JP3545025B2 - Fin type adsorbent heat exchanger - Google Patents

Fin type adsorbent heat exchanger Download PDF

Info

Publication number
JP3545025B2
JP3545025B2 JP32311993A JP32311993A JP3545025B2 JP 3545025 B2 JP3545025 B2 JP 3545025B2 JP 32311993 A JP32311993 A JP 32311993A JP 32311993 A JP32311993 A JP 32311993A JP 3545025 B2 JP3545025 B2 JP 3545025B2
Authority
JP
Japan
Prior art keywords
adsorbent
heat exchanger
fin
wire mesh
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32311993A
Other languages
Japanese (ja)
Other versions
JPH07151418A (en
Inventor
勝 真田
允 山本
誠 藤井
富士夫 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP32311993A priority Critical patent/JP3545025B2/en
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to US08/647,992 priority patent/US5732569A/en
Priority to PCT/JP1994/001993 priority patent/WO1995014898A1/en
Priority to EP95901599A priority patent/EP0731324B1/en
Priority to DE69432431T priority patent/DE69432431T2/en
Priority to KR1019960702786A priority patent/KR100241795B1/en
Publication of JPH07151418A publication Critical patent/JPH07151418A/en
Priority to NO962141A priority patent/NO305726B1/en
Priority to US08/876,810 priority patent/US6041617A/en
Application granted granted Critical
Publication of JP3545025B2 publication Critical patent/JP3545025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【産業上の利用分野】
本発明は吸着式冷凍機に使用するフィン形吸着剤熱交換器に関する。
【0002】
【従来の技術】
従来より吸着式冷凍機は、シリカゲル、活性炭、ゼオライト等の固体吸着剤をを例えば、水、アルコール等の冷媒が蒸発、凝縮する真空条件下で加熱したり冷却したりすることによって吸脱着作用を起こさせ、そのときの作用で冷凍効果を引出している。
この吸着剤の加熱/冷却は、伝熱面を介して熱媒体により冷却、加熱させて熱交換を行なっているが、一般の流体同志の熱交換と異なって、固体(多くの場合球状)と伝熱面との点接触と固体同志の接触により伝熱がおこなわれるため伝熱効率を向上させるのが中々困難であり、このため多くの伝熱面が必要とされている。
一方伝熱面に囲まれた間に吸着剤を充填すると、吸着剤に吸脱着される冷媒蒸気が、伝熱両面に存在している吸着剤の間隙を通過しなくてはならないので、通過抵抗が生じ、性能が発揮されにくい。
【0003】
この為前記伝熱面には、例えば特開昭62ー91763号に示すように、熱媒体が流通する伝熱管の周囲に、フィン高さが特定されるアルミ等で出来た円形フィンを所定ピッチ間で積層配置し、該フィンピッチ間に吸着剤を充填すると共に、伝熱管一本毎に吸着剤の脱落防止を図る極細ワイアーメッシュで編んだ金網でフィン外側を巻き伝熱管全長を覆った構造になっている。
【0004】
しかしながら前記構成では、能力に応じて、吸着剤の必要量を確保するため、管本数が多くなる事、また伝熱管を固定する両端の管板の伝熱管配列が吸脱着時の冷媒蒸気通路も含めて決定されるので、伝熱管全体をまとめる熱交換器が大きくなってしまう欠点がある。
而もこのような形式の吸着剤熱交換器は伝熱管一本毎の製作のため、コストアップになってしまう。
【0005】
かかる欠点を解消するために、図2に示すごとく水平方向に延設する複数の伝熱管40を上下に列状に配置し、これをプレート状の多数枚のアルミフィン41を所定空隙介して嵌装させるとともに、該フィン間隔に粒状吸着剤42を充填し、吸着剤の脱落防止のためにフィン表面に極細ワイヤーメッシュ(粒径により異なるが例えば40メッシュ程度)の薄い金網43をかぶせ、吸着剤42がフィン面や間隔より外部に脱落したり、移動したりしないようにしている。
【0006】
そして前記技術においては吸着剤の脱落防止のため、極細ワイアーメッシュで編んだ金網でフィンを外側から巻き熱交換器を覆って対処しているが、金網は薄い布のようなもので自らフィンに密着することができないので、外側からさらに目が荒いエキスパンドメタル等を使い金網の密着度を上げるべく押える方法が必要とされる。
【0007】
【発明が解決しようとする課題】
しかしながらエキスパンドメタル等でも前記充填剤の全面に均等に薄い金網の密着度を上げるのは中々困難であり、ところどころ歪みが生じないよう緊締する等の後対策をおこなっているが手間を省くのが難しかった。
而もエキスパンドメタルのような比較的丈夫な補強剤を使って上から金網を押えるようにすると重量増加が生じ、無効熱容量が増加し、吸着剤の再生、冷却時に必要熱量が増加し、成績係数が悪くなる欠点があった。
【0008】
又前記図2の従来技術において、能力の大きい吸着剤熱交換器が要求されると、一枚毎の吸着剤熱交換器を大きくし、かつ多重に重ねて組み立てる訳であるが、一枚毎でも大きくすると自重量による撓みが生じ吸着剤がフィン部から脱落したり移動したりして吸着剤の働きが大幅に低下しやすくなる。
更に、前記熱交換器が全体として組み立てられた場合でも、組立中の持ち上げ、移動時には部分的な撓みが生じ、これが金網とフィン表面の間に空隙をつくり、粒の小さい吸着剤は下方に落ちてしまうと云う欠点があった。
【0009】
而も前記図2に示す従来技術は、フィンの周囲を薄い金網をかぶせた後、エキスパンドメタルで覆うという構成を取るために、製作に時間がかかり、製作価格及び性能面より大型になっても、スケールメリットが発揮できず、その結果コストを下げ、性能も大きく向上させることが難しかった。
【0010】
本発明はかかる従来技術の欠点に鑑み、容易に且つ低コストで製作可能にしてスケールメリットも容易に発揮し得るフィン形吸着剤熱交換器を提供する事を目的とする。
本発明の他の目的は、吸着剤がフィン部から脱落したり移動したりして吸着剤の働きが大幅に低下する事なく、吸着剤の再生及び冷却効率が前記従来技術に比較して大幅に上昇し、成績係数の向上を図る事の出来るフィン形吸着剤熱交換器を提供する事を目的とする。
【0011】
【課題を解決するための手段】
本発明はかかる技術的課題を達成するために、図1に示すように、列状に配してなる複数の伝熱管4に一体的に、多数枚のプレート状フィン2を所定空隙介して嵌装させ、該フィン間隔に粒状吸着剤3を充填すると共に、該プレートフィン部2Aの上下両面に吸着剤脱落防止用金網5a、5bを挟持してなる複数の熱交換ユニット10を上下に積層配置すると共に、該ユニット10間に、前記金網5a、5bのほぼ全域に亙り弾性力を付勢可能な、良熱伝導性にして且つ流体が通過可能な弾性体6を介装させ、該弾性体を介して前記ユニット10同士を保持させた事を特徴とする。
そして好ましくは、前記最下層に位置する熱交換ユニット吸着剤脱落防止用金網5aの底面若しくは最上層に位置する熱交換ユニット吸着剤脱落防止用金網5bの上面に、目の細かいエキスパンドメタルまたはパンチングメタル7を配設するのが良い。
又前記弾性体6は、バネ線材からなる波板状の目の粗い格子体を用いるのが良い。
【0012】
【作用】
かかる技術手段によれば、熱交換ユニット10を重ねるごとに、ピッチ間隔、吸着材の移動、脱落防止をはかりながら組み立てることによって、簡単に、早く全体が組み立られることになる。
又積層された熱交換ユニット10間にバネ反力を保った弾性体6を挟み込み、金網5a、5bを介してこの上下のユニット10のフィン部に当る波板ピッチ間隔が略3cm程度のピッチをもつようにすることによって、全体の吸着熱交換器が完成した段階では充填された吸着材が移動したりこぼれたりしないように金網5a、5bがフィン2上面に密着させる事が出来る。
更に弾性体6が上下一対の吸着材熱交換ユニットに対して、一つで済むこととともに、而も該弾性体をバネ線材で作ることによって、蒸気の吸脱着時の抵抗も小さく、さらに比熱の小さく弾性体6としての熱容量も小さくできる。
又ユニット10間に介装される弾性体6は見かけ比熱が小さい、重量も軽いものが使用できることから、再生、冷却時の無効熱量を減らせるので吸着式冷凍機の成績係数の向上も果すことができる。
従ってかかる技術手段によれば、全体が組上がった時、各熱交換ユニット10のいずれも吸着剤3の移動やフィン部2Aからの脱落がなく、かつ従来はフィン部2A毎に押え板が設けられていたのが、ユニット10間に一の弾性体6を介装するのみで足りる為に重量軽減と熱容量の低下が図られることになる。
【0013】
【実施例】
図1及び図3に基づいて、本願発明の実施例に係る吸着材熱交換器を製作手順に沿って説明する。
尚、本熱交換器は製作手順として熱交換ユニット10の水平積層方式を採用しているが、使用時には熱交換ユニット10が横置き若しく縦置きいずれに使用するのも任意である。又冷却管サイズ、プレート状フィンのの大きさ/形状、更には充填吸着材の種類については任意に選択する事が出来、後記する実施例は単にその一例を示したものに過ぎない。
先ず列状に配してなる複数の伝熱管4に一体的に、多数枚のプレート状フィン2を所定空隙介して嵌装させてほぼ偏平方形体に状に形成したフィン熱交換器を複数個用意する。
【0014】
次に方形のパンチングメタル7を水平な台(不図示)上に置き、その上に吸着剤3が脱落しない程度の網目の有する40メッシュの金網5aを重ねる。尚、金網5a、5bのメッシュは充填する吸着剤3の粒径できまる。又パンチングメタル7は吸着剤3を充填したときの40メッシュ金網5aの下方に膨らむのを押えるのが目的で配設する。
そして前記金網5aの上に前記フィン熱交換器を配設した後、フィン熱交換器の外枠11周囲、金網5a及びパンチングメタル7をスポット溶接等で一体的に固定する。
【0015】
その後吸着剤3をフィン部20にながし、フィン2上部よりはみでない程度に充分に充填させる。この際バイブレター等で振動させながら充填させると隅々迄簡単に充填可能で好ましい。
前記充填終了後、40メッシュ金網5bを利用して前記ユニット10のフィン部上面を封止し、該金網5bとユニット外枠11とをスポット溶接などで固定させ、一段目ユニット10Aが完成する。
【0016】
尚、最上位に位置するユニット10も前記一段目ユニット10Aと同様にして製作される訳であるが、後記する積層配置時はパンチングメタル7が金網5bの上面側に位置するように配置する。
又最上位と最下位を除く中間部位に位置する熱交換ユニット10Bは前記パンチングメタル7のみを設けずに、吸着剤3を充填したフィン熱交換器が一対の金網5a、5bの間に挟まれるようにスポット溶接して形成する。
前記の様にして各熱交換ユニット10を製作後、一段目熱交換ユニット10Aの外枠11の四偶に枠固定用ボルト8を通した後、該四本のボルト8夫々に管座9を環装させる。
【0017】
前記管座9はユニット10間隔調整座金として機能し、これによりユニット10間の夫々の間隙寸法Lが一定になるように設定する。この間隔寸法Lは吸脱着の蒸気通路が塞がれないような最小の寸法、例えば10mm前後に設定する。
次に二段目の熱交換ユニット10Bを重ねる前に、一段目の熱交換ユニット10Aの金網5bの上面に、前記間隔寸法Lより自由寸法L1が高く、かつ前記間隔寸法Lで押圧された時にはバネ力が働くように設定した波板状の弾性体6を重ねる。
この弾性体6は良熱伝導性のバネ線材をを用いて目の粗い波板状に形成し、熱容量を小さく取るとともに、その頂部が縦横にフィン部2Aの全域に当たるような目の大きい波板状格子体にするのがよい。
【0018】
そして前記弾性体6の上より枠固定ボルト8に二段目の熱交換ユニット10を嵌挿して積層配設する。この段階で弾性体6の自由寸法L1高さ(寸法、材質により規定されるが略15mm〜20mm)よりも、管座9によって規定される上下の熱交換ユニット10熱交換器の間隔寸法Lが約10mmと小さく設定しているため、弾性体6が充分沈むと同時にその張力が金網5a、5bを対応する夫々のユニット10のフィン部2Aに弾性力を付勢して押圧するように働く。
【0019】
この際弾性体6の波板ピッチ間隔Pが広過ぎるとその間で、完成時に金網5a、5bが弛んで、吸着剤3がフィン部2Aを移動したり、フィン部2Aでないところにこぼれ出したりするので、約30mm程度の波板ピッチが適当である。また弾性体6の線材が太かったり目が詰っていると蒸気通路の抵抗、更には弾性体6の見かけ比熱の増大にもつながるので、自由寸法高さを小さくして弾性体6を製造するためのバネ線材径を大きくする事にも限界がある。
【0020】
以下前記と同様に、二段目、三段目の熱交換ユニット10を弾性体6を介して積層配置する。尚最上位のユニット10上面は金網5bの上にパンチングメタル7を固定しておき、底面側の金網5aには弾性体6が介装する事は前記した通りである。
そしてすべての熱交換ユニット10を積層配置した後、押えボルト8にナット81をきっちり締め込み固定する。
【0021】
尚、特に段数が大きく、重量が大きくなる場合は、ボルト8で熱交換ユニット10熱交換器の外枠11を固定しただけでは強度不足になることがある為、この場合は更に軽量鋼で補強してもよい。
図には示していないが伝熱管4のヘッダーへの接続、システムとして作動させるための冷却水、熱媒の切り換え方法は、従来と変らない。
【0022】
【発明の効果】
以上記載のごとく本発明によれば、
本発明はかかる従来技術の欠点に鑑み、容易に且つ低コストで製作可能にしてスケールメリットも容易に発揮し得るフィン形吸着剤熱交換器を得る事が出来るとともに、吸着剤がフィン部から脱落したり移動したりして吸着剤の働きが大幅に低下する事なく、吸着剤の再生及び冷却効率が前記従来技術に比較して大幅に上昇し、成績係数の向上を図る事の出来る。
従って本発明によれば、価格の安い従来のプレート熱交換ユニットを使った、高性能吸着熱交換器の製造方法が確立できる。
そしてこのようにして製作された軽量化された吸着剤熱交換器を使用することによって吸着式冷凍機を高性能化させることが可能である。
等の種々の著効を有す。
【図面の簡単な説明】
【図1】本発明の実施例に係る吸着剤熱交換器の要部構成を示す斜視図である。
【図2】従来技術に係る吸着剤熱交換器の要部構成を示す斜視図である。
【図3】図1のフィン部を示す拡大斜視図である。
【符号の説明】
10 熱交換ユニット
2 プレートフィン
2A フィン部
3 吸着剤
4 伝熱管
5a、5b メッシュ金網
6 弾性体
7 パンチングメタル(最下段補強用)
8 枠固定用ボルト
9 管座(熱交換ユニット間隔調整座金)
[0001]
[Industrial applications]
The present invention relates to a fin-type adsorbent heat exchanger used in an adsorption refrigerator.
[0002]
[Prior art]
Conventionally, adsorption refrigerators have an adsorption / desorption effect by heating or cooling a solid adsorbent such as silica gel, activated carbon, and zeolite under vacuum conditions in which a refrigerant such as water or alcohol evaporates and condenses. The refrigeration effect is brought out by the action at that time.
Heat exchange / heating of this adsorbent is performed by cooling and heating with a heat medium via a heat transfer surface to perform heat exchange. However, unlike heat exchange between general fluids, the adsorbent forms a solid (often spherical). Since the heat transfer is performed by the point contact with the heat transfer surface and the contact between the solids, it is difficult to improve the heat transfer efficiency. Therefore, many heat transfer surfaces are required.
On the other hand, if the adsorbent is filled while surrounded by the heat transfer surface, the refrigerant vapor adsorbed and desorbed by the adsorbent must pass through the gap between the adsorbents present on both sides of the heat transfer, so that the passage resistance is reduced. Occurs, and performance is hardly exhibited.
[0003]
Therefore, on the heat transfer surface, for example, as shown in Japanese Patent Application Laid-Open No. 62-91763, circular fins made of aluminum or the like whose fin height is specified are provided at a predetermined pitch around a heat transfer tube through which a heat medium flows. A structure in which an adsorbent is filled between the fin pitches, and the fin outer side is covered with a wire mesh knitted with an extra-fine wire mesh for preventing the adsorbent from falling off for each heat transfer tube, and covers the entire length of the heat transfer tube. It has become.
[0004]
However, in the above configuration, in order to secure the required amount of the adsorbent according to the capacity, the number of tubes is increased, and the heat transfer tube array of the tube plates at both ends for fixing the heat transfer tubes also has a refrigerant vapor passage at the time of adsorption and desorption. Since the heat transfer tube is determined to include the heat transfer tube, there is a disadvantage that the heat exchanger that collects the entire heat transfer tube becomes large.
However, since the adsorbent heat exchanger of this type is manufactured for each heat transfer tube, the cost increases.
[0005]
In order to solve such a drawback, a plurality of heat transfer tubes 40 extending in the horizontal direction are arranged vertically in a row as shown in FIG. 2, and a number of plate-like aluminum fins 41 are fitted through predetermined gaps. At the same time, the fin interval is filled with a particulate adsorbent 42, and a thin wire mesh 43 of a very fine wire mesh (for example, about 40 mesh, depending on the particle size, is covered) on the fin surface to prevent the adsorbent from falling off. 42 is prevented from falling out or moving outside the fin surface or the interval.
[0006]
And in the said technique, in order to prevent the adsorbent from falling off, the fins are wound from the outside with a wire mesh knitted with a very fine wire mesh to cover the heat exchanger. Since they cannot be in close contact with each other, a method is required in which expanded metal or the like having coarser eyes from the outside is used to increase the degree of closeness of the wire mesh.
[0007]
[Problems to be solved by the invention]
However, it is difficult to increase the degree of adhesion of a thin wire mesh evenly over the entire surface of the filler even with an expanded metal or the like, and after taking measures such as tightening to prevent distortion in some places, it is difficult to save time and effort. Was.
Using a relatively strong reinforcing agent such as expanded metal to hold down the wire mesh from above increases weight, increases the ineffective heat capacity, increases the amount of heat required during regeneration and cooling of the adsorbent, and increases the coefficient of performance. Had the disadvantage of becoming worse.
[0008]
In the prior art shown in FIG. 2, when a large capacity adsorbent heat exchanger is required, the size of the adsorbent heat exchanger for each sheet is increased, and the heat exchanger is assembled in multiple layers. However, if the size is increased, the adsorbent will bend due to its own weight, and the adsorbent will fall off or move from the fin portion, and the function of the adsorbent will be greatly reduced.
Furthermore, even when the heat exchanger is assembled as a whole, there is a partial deflection during lifting and moving during assembly, which creates a gap between the wire mesh and the fin surface, and the small sorbent drops down. There was a drawback that it would.
[0009]
However, the prior art shown in FIG. 2 takes a configuration in which a thin wire mesh is covered around the fins and then covered with expanded metal. However, economies of scale could not be exhibited, and as a result, it was difficult to reduce costs and greatly improve performance.
[0010]
An object of the present invention is to provide a fin-type adsorbent heat exchanger that can be easily and inexpensively manufactured and that can easily exhibit economies of scale in view of the drawbacks of the related art.
Another object of the present invention is to improve the efficiency of adsorbent regeneration and cooling compared to the prior art without the adsorbent dropping or moving from the fin portion and the function of the adsorbent being significantly reduced. It is an object of the present invention to provide a fin-type adsorbent heat exchanger capable of improving the coefficient of performance.
[0011]
[Means for Solving the Problems]
According to the present invention, as shown in FIG. 1, a large number of plate-like fins 2 are integrally fitted to a plurality of heat transfer tubes 4 arranged in a row via a predetermined gap, as shown in FIG. And a plurality of heat exchange units 10 having upper and lower surfaces of the plate fin portion 2A sandwiching adsorbent drop-prevention wire meshes 5a and 5b. At the same time, an elastic body 6 having good thermal conductivity and capable of passing fluid is interposed between the units 10 so as to apply an elastic force over substantially the entire area of the wire meshes 5a and 5b. Characterized in that the units 10 are held together via the.
Preferably, a fine expanded metal or a punched metal is provided on the bottom surface of the wire mesh 5a for preventing the adsorbent from falling off at the lowermost layer or on the upper surface of the wire mesh 5b for preventing the adsorbent from falling off at the uppermost layer. It is good to arrange 7.
It is preferable that the elastic body 6 is a corrugated lattice made of a spring wire.
[0012]
[Action]
According to such technical means, every time the heat exchanging units 10 are stacked, the entirety can be easily and quickly assembled by assembling the heat exchange units 10 while keeping the pitch interval, the movement of the adsorbent, and the prevention of falling off.
Further, the elastic body 6 holding the spring reaction force is sandwiched between the stacked heat exchange units 10, and the corrugated sheet pitch between the fins of the upper and lower units 10 is approximately 3 cm through the wire meshes 5a and 5b. When the entire adsorbent is completed, the wire nets 5a and 5b can be brought into close contact with the upper surface of the fin 2 so that the filled adsorbent does not move or spill when the entire adsorbent heat exchanger is completed.
Further, only one elastic body 6 is required for a pair of upper and lower adsorbent heat exchange units, and the elastic body is made of a spring wire, so that the resistance at the time of adsorption and desorption of steam is small, and the specific heat The heat capacity of the elastic body 6 can be small.
Further, since the elastic body 6 interposed between the units 10 can be used because it has a small apparent specific heat and a light weight, the amount of ineffective heat during regeneration and cooling can be reduced, thereby improving the coefficient of performance of the adsorption refrigerator. Can be.
Therefore, according to such a technical means, when the whole is assembled, none of the heat exchange units 10 moves the adsorbent 3 and does not fall off from the fin portions 2A, and conventionally, a holding plate is provided for each fin portion 2A. What is required is that only one elastic body 6 is interposed between the units 10, so that the weight is reduced and the heat capacity is reduced.
[0013]
【Example】
An adsorbent heat exchanger according to an embodiment of the present invention will be described with reference to FIGS. 1 and 3 along a manufacturing procedure.
Although the heat exchanger adopts a horizontal stacking method of the heat exchange units 10 as a manufacturing procedure, it is optional to use the heat exchange units 10 horizontally or vertically in use. The size of the cooling tube, the size / shape of the plate-like fins, and the type of the adsorbent can be arbitrarily selected, and the following embodiments are merely examples.
First, a plurality of fin heat exchangers are formed into a substantially square shape by fitting a large number of plate-like fins 2 through a predetermined gap integrally with a plurality of heat transfer tubes 4 arranged in a row. prepare.
[0014]
Next, the rectangular punching metal 7 is placed on a horizontal table (not shown), and a 40-mesh wire mesh 5a having a mesh size enough to prevent the adsorbent 3 from falling off is placed thereon. The mesh of the wire meshes 5a and 5b is determined by the particle size of the adsorbent 3 to be filled. The punching metal 7 is provided for the purpose of suppressing the swelling below the 40 mesh wire mesh 5a when the adsorbent 3 is filled.
After disposing the fin heat exchanger on the wire mesh 5a, the periphery of the outer frame 11 of the fin heat exchanger, the wire mesh 5a and the punching metal 7 are integrally fixed by spot welding or the like.
[0015]
Thereafter, the adsorbent 3 flows into the fin portion 20 and is sufficiently filled so that it does not protrude from the upper portion of the fin 2. At this time, it is preferable that the filling be performed while vibrating with a vibrator or the like, since the filling can be easily performed to every corner.
After completion of the filling, the upper surface of the fin portion of the unit 10 is sealed using the 40 mesh wire mesh 5b, and the wire mesh 5b and the unit outer frame 11 are fixed by spot welding or the like, thereby completing the first-stage unit 10A.
[0016]
The uppermost unit 10 is manufactured in the same manner as the first-stage unit 10A. However, at the time of lamination described later, the punching metal 7 is arranged so as to be located on the upper surface side of the wire mesh 5b.
In the heat exchange unit 10B located at an intermediate portion except for the uppermost position and the lowermost position, the fin heat exchanger filled with the adsorbent 3 is sandwiched between the pair of wire nets 5a and 5b without providing only the punching metal 7. Formed by spot welding.
After each heat exchange unit 10 is manufactured as described above, the frame fixing bolts 8 are passed through the four evens of the outer frame 11 of the first-stage heat exchange unit 10A, and the pipe seat 9 is inserted into each of the four bolts 8. Attach it.
[0017]
The pipe seat 9 functions as a washer for adjusting the interval between the units 10 so that the gap L between the units 10 is set to be constant. The distance L is set to a minimum value such that the vapor passage for adsorption and desorption is not blocked, for example, about 10 mm.
Next, before stacking the second-stage heat exchange unit 10B, when the free dimension L1 is higher than the interval dimension L and pressed on the upper surface of the wire mesh 5b of the first-stage heat exchange unit 10A at the interval dimension L, The corrugated elastic body 6 set so as to exert a spring force is overlaid.
The elastic body 6 is formed in a coarse corrugated sheet shape using a spring wire having good heat conductivity, and has a small heat capacity, and has a large corrugated sheet such that its top and bottom cover the entire area of the fin portion 2A. It is preferable to form a lattice.
[0018]
Then, the second-stage heat exchange unit 10 is inserted into the frame fixing bolt 8 from above the elastic body 6 and stacked and arranged. At this stage, the interval dimension L between the upper and lower heat exchange units 10 and the heat exchanger defined by the pipe seat 9 is larger than the free dimension L1 of the elastic body 6 (defined by the size and material, but approximately 15 mm to 20 mm). Since the elastic body 6 is set to a small value of about 10 mm, the elastic body 6 sufficiently sinks, and at the same time, the tension acts on the metal nets 5a and 5b by urging the corresponding fin portions 2A of the respective units 10 with elastic force.
[0019]
At this time, if the corrugated plate pitch interval P of the elastic body 6 is too wide, the wire nets 5a and 5b are loosened at the time of completion, and the adsorbent 3 moves on the fin portion 2A or spills out of the fin portion 2A. Therefore, a corrugated plate pitch of about 30 mm is appropriate. In addition, if the wire of the elastic body 6 is thick or clogged, the resistance of the steam passage and the apparent specific heat of the elastic body 6 increase, so that the elastic body 6 is manufactured with a reduced free dimension height. There is a limit in increasing the diameter of the spring wire.
[0020]
Hereinafter, similarly to the above, the second-stage and third-stage heat exchange units 10 are stacked and arranged via the elastic body 6. The punched metal 7 is fixed on the wire mesh 5b on the upper surface of the uppermost unit 10, and the elastic body 6 is interposed on the wire mesh 5a on the bottom face as described above.
Then, after all the heat exchange units 10 are stacked and arranged, the nut 81 is tightly tightened to the holding bolt 8 to be fixed.
[0021]
In particular, when the number of stages is large and the weight is large, simply fixing the outer frame 11 of the heat exchanger 10 with the bolts 8 may result in insufficient strength. May be.
Although not shown in the figure, the connection of the heat transfer tube 4 to the header and the method of switching between the cooling water and the heat medium for operating as a system are the same as those in the related art.
[0022]
【The invention's effect】
According to the present invention as described above,
In view of the drawbacks of the prior art, the present invention makes it possible to obtain a fin-type adsorbent heat exchanger that can be manufactured easily and at low cost and can easily exhibit the merits of scale. The efficiency of adsorbent regeneration and cooling is greatly increased as compared with the above-mentioned prior art, and the coefficient of performance can be improved without drastically lowering and lowering the function of the adsorbent.
Therefore, according to the present invention, it is possible to establish a method of manufacturing a high-performance adsorption heat exchanger using a low-cost conventional plate heat exchange unit.
By using the lightened adsorbent heat exchanger manufactured in this way, it is possible to improve the performance of the adsorption refrigerator.
And so on.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a main configuration of an adsorbent heat exchanger according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a configuration of a main part of an adsorbent heat exchanger according to the related art.
FIG. 3 is an enlarged perspective view showing a fin portion of FIG. 1;
[Explanation of symbols]
Reference Signs List 10 heat exchange unit 2 plate fin 2A fin part 3 adsorbent 4 heat transfer tube 5a, 5b mesh wire mesh 6 elastic body 7 punching metal (for lowermost reinforcement)
8 Frame fixing bolt 9 Tube seat (Heat exchange unit spacing adjustment washer)

Claims (3)

列状に配してなる複数の伝熱管に一体的に、多数枚のプレート状フィンを所定空隙介して嵌装させ、該フィン間隔に粒状吸着剤を充填すると共に、該プレートフィンの上下両面に吸着剤脱落防止用金網を挟持してなる複数の熱交換ユニットを上下に積層配置すると共に、該ユニット間に、前記金網のほぼ全域に亙り弾性力を付勢可能な、良熱伝導性にして且つ流体が通過可能な弾性体を介装させ、該弾性体を介して前記ユニット同士を保持させた事を特徴とするフィン形吸着剤熱交換器A plurality of plate-like fins are fitted into a plurality of heat transfer tubes arranged in a row, with a predetermined gap therebetween, and the fin interval is filled with a particulate adsorbent. A plurality of heat exchange units sandwiching an adsorbent drop-prevention wire mesh are stacked one above the other, and a good heat conductivity between the units can be applied to the elastic force over substantially the entire area of the wire mesh. A fin-type adsorbent heat exchanger, wherein an elastic body through which a fluid can pass is interposed, and the units are held via the elastic body. 最下層に位置する熱交換ユニット吸着剤脱落防止用金網の底面若しくは最上層に位置する熱交換ユニット吸着剤脱落防止用金網の上面に、エキスパンドメタルまたはパンチングメタルを配設した事を特徴とする請求項1記載のフィン形吸着剤熱交換器An expanded metal or a punching metal is disposed on the bottom surface of the wire mesh for preventing the adsorbent from falling off at the lowermost layer or on the upper surface of the wire mesh for preventing the adsorbent from falling off at the uppermost layer. Item 6. A fin type adsorbent heat exchanger according to item 1. 前記弾性体が、バネ線材からなる波板状の目の粗い格子体である請求項1記載のフィン形吸着剤熱交換器2. The fin type adsorbent heat exchanger according to claim 1, wherein the elastic body is a corrugated open lattice body made of a spring wire.
JP32311993A 1993-11-29 1993-11-29 Fin type adsorbent heat exchanger Expired - Fee Related JP3545025B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP32311993A JP3545025B2 (en) 1993-11-29 1993-11-29 Fin type adsorbent heat exchanger
PCT/JP1994/001993 WO1995014898A1 (en) 1993-11-29 1994-11-28 Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same
EP95901599A EP0731324B1 (en) 1993-11-29 1994-11-28 Adsorption type cooling apparatus and method of controlling cooling effect of the same
DE69432431T DE69432431T2 (en) 1993-11-29 1994-11-28 Adsorption refrigeration device and method for regulating the refrigeration capacity of the same.
US08/647,992 US5732569A (en) 1993-11-29 1994-11-28 Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in the same
KR1019960702786A KR100241795B1 (en) 1993-11-29 1994-11-28 Adsorption Chiller and Cooling Power Control Method
NO962141A NO305726B1 (en) 1993-11-29 1996-05-24 Process for controlling the performance of an adsorption type radiator and radiator for carrying out the method
US08/876,810 US6041617A (en) 1993-11-29 1997-06-17 Adsorption type cooling apparatus, method of controlling cold output of same, and fin type adsorbent heat exchanger for use in same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32311993A JP3545025B2 (en) 1993-11-29 1993-11-29 Fin type adsorbent heat exchanger

Publications (2)

Publication Number Publication Date
JPH07151418A JPH07151418A (en) 1995-06-16
JP3545025B2 true JP3545025B2 (en) 2004-07-21

Family

ID=18151300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32311993A Expired - Fee Related JP3545025B2 (en) 1993-11-29 1993-11-29 Fin type adsorbent heat exchanger

Country Status (1)

Country Link
JP (1) JP3545025B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012113B4 (en) * 2007-03-13 2009-04-16 Sortech Ag Compact sorption refrigeration device
CN103052853B (en) 2010-08-05 2016-03-30 富士通株式会社 Adsorption type heat pump
JP5944620B2 (en) * 2011-02-21 2016-07-05 株式会社豊田中央研究所 Chemical heat storage heat transport device and heat exchange reactor
JP5917811B2 (en) * 2011-02-21 2016-05-18 株式会社豊田中央研究所 Heat transport device and heat exchange reactor
JP6187414B2 (en) * 2014-08-19 2017-08-30 株式会社豊田自動織機 Chemical heat storage device

Also Published As

Publication number Publication date
JPH07151418A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
JP4220762B2 (en) Solid filling tank
KR100241795B1 (en) Adsorption Chiller and Cooling Power Control Method
US5054544A (en) Sorption container for solid sorption medium
CN100402936C (en) Dehumidifying unit and adsorbing element used for the dehumidifying unit
US11167238B2 (en) Thermally conductive structure for multi-direction flow through packed bed
US20100024448A1 (en) Heat exchanger
US20090217691A1 (en) Adsorption Heat Pump, Adsorption Refrigerator and Adsorber Elements Therefor
EP0250061B1 (en) Packing elements for evaporative coolers and a method of supporting packing elements in cooling towers
JP3545025B2 (en) Fin type adsorbent heat exchanger
US4353415A (en) Heat pipes and thermal siphons
DE112004000878T5 (en) Adsorption generator for use in sorption pump processes
WO2019187893A1 (en) Humidity control element and method for using same
JP2550768B2 (en) Adsorption heat exchanger
JP3322316B2 (en) Adsorption type reactor module
JP2004317011A (en) Adsorber of adsorption refrigerator
CN2711644Y (en) High-efficient compact pipe-fin type adsorption bed
JPH07163868A (en) Filling element, pack, method for constructing pack and method for mounting filler to vaporization cooling apparatus
JP2007010175A (en) Adsorber for adsorption type refrigerating machine
JP4272450B2 (en) Adsorption type refrigerator and manufacturing method thereof
JP3831962B2 (en) Adsorber and manufacturing method thereof
JP2002081883A (en) Plate heat exchanger and absorption refrigerating machine comprising it
KR101929915B1 (en) Adsorption heat exchanger
JP4379881B2 (en) Plate fin type adsorber and manufacturing method thereof
JPH10122699A (en) Adsorption core of adsorption refrigerating apparatus
JP2962866B2 (en) Absorber

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees