JP3544307B2 - Electronic circuit device - Google Patents

Electronic circuit device Download PDF

Info

Publication number
JP3544307B2
JP3544307B2 JP28422198A JP28422198A JP3544307B2 JP 3544307 B2 JP3544307 B2 JP 3544307B2 JP 28422198 A JP28422198 A JP 28422198A JP 28422198 A JP28422198 A JP 28422198A JP 3544307 B2 JP3544307 B2 JP 3544307B2
Authority
JP
Japan
Prior art keywords
temperature
electronic circuit
component
circuit device
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28422198A
Other languages
Japanese (ja)
Other versions
JP2000116118A (en
Inventor
雅久 樫本
剛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP28422198A priority Critical patent/JP3544307B2/en
Publication of JP2000116118A publication Critical patent/JP2000116118A/en
Application granted granted Critical
Publication of JP3544307B2 publication Critical patent/JP3544307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Combinations Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大発熱部品が実装される電子回路装置に関する。
【0002】
【従来の技術】
電気自動車などには、商用交流電源などからバッテリを充電するためにトランスを有する電圧変換型の電力変換装置が用いられる。
この電圧変換型の電力変換装置は、交流電圧を電圧変換するトランス、このトランスで電圧変換された交流電圧を整流する一個ないし複数個の半導体整流器、および、半導体整流器で整流された直流電圧からリップル成分を除去する平滑コイルおよび平滑コンデンサを備えている。
【0003】
【発明が解決しようとする課題】
しかしながら、電気自動車ではバッテリにその重量およびスペースを割かざるを得ないために、このトランス内蔵型の電力変換装置に許される重量、スペースを極力圧縮する必要がある。
トランス内蔵型の電力変換装置の重量、スペースの削減には、重量、スペースが他の部品より格段に大きく、かつ、実質的に電気絶縁用の樹脂の許容温度まで使用可能なトランスの小型化が最も有効である。特に、主バッテリと補機バッテリとの間での送電を行うためのDC−DCコンバータに用いられる電力変換装置の1回あたりの使用時間は数分程度と短いので、多少は送電効率が低下したとしても問題はないので、トランスを小型化することにより電力変換装置の必要な小型軽量化を実現することが可能となる。
【0004】
ところが、このようなトランスの小型化によるその発熱の増大は、このトランスの二次コイルに接続される整流用の半導体整流器の大幅な温度上昇を招くという問題を派生させてしまう。すなわち、この整流用の半導体整流器は、電力変換装置の体積縮小と、トランスの二次コイルと整流用の半導体整流器との間の配線の抵抗による電力損失低減のためにトランスの二次コイルに接近して配置せざるを得ず、その結果、自己の発熱の他に高温のトランスから上記配線を通じて、更にトランスの外表面からの放射および対流による熱伝達により予想以上に高温化してしまう。また、このトランスの外表面から半導体整流器への熱伝達を低減するには、両者を離すことが有効であるが、この場合、電力変換装置の体格が増大するという問題が生じてしまう。
【0005】
この種の問題、すなわちたとえば上記トランスのような大発熱部品から放射などで伝達される熱がこの大発熱部品に近接するたとえばダイオードモジュールのような低温使用型回路部品特に半導体部品に悪影響を与えるという問題は、電子回路装置を高密度化すれば電力用電子回路装置では必然的に派生する問題であり、この問題のために装置の体格縮小に限界が生じていた。
【0006】
一方、水冷装置などの特別の冷却方式を追加すれば上記問題を改善して回路実装密度の向上を図ることができるが、この場合には水冷装置やなどの冷却装置の体積、重量が増大し、装置構成が複雑化してしまうという新たな問題が派生してしまう。
特に、高密度実装を図った電子回路装置では、投影面積縮小のために複数の回路基板を互いに平行に重ねることが一般的であるが、このような積層形式の電子回路装置では、大発熱部品の周囲における熱の逃げが悪くなりがちであるので、上記問題が一層深刻となった。
【0007】
本発明は上記問題点に鑑みなされたものであり、装置の体格重量の増大を招くことなく高密度実装が可能な電子回路装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
請求項1記載の電子回路装置によれば、ブスバーは、大発熱部品と低温使用型回路部品との間に位置して他の部位よりも広幅化され、ブスバーの広幅化の向きは、大発熱部品から放射される熱が低温使用型回路部品に照射されるのを遮断するべく大発熱部品から低温使用型回路部品を覆う向きとされているので、低温使用型回路部品の低温使用型回路部品の寿命、信頼性を低下させることなく高密度実装が実現する。更に、ブスバーの上記部分的な広幅化は、大発熱部品と低温使用型回路部品との間に単なる熱遮蔽部材を介設させるのに比べて、部材の追加を必要とせず、かつ、ブスバーの電気抵抗を減らしてその発熱を低減する効果も奏することができる
【0013】
【発明を実施するための態様】
本発明の電子回路装置が適用されるハイブリッド車用の充電装置の好適な態様を以下の実施例を参照して説明する。
【0014】
【実施例1】
この充電装置は、図1に示すように、低圧の補機バッテリ2、DC/DCコンバ−タ6、主機バッテリ7、制御回路8、電流センサ10を備えている。
DC−DCコンバータ6は、図2に示すように、入力直流電力を交流電力に変換するためのインバータ回路としての一対のパワ−MOSFET61、パワ−MOSFET61の出力電圧を変更するトランス62、トランス62の出力を整流する全波整流回路63、及び、全波整流回路63の出力電圧を平滑化する出力平滑回路64を有する。また、DC/DCコンバ−タ6のスイッチングで生じる電圧変動を低減するために、DC/DCコンバ−タ6の一対の入力端間に接続される入力側平滑コンデンサ5を有している。
【0015】
一対のパワ−MOSFET61は、ダイオードがそれぞれ逆並列接続されて交互に断続制御されるパワ−MOSトランジスタからなる。これらパワ−MOSトランジスタ61の交互逆相断続によりトランス62の二次側に生じた交流電圧は全波整流回路63で整流され、出力平滑回路64を構成するチョークコイル65及び平滑コンデンサ66で平滑されて主機バッテリ7に印加される。
【0016】
全波整流回路63は4つのダイオードモジュールDをブリッジ接続してなる。上述したトランス62、全波整流回路63、チョークコイル65及び平滑コンデンサ66は、本発明でいう電力変換装置を構成している。
(電力変換装置の配置)
この実施例の特徴をなす上述した電力変換装置の配置例を図3〜図5を参照して以下に説明する。図3は、図1に示す充電装置の斜視図、図4は側面図、図5は回路基板101、104の展開図である。
【0017】
100は金属プレート、101は金属プレート100の上面に所定間隔を隔てて平行に設けられて複数の金属突起100aに固定された第1の回路基板であり、トランス62、全波整流回路63、チョークコイル65及び平滑コンデンサ66は、回路基板101上に固定されている。また、104は、金属プレート100の一端縁から立設する支壁部100bの上部に締結されて、回路基板101と平行に延設される第2の回路基板である。
【0018】
全波整流回路63を構成する4つのダイオードモジュールDは、回路基板101に立設される直立回路基板103の一面に実装されており、直立回路基板103のこの一面はトランス62の最も近接する一側面と直角かつ回路基板101と直角となる姿勢を有している。また、ダイオードモジュールDの最も広い表面は直立回路基板103の上記一面と平行となっている。
【0019】
このようにすれば、直立回路基板103の主面やダイオードモジュールDの最も広い頂面がトランス62の側面に対向しないので、トランス62から放射熱を受けることが少なく、それによるダイオードモジュールDの温度上昇を防止することができる。
また、支壁部100bのトランス62に対面する表面には、一対のパワ−MOSFET61が設けられている。
【0020】
これらパワ−MOSFET61は、金属容器に収容されており、それらのゲート電極及びドレイン電極は、これら金属容器の表面に電気絶縁されつつ設けられた複数の外部取り出し端子に個別に接続され、これら外部取り出し端子は、図示しないブスバーに接続されている。また、パワ−MOSFET61のソース電極は上記金属容器を通じて支壁部100bに接地されている。
【0021】
この実施例では特に、トランス62の一側面とパワ−MOSFET61との間に、ブスバーBが支壁部100b及びトランス62の対向側面と平行にパワ−MOSFET61を覆うに足る長さだけ延設されている。更に、このブスバーBは、他のブスバー(図示せず)に比較して、その幅(回路基板(実装基板)101と直角方向の長さ)が広く設定され、特に、トランス62からパワ−MOSFET61を覆うに足るだけの幅に拡大されている。
【0022】
このようにすれば、高温となったトランス(本発明でいう大発熱部品)62から放射される熱はこのブスバーBにより遮断されてパワ−MOSFET(本発明でいう低温使用型回路部品)61に照射されることがない。更に、このトランス62の表面で熱せられた空気が対流移動してパワ−MOSFET61の表面に接触することもほとんどない。
【0023】
このため、パワ−MOSFET61を高温のトランス62の側面に近接配置するにもかかわらず、パワ−MOSFET42、61の過熱を防止することができ、信頼性を確保しつつ高密度実装を実現することができる。
【図面の簡単な説明】
【図1】実施例1に用いる本発明の電子回路装置を用いた充電装置の回路図である。
【図2】図1に示す充電装置のDC−DCコンバータの回路図である。
【図3】図1に示す充電装置の斜視図である。
【図4】図1に示す充電装置の側面図である。
【図5】図1に示す充電装置の回路基板の展開図である
【符号の説明】
101、103は回路基板(実装基板)、62はトランス(大発熱部品)、65はチョークコイル、5は平滑コンデンサ、Bはブスバー、42、61はパワ−MOSFET(低温使用型回路部品)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic circuit device on which a large heat generating component is mounted.
[0002]
[Prior art]
A voltage conversion type power conversion device having a transformer for charging a battery from a commercial AC power supply or the like is used for an electric vehicle or the like.
This voltage conversion type power conversion device includes a transformer for converting an AC voltage into a voltage, one or more semiconductor rectifiers for rectifying the AC voltage converted by the transformer, and a ripple from the DC voltage rectified by the semiconductor rectifier. A smoothing coil and a smoothing capacitor for removing components are provided.
[0003]
[Problems to be solved by the invention]
However, in an electric vehicle, the weight and space must be allocated to the battery, so that the weight and space allowed for the power conversion device with a built-in transformer must be reduced as much as possible.
To reduce the weight and space of a power converter with a built-in transformer, the size and weight of the transformer must be significantly larger than other components, and the transformer can be used up to the allowable temperature of the resin for electrical insulation. Most effective. In particular, the power conversion device used for the DC-DC converter for performing power transmission between the main battery and the auxiliary battery has a short usage time per time of about several minutes, so that the power transmission efficiency is slightly reduced. Since there is no problem, it is possible to reduce the size of the transformer to achieve the required size and weight reduction of the power converter.
[0004]
However, an increase in heat generation due to the downsizing of the transformer causes a problem that a temperature of a rectifier semiconductor rectifier connected to a secondary coil of the transformer is significantly increased. That is, the rectifier semiconductor rectifier is close to the transformer secondary coil in order to reduce the volume of the power converter and reduce the power loss due to the resistance of the wiring between the transformer secondary coil and the rectifier semiconductor rectifier. As a result, in addition to the heat generated by itself, the temperature rises more than expected due to heat transfer from the high-temperature transformer through the wiring, and furthermore, radiation and convection from the outer surface of the transformer. In order to reduce the heat transfer from the outer surface of the transformer to the semiconductor rectifier, it is effective to separate them from each other. However, in this case, there arises a problem that the size of the power converter increases.
[0005]
This type of problem, that is, heat transmitted by radiation from a large heat-generating component such as the above-described transformer, for example, adversely affects low-temperature-use type circuit components such as a diode module, particularly semiconductor components, which are close to the large heat-generating component. The problem is a problem that is inevitably caused in a power electronic circuit device when the density of the electronic circuit device is increased, and this problem has limited the size reduction of the device.
[0006]
On the other hand, if a special cooling method such as a water cooling device is added, the above problem can be solved and the circuit mounting density can be improved, but in this case, the volume and weight of the cooling device such as the water cooling device increase. This leads to a new problem that the device configuration becomes complicated.
In particular, in electronic circuit devices designed for high-density mounting, it is common to stack a plurality of circuit boards in parallel with each other in order to reduce the projection area. The above problem is further exacerbated because the escape of heat in the surrounding area tends to be poor.
[0007]
The present invention has been made in view of the above problems, and has as its object to provide an electronic circuit device capable of high-density mounting without increasing the physical size and weight of the device.
[0012]
[Means for Solving the Problems]
According to the electronic circuit device of the first aspect, the busbar is located between the large heat-generating component and the low-temperature-use type circuit component and is wider than other parts. It is designed to cover low-temperature circuit components from large heat-generating components in order to block the heat radiated from the components from being irradiated to low-temperature circuit components. life is realized is to be a Ku high density mounting reduce reliability. Further, the above-described partial widening of the bus bar does not require additional members, compared with a case where a simple heat shielding member is interposed between the large heat-generating component and the low-temperature-use type circuit component, and the bus bar has a small size. The effect of reducing the electric resistance to reduce the heat generation can also be obtained .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of a charging device for a hybrid vehicle to which the electronic circuit device of the present invention is applied will be described with reference to the following embodiments.
[0014]
Embodiment 1
As shown in FIG. 1, this charging device includes a low-voltage auxiliary battery 2, a DC / DC converter 6, a main battery 7, a control circuit 8, and a current sensor 10.
As shown in FIG. 2, the DC-DC converter 6 includes a pair of power MOSFETs 61 as an inverter circuit for converting input DC power into AC power, a transformer 62 for changing an output voltage of the power MOSFET 61, and a transformer 62. It has a full-wave rectifier circuit 63 for rectifying the output, and an output smoothing circuit 64 for smoothing the output voltage of the full-wave rectifier circuit 63. Further, in order to reduce voltage fluctuations caused by switching of the DC / DC converter 6, an input-side smoothing capacitor 5 connected between a pair of input terminals of the DC / DC converter 6 is provided.
[0015]
The pair of power MOSFETs 61 are composed of power MOS transistors whose diodes are connected in anti-parallel with each other and are alternately turned on and off. The alternating voltage generated on the secondary side of the transformer 62 due to the alternating reverse phase of the power MOS transistors 61 is rectified by the full-wave rectifier circuit 63 and smoothed by the choke coil 65 and the smoothing capacitor 66 constituting the output smoothing circuit 64. Applied to the main battery 7.
[0016]
The full-wave rectifier circuit 63 includes four diode modules D connected in a bridge. The above-described transformer 62, full-wave rectifier circuit 63, choke coil 65, and smoothing capacitor 66 constitute a power conversion device according to the present invention.
(Arrangement of power converter)
An example of the arrangement of the above-described power conversion device, which characterizes this embodiment, will be described below with reference to FIGS. 3 is a perspective view of the charging device shown in FIG. 1, FIG. 4 is a side view, and FIG. 5 is a developed view of the circuit boards 101 and 104.
[0017]
Reference numeral 100 denotes a metal plate, 101 denotes a first circuit board provided in parallel on the upper surface of the metal plate 100 at a predetermined interval and fixed to a plurality of metal protrusions 100a, and includes a transformer 62, a full-wave rectifier circuit 63, and a choke. The coil 65 and the smoothing capacitor 66 are fixed on the circuit board 101. Reference numeral 104 denotes a second circuit board which is fastened to an upper portion of a support wall 100 b erected from one edge of the metal plate 100 and extends in parallel with the circuit board 101.
[0018]
The four diode modules D constituting the full-wave rectifier circuit 63 are mounted on one surface of an upright circuit board 103 erected on the circuit board 101, and this one surface of the upright circuit board 103 is It has a posture perpendicular to the side surface and perpendicular to the circuit board 101. Also, the widest surface of the diode module D is parallel to the one surface of the upright circuit board 103.
[0019]
With this configuration, since the main surface of the upright circuit board 103 and the widest top surface of the diode module D do not face the side surface of the transformer 62, less radiant heat is received from the transformer 62, and the temperature of the diode module D is thereby reduced. Ascent can be prevented.
A pair of power MOSFETs 61 is provided on the surface of the support wall portion 100b facing the transformer 62.
[0020]
The power MOSFET 61 is housed in a metal container, and its gate electrode and drain electrode are individually connected to a plurality of external extraction terminals provided on the surface of the metal container while being electrically insulated. The terminal is connected to a bus bar (not shown). The source electrode of the power MOSFET 61 is grounded to the support wall 100b through the metal container.
[0021]
In this embodiment, in particular, the bus bar B is provided between one side surface of the transformer 62 and the power MOSFET 61 by a length sufficient to cover the power MOSFET 61 in parallel with the support wall 100b and the opposite side surface of the transformer 62. I have. Further, the width (length in the direction perpendicular to the circuit board (mounting board) 101) of the bus bar B is set wider than other bus bars (not shown). Enlarged enough to cover.
[0022]
In this way, (cold-use circuit components referred to in the present invention) is blocked power -MOSFET thermally This bus bar - B emitted from 62 (large heat-generating component in the present invention) transformer a high temperature 61 Is not irradiated. Further, the air heated on the surface of the transformer 62 convectively moves and hardly contacts the surface of the power MOSFET 61.
[0023]
For this reason, even though the power MOSFET 61 is disposed close to the side surface of the high-temperature transformer 62, overheating of the power MOSFETs 42 and 61 can be prevented, and high-density mounting can be realized while ensuring reliability. it can.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a charging device using an electronic circuit device of the present invention used in Embodiment 1.
FIG. 2 is a circuit diagram of a DC-DC converter of the charging device shown in FIG.
FIG. 3 is a perspective view of the charging device shown in FIG.
FIG. 4 is a side view of the charging device shown in FIG.
5 is a development view of a circuit board of the charging device shown in FIG .
[Explanation of symbols]
101, 103 circuit board (mounting substrate), 62 trans (large heat-generating component), 65 choke coil, 5 smoothing capacitor, B is bus bar over, the power matrix memory (cold-use circuit components 42,61 )

Claims (4)

最大許容温度が所定値以下の低温使用型回路部品と、前記低温使用型回路部品よりも高温でかつ発熱量が大きい大発熱部品とを備える電子回路装置において、
前記両部品の間に介設されるブスバーを有し、前記ブスバーは、前記両部品の間に位置して他の部位よりも広幅化され、前記ブスバーの広幅化の向きは、前記大発熱部品から放射される熱が前記低温使用型回路部品に照射されるのを遮断するべく前記大発熱部品から前記低温使用型回路部品を覆う向きであることを特徴とする電子回路装置。
In an electronic circuit device including a low-temperature use type circuit component whose maximum allowable temperature is equal to or lower than a predetermined value, and a large heat generation component having a higher temperature and a larger calorific value than the low-temperature use type circuit component,
It has a bus bar that is interposed between the both components, the bus bars, than said other portions positioned between both parts is wide Habaka, the orientation of the broadening of the bus bar, the large heat generation An electronic circuit device, which is oriented so as to cover the low-temperature-use circuit component from the large heat-generating component so as to block irradiation of heat radiated from the component to the low-temperature-use type circuit component .
請求項1記載の電子回路装置において、
前記ブスバーの前記広幅化された部分は、前記大発熱部品から所定の前記低温使用型回路部品を覆うに足る長さと幅とを有していることを特徴とする電子回路装置。
The electronic circuit device according to claim 1,
The electronic circuit device, wherein the widened portion of the bus bar has a length and a width sufficient to cover the predetermined low-temperature-use type circuit component from the large heat-generating component.
請求項1記載の電子回路装置において、
前記低温使用型回路部品は、前記ブスバーと平行に設けられた良熱伝導性の支壁部の前記大発熱部品に面する側の表面に設けられていることを特徴とする電子回路装置。
The electronic circuit device according to claim 1,
The electronic circuit device, wherein the low-temperature-use circuit component is provided on a surface of the good heat conductive support wall provided in parallel with the bus bar on a side facing the large heat generating component.
請求項1記載の電子回路装置において、The electronic circuit device according to claim 1,
前記ブスバーは、他のブスバーより広く、かつ、前記大発熱部品から前記低温使用型回路部品を覆うに足るだけの幅を有していることを特徴とする電子回路装置。  An electronic circuit device, wherein the bus bar is wider than other bus bars and has a width sufficient to cover the low-temperature-use type circuit component from the large heat-generating component.
JP28422198A 1998-10-06 1998-10-06 Electronic circuit device Expired - Fee Related JP3544307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28422198A JP3544307B2 (en) 1998-10-06 1998-10-06 Electronic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28422198A JP3544307B2 (en) 1998-10-06 1998-10-06 Electronic circuit device

Publications (2)

Publication Number Publication Date
JP2000116118A JP2000116118A (en) 2000-04-21
JP3544307B2 true JP3544307B2 (en) 2004-07-21

Family

ID=17675750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28422198A Expired - Fee Related JP3544307B2 (en) 1998-10-06 1998-10-06 Electronic circuit device

Country Status (1)

Country Link
JP (1) JP3544307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9456530B2 (en) 2011-11-21 2016-09-27 Autonetworks Technologies, Ltd. DC-DC converter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642621B2 (en) * 2011-05-13 2014-12-17 コーセル株式会社 Switching power supply
JP5803684B2 (en) * 2012-01-13 2015-11-04 株式会社デンソー Power converter
CN104682457B (en) * 2013-11-26 2017-08-29 台达电子企业管理(上海)有限公司 The charging device of electronic installation and automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9456530B2 (en) 2011-11-21 2016-09-27 Autonetworks Technologies, Ltd. DC-DC converter

Also Published As

Publication number Publication date
JP2000116118A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
US7046535B2 (en) Architecture for power modules such as power inverters
US10811958B2 (en) Water-cooling power supply module
JP3555742B2 (en) Electronic circuit device
JP3334620B2 (en) DC-DC converter device
JP6158051B2 (en) Power converter
JP3544307B2 (en) Electronic circuit device
JP6002473B2 (en) Electronic equipment and power conditioner
JP2015115523A (en) Semiconductor apparatus for power conversion device, and power conversion device
JP2002369528A (en) Dc-dc converter
JP2000102252A (en) Power conversion device
JPH0332360A (en) Switching power supply
JPS6025919B2 (en) Electronic parts assembly equipment
KR0128200Y1 (en) Inverter stack
CN216356515U (en) Power module device and inverter
CN219267482U (en) Thin film capacitor heat abstractor and motor drive controller thereof
JPH09233818A (en) Power converter
JP3641603B2 (en) DC-DC converter device
US20230328936A1 (en) Power converter, heat exchanger, heat sink, and photovoltaic power generation system
US11515803B2 (en) Isolated power converter and hydrogen production system
JP2000102260A (en) Power conversion device
KR101826727B1 (en) Heat sink and method for manufacturing thereof
JP2000307277A (en) Power controller
JPH06178553A (en) Power unit
KR20160139218A (en) Dc-dc converter
Yurek et al. A Novel Integrated Multi-Layer Cooling (IMLC) Structure for High Power Density Applications

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees