JP3544999B2 - Silencer - Google Patents

Silencer Download PDF

Info

Publication number
JP3544999B2
JP3544999B2 JP28604992A JP28604992A JP3544999B2 JP 3544999 B2 JP3544999 B2 JP 3544999B2 JP 28604992 A JP28604992 A JP 28604992A JP 28604992 A JP28604992 A JP 28604992A JP 3544999 B2 JP3544999 B2 JP 3544999B2
Authority
JP
Japan
Prior art keywords
noise
signal
filter
microphone
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28604992A
Other languages
Japanese (ja)
Other versions
JPH06138883A (en
Inventor
誠 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28604992A priority Critical patent/JP3544999B2/en
Publication of JPH06138883A publication Critical patent/JPH06138883A/en
Application granted granted Critical
Publication of JP3544999B2 publication Critical patent/JP3544999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Duct Arrangements (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

【0001】
【産業上の利用分野】
本発明は空気調和機等のダクトを伝って室内に入り込む騒音をこれと逆相の付加音で打ち消す消音装置に関する。
【0002】
【従来の技術】
一般に騒音の低減方法の一つとして、吸音材や防振材を用いて騒音を制御する受動型騒音制御法がある。この方法は駆動源やその周辺または騒音伝播経路に吸音材や防振材を設置して騒音を制御するもので、制御する周波数によって材料の質、大きさ及び形を変える必要があり、特に低周波騒音の制御を行うにはシステムが大きくなるという欠点があった。
【0003】
一方近年、騒音の制御法としてデジタル信号処理を用いた能動型騒音制御システムが提案され、一部商品化も行われている。図5はこの騒音制御システムの一例を示す構成図であり、101は騒音源(例えば換気扇)、102は騒音検出用マイクロフォン、103は消音用スピーカ、104はエラー検出用マイクロフォン、105は前記騒音検出用マイクロフォン102による検出信号からこの騒音を打ち消す逆相の付加音を作る可変係数FIR(Fast Impulse Response)フィルタ、106は前記フィルタ105の係数を算出する可変係数演算部である。
【0004】
係る従来の制御法に於て騒音源101が発生する騒音信号を騒音検出用マイクロフォン102で検出し、この信号を基に検出用マイクロフォン104が設置されている制御点位置において当該騒音と同振幅且つ逆位相の信号を作り出す際、前記騒音信号を可変係数フィルタ105でフィルタ処理し、処理後の信号によってスピーカ103を駆動し、このスピーカ103から消去音を付加的に発生させる。 この発生された消去音と騒音とが制御点で互いに干渉し合い、結果的に騒音が低減される。そしてこの干渉音をさらにエラー検出用マイクロフォン104で検出し、検出された信号をエラー信号としてこの信号が最小となるように前記可変係数演算部106で係数更新アルゴリズムによって新たなフィルタ係数を算出する。
【0005】
ここでの係数更新アルゴリズムは一般的にはFiltered−XLMS が多く用いられている。これはフィルタ係数を次の数3に基づいて時々刻々と更新していくものである。
【0006】
【数3】
【0007】
【発明が解決しようとする課題】
さて上記従来の構成において、広帯域に亙る周波数の騒音を制御しようとする場合、あるいは精度良く騒音を制御したい場合は、可変係数フィルタの次数を大きくしたり、あるいはある程度制御する騒音の周波数領域を制限する必要が生じるという欠点があった。
【0008】
また信号処理部を低域部と高域部とに帯域分割し処理を行う場合、適応処理部が複数個必要になり、これにともなって処理量が増大して、ハードウェアの規模が大きくなるという問題点があった。
【0009】
本発明は、係る従来技術の問題点に鑑みなされたものであり、少ない演算処理量で広帯域の騒音を精度良く制御することのできる消音装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明は、騒音検出用マイクロフォンと、エラー検出用マイクロフォンと、該エラー検出用マイクロフォンによる検出信号に該検出信号と前記騒音検出用マイクロフォンによる検出信号とのコヒーレンスを基に算出された重み係数をかけてエラー検出用マイクロフォンによる検出信号を調整する重み付けフィルタと、前記騒音検出用マイクロフォンによる検出信号を基にして騒音を打ち消す信号を作る可変係数フィルタと、前記騒音検出用マイクロフォンによる検出信号と前記重み付けフィルタからの出力とにより前記可変係数フィルタの係数を算出する可変係数演算部と、前記可変係数フィルタからの出力信号に基づき騒音を打ち消す音を出すスピーカと、から成り、前記重み付けフィルタは、前記スピーカ停止時における測定結果から予め求められた下記数5を満足する制御効果R(ω)と同じ特性を有するフィルタで構成されている。
【数4】
【数5】
【0011】
【作用】
一般的に騒音の能動制御における効果は、騒音信号と制御点における騒音信号とのコヒーレンスと関係が深いことが知られている。ここで言うコヒーレンスとは、2つの信号に含まれる周波数成分の関連性の強さを示す量であり、上記数4より求められる。
【0013】
この数4を見ると騒音検出信号と制御点における騒音信号とのコヒーレンスが大きければ、両信号の周波数成分の関連性は強く、且つ騒音の制御効果が大きいといえる。したがってこのコヒーレンスを用いて理想的な制御効果を上記数5により導くことができる。
【0015】
上記本発明の構成はこの理論に基づいて制御効果を上げようとするもので、コヒーレンスをあらかじめ測定し、この測定結果から理想的な制御効果R(ω)を算出する。そして前記R(ω)と同じ特性を有するフィルタを設計し、このフィルタを制御点に設けたエラー検出用マイクロフォンの近傍に設けた重み付けフィルタとして重み付け処理を行うようにする。このようにしてコヒーレンスが小さく制御効果の少ない周波数帯域の信号には重みを少なくする等の操作を行い、重み付けにより、制御に不必要な信号を低減させて効率よく能動制御を行い、広帯域の騒音を精度良く制御することが可能となる。
【0016】
【実施例】
以下本発明消音装置をその一実施例に基づき図面を参照して詳細に説明する。
【0017】
図1は消音装置のシステム構成図を示し、1は空気調和機用ダクト、2は騒音発生源としてのファン、3はこのファン2の近傍に設けられて騒音21を検出する騒音検出用マイクロフォン、4はダクト1内の制御点の近傍に設けられて騒音を打ち消す付加音41を発するスピーカ、5は前記騒音21に付加音41が重畳されたのちの音を検出するエラー検出用マイクロフォン、6は前記騒音検出用マイクロフォンの検出信号をフィルタ操作して前記スピーカ4を駆動する駆動信号を作る可変係数フィルタ、7は前記エラー検出用マイクロフォン5によって得られた信号に重み付けを行う重み付けフィルタ、8は前記騒音検出用マイクロフォン3からの検出信号及び重み付けフィルタからの出力により前記可変係数フィルタ6の係数を調整する可変係数演算部である。
【0018】
斯かる構成において、ファン3の回転によって生じた騒音はダクト1を通ってダクト1の開口部11に伝播される。
【0019】
まず重み付けフィルタ7の係数を算出する。これはファン3の近傍の騒音検出用マイクロフォン3の検出信号と、ダクト1の開口部11近傍のエラー検出用マイクロフォン5の検出信号を用いて前記数4によりコヒーレンスを測定し、この測定結果を用いて前記数5により理想消音量を算出する。
【0020】
図2は本実施例で測定したコヒーレンスより算出した理想消音量の周波数による変化を示す図である。この図から本実施例においては、従来の方法によれば周波数の低域及び高域で理想消音量の値が小さく、消音による制御効果が薄いことがわかる。
【0021】
図3は前記図2で示された理想消音量のデータを用いて適当な窓関数によるデータ補正を行い、重み付け係数を設定した重み付けフィルタ7のインパルス応答を示す特性図である。
【0022】
以上のようにしてあらかじめ重み付けフィルタ7の重み係数を設定しておいてから実際の能動制御の動作を行った。すなわちファン2の発する騒音を騒音検出用マイクロフォン3により検出し、この検出信号を可変係数フィルタ6に入力して処理を行い、該フィルタ6からの制御信号によってスピーカ4を駆動する。
【0023】
一方エラー検出用マクロフォン5で検出されたエラー信号を前述のようにしてあらかじめ測定で得られたコヒーレンスから導いたフィルタ係数を有する重み付けフィルタ7で重み付けし、この重み付けられたエラー信号と前記騒音信号により可変係数演算部8でのエラー信号が最小になるように適応制御アルゴリズムの一つであるLMS(Least Mean Square )アルゴリズム等に基づいて可変係数フィルタ6の係数の更新を行う。
【0024】
以上のようにしてエラー検出用マイクロフォン5のあるポイントで騒音信号と同振幅で且つ逆位相の制御信号とが干渉し合い、結果的に騒音が低減される。図5は本実施例による消音の効果を説明するためのゲイン−周波数特性図であり、図中実線はまったく消音制御を行わない生の騒音、点線は上記実施例による消音制御を行った場合、破線は従来の方法で消音制御を行った場合を夫々示している。この図から明らかなように本実施例では周波数の低域から高域にかけてまんべんなく消音による良好な特性が得られていることが分かる。
【0025】
【発明の効果】
以上の説明のように本発明によれば、エラー信号にあらかじめ得られたコヒーレンスを基に算出した重み付けを行うことにより、制御効果の大きい周波数帯域の信号には重みを大きくし、コヒーレンスが小さく制御効果の少ない周波数帯域の信号には重みを小さくすることが可能となり、低音域から高音域までの広い範囲の騒音を効率よく消音制御することが可能になる効果が期待できる。
【図面の簡単な説明】
【図1】本発明消音装置の一実施例の構成を示す基本ブロック図である。
【図2】理想制御効果の周波数特性図である。
【図3】重み付けフィルタのインパルス応答を示す図である。
【図4】従来と本発明の消音装置の消音効果を比較する特性図である。
【図5】従来の消音装置の基本ブロック図である。
【符号の説明】
1 ダクト
2 ファン
3 騒音検出用マイクロフォン
4 消音用スピーカ
5 エラー検出用マイクロフォン
6 可変係数フィルタ
7 重み付けフィルタ
8 可変係数演算部
[0001]
[Industrial applications]
The present invention relates to a noise reduction device that cancels noise that enters a room through a duct such as an air conditioner with an additional sound having a phase opposite to that of the noise.
[0002]
[Prior art]
In general, as one of noise reduction methods, there is a passive noise control method in which noise is controlled using a sound absorbing material or a vibration isolating material. In this method, noise is controlled by installing a sound absorbing material or vibration damping material in the drive source, its surroundings, or the noise propagation path.It is necessary to change the quality, size and shape of the material depending on the frequency to be controlled. There is a disadvantage that the system becomes large to control the frequency noise.
[0003]
On the other hand, in recent years, an active noise control system using digital signal processing has been proposed as a noise control method, and some of them have been commercialized. FIG. 5 is a block diagram showing an example of this noise control system, wherein 101 is a noise source (for example, a ventilation fan), 102 is a noise detection microphone, 103 is a muffling speaker, 104 is an error detection microphone, and 105 is the noise detection A variable coefficient FIR (Fast Impulse Response) filter 106 for generating a reverse-phase additional sound for canceling this noise from a detection signal of the microphone for use 102, and a variable coefficient calculation unit 106 for calculating a coefficient of the filter 105.
[0004]
In such a conventional control method, a noise signal generated by the noise source 101 is detected by the noise detection microphone 102, and based on this signal, at the control point position where the detection microphone 104 is installed, the same amplitude and When generating a signal of the opposite phase, the noise signal is filtered by the variable coefficient filter 105, and the speaker 103 is driven by the processed signal, and the speaker 103 additionally generates an erasing sound. The generated cancellation sound and noise interfere with each other at the control point, and as a result, noise is reduced. The interference sound is further detected by the error detection microphone 104, and the detected signal is used as an error signal to calculate a new filter coefficient by the coefficient updating algorithm in the variable coefficient calculation unit 106 so that the signal is minimized.
[0005]
Generally, Filtered-XLMS is often used as the coefficient updating algorithm here. This is to update the filter coefficient every moment based on the following equation (3).
[0006]
[Equation 3]
[0007]
[Problems to be solved by the invention]
In the above-described conventional configuration, if it is desired to control the noise at a frequency over a wide band, or if it is desired to control the noise with high accuracy, the order of the variable coefficient filter is increased, or the frequency range of the noise to be controlled to some extent is limited. There is a disadvantage that it is necessary to perform
[0008]
In addition, when processing is performed by dividing the signal processing unit into a low-band part and a high-band part and performing processing, a plurality of adaptive processing units are required, and accordingly, the processing amount increases and the scale of hardware increases. There was a problem.
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the related art, and has as its object to provide a noise reduction device that can accurately control broadband noise with a small amount of arithmetic processing.
[0010]
[Means for Solving the Problems]
The present invention provides a noise detection microphone, an error detection microphone, and a detection signal from the error detection microphone multiplied by a weight coefficient calculated based on the coherence between the detection signal and the detection signal from the noise detection microphone. Weighting filter for adjusting a detection signal from the error detection microphone, a variable coefficient filter for generating a signal for canceling noise based on the detection signal from the noise detection microphone, a detection signal from the noise detection microphone, and the weighting filter a variable coefficient calculating unit for calculating the coefficients of the variable coefficient filter by the output from, the speaker issuing sound to cancel the noise on the basis of the output signal from the variable coefficient filter consists, wherein the weighting filter, the speaker stops From the measurement results at the time It is composed of a filter having the same characteristics as the control effect R (omega) which satisfies the following equation 5 obtained.
(Equation 4)
(Equation 5)
[0011]
[Action]
It is generally known that the effect in active noise control is closely related to the coherence between the noise signal and the noise signal at the control point. Here, the coherence is a quantity indicating the strength of the relevance of the frequency components included in the two signals, and is obtained from the above equation (4).
[0013]
According to Equation 4, if the coherence between the noise detection signal and the noise signal at the control point is large, it can be said that the relevance of the frequency components of both signals is strong and the noise control effect is large. Therefore, an ideal control effect can be derived from the above equation (5) using this coherence.
[0015]
The configuration of the present invention is intended to increase the control effect based on this theory. The coherence is measured in advance, and the ideal control effect R (ω) is calculated from the measurement result. Then, a filter having the same characteristic as that of R (ω) is designed, and the filter is weighted as a weighting filter provided near the error detection microphone provided at the control point. In this way, operations such as reducing the weight are performed on the signals in the frequency band where the coherence is small and the control effect is small, and by performing the weighting, the signals unnecessary for the control are reduced and the active control is efficiently performed, and the noise in the wide band is reduced. Can be accurately controlled.
[0016]
【Example】
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a silencer according to the present invention will be described in detail with reference to the drawings based on one embodiment.
[0017]
FIG. 1 shows a system configuration diagram of a silencer, wherein 1 is a duct for an air conditioner, 2 is a fan as a noise generating source, 3 is a noise detection microphone provided near the fan 2 to detect noise 21, Reference numeral 4 denotes a speaker which is provided near a control point in the duct 1 and emits an additional sound 41 for canceling noise. Reference numeral 5 denotes an error detection microphone which detects a sound after the additional sound 41 is superimposed on the noise 21. Reference numeral 6 denotes a microphone. A variable coefficient filter that generates a drive signal for driving the speaker 4 by performing a filter operation on the detection signal of the noise detection microphone, 7 is a weighting filter that weights a signal obtained by the error detection microphone 5, and 8 is a weighting filter. The coefficient of the variable coefficient filter 6 is adjusted based on the detection signal from the noise detection microphone 3 and the output from the weighting filter. It is a variation coefficient calculation unit.
[0018]
In such a configuration, noise generated by the rotation of the fan 3 is transmitted through the duct 1 to the opening 11 of the duct 1.
[0019]
First, the coefficients of the weighting filter 7 are calculated. The coherence is measured by using the detection signal of the noise detection microphone 3 near the fan 3 and the detection signal of the error detection microphone 5 near the opening 11 of the duct 1. Then, the ideal silencing volume is calculated by the above equation (5).
[0020]
FIG. 2 is a diagram showing a change in the ideal silencing volume calculated from the coherence measured in the present embodiment depending on the frequency. From this figure, it can be seen that in the present embodiment, according to the conventional method, the value of the ideal silencing volume is small in the low and high frequency ranges, and the control effect by silencing is weak.
[0021]
FIG. 3 is a characteristic diagram showing an impulse response of the weighting filter 7 in which data correction by an appropriate window function is performed using the ideal silencing data shown in FIG. 2 and a weighting coefficient is set.
[0022]
The actual active control operation was performed after setting the weighting coefficient of the weighting filter 7 in advance as described above. That is, the noise generated by the fan 2 is detected by the noise detection microphone 3, the detection signal is input to the variable coefficient filter 6 for processing, and the speaker 4 is driven by the control signal from the filter 6.
[0023]
On the other hand, the error signal detected by the error detecting macrophone 5 is weighted by the weighting filter 7 having a filter coefficient derived from the coherence obtained in advance by measurement as described above, and the weighted error signal and the noise signal Thus, the coefficient of the variable coefficient filter 6 is updated based on an LMS (Least Mean Square) algorithm or the like, which is one of adaptive control algorithms, so that the error signal in the variable coefficient calculation unit 8 is minimized.
[0024]
As described above, at a certain point of the error detection microphone 5, the noise signal and the control signal having the same amplitude and opposite phase interfere with each other, and as a result, noise is reduced. FIG. 5 is a gain-frequency characteristic diagram for explaining the effect of silencing according to the present embodiment. In the figure, a solid line indicates raw noise without performing silencing control at all, and a dotted line indicates a case where silencing control according to the above embodiment is performed. The broken lines indicate the cases where the silencing control is performed by the conventional method. As is clear from this figure, in the present embodiment, it is understood that good characteristics due to noise reduction are obtained uniformly from the low frequency band to the high frequency band.
[0025]
【The invention's effect】
As described above, according to the present invention, by weighting the error signal based on the coherence obtained in advance, the weight of the signal in the frequency band having a large control effect is increased, and the coherence is reduced. It is possible to reduce the weight of the signal in the frequency band where the effect is small, and it can be expected that the noise can be efficiently silenced in a wide range from the low frequency range to the high frequency range.
[Brief description of the drawings]
FIG. 1 is a basic block diagram illustrating a configuration of an embodiment of a muffler according to the present invention.
FIG. 2 is a frequency characteristic diagram of an ideal control effect.
FIG. 3 is a diagram illustrating an impulse response of a weighting filter.
FIG. 4 is a characteristic diagram for comparing the silencing effects of the conventional and the silencing devices of the present invention.
FIG. 5 is a basic block diagram of a conventional silencer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Duct 2 Fan 3 Noise detection microphone 4 Noise reduction speaker 5 Error detection microphone 6 Variable coefficient filter 7 Weighting filter 8 Variable coefficient calculation unit

Claims (1)

騒音検出用マイクロフォンと、エラー検出用マイクロフォンと、該エラー検出用マイクロフォンによる検出信号に該検出信号と前記騒音検出用マイクロフォンによる検出信号とのコヒーレンスを基に算出された重み係数をかけてエラー検出用マイクロフォンによる検出信号を調整する重み付けフィルタと、前記騒音検出用マイクロフォンによる検出信号を基にして騒音を打ち消す信号を作る可変係数フィルタと、前記騒音検出用マイクロフォンによる検出信号と前記重み付けフィルタからの出力とにより前記可変係数フィルタの係数を算出する可変係数演算部と、前記可変係数フィルタからの出力信号に基づき騒音を打ち消す音を出すスピーカと、から成り、
前記重み付けフィルタは、前記スピーカ停止時における測定結果から予め求められた下記関係式を満足する制御効果R(ω)と同じ特性を有するフィルタで構成されていることを特徴とする消音装置。
A noise detection microphone, an error detection microphone, and a signal detected by the error detection microphone multiplied by a weight coefficient calculated based on the coherence between the detection signal and the detection signal from the noise detection microphone. A weighting filter that adjusts a detection signal from the microphone, a variable coefficient filter that creates a signal that cancels noise based on the detection signal from the noise detection microphone, a detection signal from the noise detection microphone, and an output from the weighting filter. A variable coefficient calculation unit that calculates the coefficient of the variable coefficient filter, and a speaker that emits a sound that cancels noise based on an output signal from the variable coefficient filter,
The muffling device according to claim 1, wherein the weighting filter is a filter having the same characteristic as a control effect R (ω) satisfying the following relational expression obtained in advance from the measurement result when the speaker is stopped .
JP28604992A 1992-10-23 1992-10-23 Silencer Expired - Fee Related JP3544999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28604992A JP3544999B2 (en) 1992-10-23 1992-10-23 Silencer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28604992A JP3544999B2 (en) 1992-10-23 1992-10-23 Silencer

Publications (2)

Publication Number Publication Date
JPH06138883A JPH06138883A (en) 1994-05-20
JP3544999B2 true JP3544999B2 (en) 2004-07-21

Family

ID=17699309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28604992A Expired - Fee Related JP3544999B2 (en) 1992-10-23 1992-10-23 Silencer

Country Status (1)

Country Link
JP (1) JP3544999B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728837B2 (en) * 1996-12-12 2005-12-21 住友電気工業株式会社 Active noise control device
ES2814226T3 (en) 2009-11-02 2021-03-26 Mitsubishi Electric Corp Fan structure equipped with a noise control system
JP2011137560A (en) * 2009-12-25 2011-07-14 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JPH06138883A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
US5386472A (en) Active noise control system
EP0568129B1 (en) Noise attenuation system
US6330336B1 (en) Active silencer
US5809152A (en) Apparatus for reducing noise in a closed space having divergence detector
EP0568127A2 (en) Noise attenuation system
WO2015133094A1 (en) Signal processing device, program, and range hood device
JPH0561483A (en) Active type noise controller
EP3477630B1 (en) Active noise cancellation / engine order cancellation for vehicle exhaust system
WO1994024970A1 (en) Single and multiple channel block adaptive methods and apparatus for active sound and vibration control
JPH06202669A (en) Active sound eliminating device
EP0492680B1 (en) Method and apparatus for attenuating noise
JP3544999B2 (en) Silencer
JPH07248784A (en) Active noise controller
EP0470656A1 (en) Method and apparatus for attenuating engine noise
JP3355706B2 (en) Adaptive control device
JPH07210175A (en) Active noise controller
JPH06124092A (en) Noise eliminating device for air conditioner
JP3316259B2 (en) Active silencer
JP3674963B2 (en) Active noise control device and active vibration control device
JPH0635482A (en) Method and device for active noise elimination
JPH08179782A (en) Active silencer
JPH0336897A (en) Electronic silencing system
JPH06318083A (en) Active muffler device
JP2791510B2 (en) Active silencer
JP2747100B2 (en) Active silencer

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

LAPS Cancellation because of no payment of annual fees