the load at the time of yield is defined as the buckling strength. For the measurement, a container for two shots is used, and the measured values are averaged.
[0034]
Table 1 shows the contents of the impact-resistant styrenic resin used in Examples and Comparative Examples of the present invention.
[0035]
[Table 1]
Figure 0003545545
* 0.3 parts by weight of stearic acid / calcium stearate is mixed with 100 parts by weight of the resin in the impact-resistant styrene resins A to F at a mixing ratio of 1/3. Further, 3.5 parts by weight of mineral oil is blended in A to E with respect to 100 parts by weight of resin, and 1.5 parts by weight of mineral oil is blended in F.
[0036]
[Examples 1-3, Comparative Examples 1-3]
Using the impact-resistant styrene-based resin described in Table 1, SG125-NP [manufactured by Sumitomo Heavy Industries, Ltd.] under the following molding conditions, a diameter of 43 mm, a body diameter of 48 mm, a height of 90 mm, and a circular party. Injection blow molding was carried out on a beverage container having an inner volume of 138 cm 3 having a cutting line at a height of 10 mm from the bottom and two parting lines on the side.
[0037]
・ Cylinder temperature (from nozzle side): 240-240-240-220 ° C
・ Hot runner temperature: 240 ° C
・ Core heating temperature: 150 ° C
・ Cavity temperature: 50 ° C
The mouth Dupont impact strength and buckling strength of the molded container were measured by a predetermined method. Table 2 shows the results.
[0038]
[Table 2]
Figure 0003545545
[0039]
[Examples 4 to 6, Comparative Examples 4 to 6]
Using the impact-resistant styrene-based resin described in Table 1, NEP260 / 700 / 50S [manufactured by Sumitomo Heavy Industries, Ltd.] under the following molding conditions, a diameter of 43 mm, a body diameter of 48 mm, a height of 90 mm, and a circular shape. A parting line at a height of 3 mm from the bottom and an inner volume of 138 cm 3 of a beverage container having two parting lines on the side was injection blow molded.
[0040]
・ Cylinder temperature (from nozzle side): 240-240-240-240-175 ° C
・ Hot runner temperature: 245 ° C
・ Core heating temperature: 155 ° C
・ Cavity temperature: 50 ° C
The mouth Dupont impact strength and buckling strength of the molded container were measured by a predetermined method. Table 3 shows the results.
[0041]
[Table 3]
Figure 0003545545
[0042]
[Examples 7 to 9, Comparative Examples 7 to 9]
Using the impact-resistant styrene-based resin shown in Table 1, SG125-NP [manufactured by Sumitomo Heavy Industries, Ltd.] under the following molding conditions, 35 mm in diameter, 40 mm in body diameter, 80 mm in height, and 2 on the side. A molded beverage container having an internal volume of 86 cm 3 having a book parting line was injection blow molded.
[0043]
・ Cylinder temperature (from nozzle side): 240-240-240-220 ° C
・ Hot runner temperature: 240 ° C
・ Core heating temperature: 150 ° C
・ Cavity temperature: 50 ° C
The mouth portion compressive strength and the buckling strength of the molded container were measured by a predetermined method. Table 4 shows the results.
[0044]
[Table 4]
Figure 0003545545
[0045]
[Examples 10 to 12, Comparative Examples 10 to 12]
Using the impact-resistant styrene resin shown in Table 1, SG125-NP [manufactured by Sumitomo Heavy Industries, Ltd.] under the following molding conditions, a caliber of 23.5 mm, a body diameter of 38.5 mm, and a height of 74. A molding container for beverage having a size of 5 mm, a weight of 3.2 g and an inner volume of 68 cm 3 having two parting lines on the side surface was injection-blow molded.
[0046]
・ Cylinder temperature (from nozzle side): 240-240-240-220 ° C
・ Hot runner temperature: 240 ° C
・ Core heating temperature: 150 ° C
・ Cavity temperature: 50 ° C
The mouth part Dupont impact 50% strength and buckling strength of the molded container were measured by a predetermined method. Table 5 shows the results.
[0047]
[Table 5]
Figure 0003545545
[0048]
[Examples 13 to 15, Comparative Examples 13 to 15]
Using the impact-resistant styrene resin shown in Table 1, NEP260 / 700 / 50S (manufactured by Sumitomo Heavy Industries, Ltd.) under the following molding conditions under the following molding conditions: caliber 23.5 mm, trunk diameter 38.5 mm, height A beverage container of 74.5 mm, weighing 3.6 g, and having an inner volume of 68 cm 3 and having two parting lines on the side face was injection blow molded.
[0049]
・ Cylinder temperature (from nozzle side): 240-240-240-240-175 ° C
・ Hot runner temperature: 245 ° C
・ Core heating temperature: 155 ° C
・ Cavity temperature: 50 ° C
The mouth part Dupont impact 50% strength and buckling strength of the molded container were measured by a predetermined method. Table 6 shows the results.
[0050]
[Table 6]
Figure 0003545545
[0051]
【The invention's effect】
ADVANTAGE OF THE INVENTION The molded container for drinks of this invention has the fall of buckling strength small compared with the conventional container, and a mouth part strength is improved significantly. Therefore, when the molded container of the present invention is transported by air, stored, printed on a molded product, filled with contents, or sealed at the mouth, the failure of destruction of the mouth of the container is reduced. In addition, defects such as deformation and breakage of the container during transportation are reduced.

Claims (2)

ゲル含有量が16〜21重量%、内包するゴム粒子径が2.0〜3.5μm、メルトフローレートが4.0〜10.0g/10分、及び、ビカット軟化点が93〜102℃である耐衝撃性スチレン系樹脂をインジェクションブロー成形してなることを特徴とする飲料用成形容器。The gel content is 16 to 21% by weight, the rubber particle diameter included is 2.0 to 3.5 μm, the melt flow rate is 4.0 to 10.0 g / 10 min, and the Vicat softening point is 93 to 102 ° C. A molded beverage container obtained by injection blow molding a certain impact-resistant styrene resin. 該容器の側面にパーティングラインを有する請求項1に記載の飲料用成形容器。The molded beverage container according to claim 1, further comprising a parting line on a side surface of the container.
JP23159096A 1996-09-02 1996-09-02 Molded beverage containers Expired - Lifetime JP3545545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23159096A JP3545545B2 (en) 1996-09-02 1996-09-02 Molded beverage containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23159096A JP3545545B2 (en) 1996-09-02 1996-09-02 Molded beverage containers

Publications (2)

Publication Number Publication Date
JPH1076565A JPH1076565A (en) 1998-03-24
JP3545545B2 true JP3545545B2 (en) 2004-07-21

Family

ID=16925907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23159096A Expired - Lifetime JP3545545B2 (en) 1996-09-02 1996-09-02 Molded beverage containers

Country Status (1)

Country Link
JP (1) JP3545545B2 (en)

Also Published As

Publication number Publication date
JPH1076565A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
US4020126A (en) Polyethylene terephthalate/terpolymer blends; films, sheets, and articles made using such blends; and method of making trays using such sheets
US3984498A (en) Blown thermoplastic bottle and method for making same
JP3545545B2 (en) Molded beverage containers
US20100256248A1 (en) stretch blow molding monovinylidene aromatic polymers
US3544673A (en) Process for heat treating fabricated plastic articles
US4254028A (en) Styrene resin composition
US3949038A (en) Blown thermoplastic bottle and method for making same
TW201114583A (en) Polystyrene preform design for blow molding of articles
BR112012008194B1 (en) Expansion blow molded thin wall container and compression blow molded thin wall container
JP2002020564A (en) Oriented sheet of styrenic resin composition
JP3810322B2 (en) Rubber-modified styrenic resin composition and injection blow molded product thereof
JPH02302440A (en) Hollow polyamide molded product
EP2221340A1 (en) Blow molded containers made of vinyl aromatic polymer
JP7280030B2 (en) Composition, foamed sheet and molded article
JP3601162B2 (en) Method for producing foam sheet
JP3219485B2 (en) Styrene resin biaxially stretched sheet
JPS6155535B2 (en)
JP4388619B2 (en) Injection blow molding container
JPS60204445A (en) Biaxial oriented vessel having excellent heat resistance andpressure resistance
US20100129578A1 (en) controlled gloss blends of monovinylidene aromatic and ethylene polymers
JP2003206387A (en) Rubber-modified styrenic resin composition and its injection blow molded item
JP2023000874A (en) container
JP2005264121A (en) Polystyrene resin foam particle, its production method, and foamed and molded product
JP2002053720A (en) Thermoplastic resin composition
JPH0618960B2 (en) Styrene resin composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

EXPY Cancellation because of completion of term