JP3543820B2 - 超音波流量計 - Google Patents

超音波流量計 Download PDF

Info

Publication number
JP3543820B2
JP3543820B2 JP2003379759A JP2003379759A JP3543820B2 JP 3543820 B2 JP3543820 B2 JP 3543820B2 JP 2003379759 A JP2003379759 A JP 2003379759A JP 2003379759 A JP2003379759 A JP 2003379759A JP 3543820 B2 JP3543820 B2 JP 3543820B2
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic transducer
thickness
piezoelectric
piezoelectric plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003379759A
Other languages
English (en)
Other versions
JP2004045441A (ja
Inventor
明久 足立
淳志 渡邊
利春 佐藤
奈緒子 東
雅彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003379759A priority Critical patent/JP3543820B2/ja
Publication of JP2004045441A publication Critical patent/JP2004045441A/ja
Application granted granted Critical
Publication of JP3543820B2 publication Critical patent/JP3543820B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は超音波の伝搬時間を計測して流量を測定する超音波流量計に関し、例えば2個1対の超音波送受波器を被測定流体の上流側と下流側にそれぞれ配置し、1つの超音波送受波器から超音波を送信し、他方の超音波送受波器で受信することにより、被測定流体の流量を測定する超音波流量計に関するものである。
古くから超音波を用いて配管中を流れる流体の流量を計測する技術開発は行われている。超音波流量計としては、計量研究報告Vol.26,No.1,p1−6、「気体用超音波流量計の試作」として記載されている構成が知られている。
以下、従来の超音波流量計および超音波送受波器について説明する。
図20は従来の超音波流量計の構成、また図21は従来の気体用超音波送受波器の構成を示すものである。図20において、51は円筒管、52は超音波送受波器A、53は超音波送受波器A52を円筒管51に取付ける取付口A、54は超音波送受波器B、55は超音波送受波器B54を円筒管51に取付ける取付口B、56は円筒管51中を流れる被測定流体である。図21において57は円筒圧電板、58は整合層、59はリ−ド線である。
以上のように構成された超音波流量計について、以下その構成について説明する。
取付口A53と取付口B55を介して円筒管51に対し超音波送受波器A52と超音波送受波器B54を斜めに対向させて配置する。超音波送受波器A52と超音波送受波器B54の距離をL、円筒管51の長手方向と超音波の伝搬方向のなす角をθ、無風状態で超音波が被測定流体56を伝搬する音速をCとし、被測定流体56の流速をVとすると、超音波送受波器A52から照射された超音波が被測定流体56を伝搬し超音波送受波器B54で受信される伝搬時間t1は次式で示される。
Figure 0003543820
同様に超音波送受波器B54から照射された超音波が被測定流体56を伝搬し、超音波送受波器A52で受信される伝搬時間t2は次式で示される。
Figure 0003543820
上記2式から被測定流体56の音速Cを消去すると次式で示される。
Figure 0003543820
被測定流体56の流速Vを上式より求めると次式のように示される。
Figure 0003543820
上式には被測定流体56の音速Cが含まれていないため、被測定流体56の物質に無関係に流速Vが求められ、得られた流速Vと円筒管51の断面積より流量が導出可能となる。また被測定流体56が気体の場合に用いる超音波送受波器は、図12に示すように円筒形状で、円筒圧電板57と1層の整合層58からなる。
しかしながら上記の従来の構成では、次のような課題がある。
超音波送受波器は、圧電体を電圧駆動するものであり、測定する流体が可燃性ガスや可燃性の液体であっても当該圧電体の駆動の影響による安全性を考慮する必要がある。
本発明は上記従来技術の課題を解決するもので、測定する流体が可燃性ガスや可燃性の液体であっても安全性を確保することができる超音波流量計及び超音波送受波器を提供することを目的とする。
本発明は、可燃性被測定流体が流れる流路と、前記流路に設けられ超音波信号を送受信する超音波送受波器とを備えた超音波流量計であって、前記超音波送受波器は、圧電体と前記圧電体を前記可燃性被測定流体から遮断するケースとで形成されており、前記ケースの外側に整合層を設け、前記圧電体は送受波面側に溝を有する超音波流量計である。
圧電体と圧電体を可燃性被測定流体から遮断するケースとで形成されているために、測定する流体が可燃性ガスや可燃性の液体であっても安全性を確保することができる。
本実施形態の第1の超音波流量計は、可燃性被測定流体が流れる流路と、前記流路に設けられ超音波信号を送受信する超音波送受波器とを備えた超音波流量計であって、前記超音波送受波器は、圧電体と前記圧電体を前記可燃性被測定流体から遮断するケースと、ケースの外側に整合層を設けたものである。
本実施形態の第2の超音波流量計は、可燃性被測定流体が流れる流路と、前記流路に設けられ超音波信号を送受信する一対の超音波送受波器とを備え、前記超音波送受波器間の超音波伝搬時間を計測して流量を測定する超音波流量計であって、前記超音波送受波器は、圧電体と前記圧電体を前記可燃性被測定流体から遮断するケースとで形成されている。
上記実施形態において、好ましくは、超音波送受波器は、ケースと蓋板とにより圧電体を密封状態にするものである。
また、好ましくは、超音波送受波器は、有天筒状ケースと蓋板とを接合して圧電体を密封状態にするものであり、前記圧電体が前記ケースの天井部に取り付けられ、前記天井部が前記超音波送受波器の一方の電極を兼ねており、他方の電極は前記ケースの外へ引き出されているリード線に接続たものである。
また、好ましくは、超音波送受波器は、更に上記密封空間を乾燥状態にするものである。
また、好ましくは、上記圧電体は送受波面側に溝を有するものである。
次に、本実施例に記載する他の参考実施形態について説明する。
第1の参考実施形態における超音波流量計は、流路と、この流路中の流体流量を測定する如く配置した超音波送受波器とを備え、上記超音波送受波器は対向する面に電極を設けると共に上記対向する一方の面を送受波面としてその送受波面を前記流路に臨ませた圧電体を有し、上記圧電体は電極方向の振動を主モードとするようその送受波面の縦及び横の長さを設定した構成としてあり、圧電体の厚み縦振動を主モ−ドとして利用するため高感度、高速応答性、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
第2の参考実施形態における超音波流量計は、流路と、この流路中の流体流量を測定する如く配置した超音波送受波器とを備え、上記超音波送受波器は対向する面に電極を設けると共に上記対向する一方の面を送受波面としてその送受波面を前記流路に臨ませた圧電体を有し、上記圧電体は送受波面または前記送受波面と対向する面の少なくとも一方を溝で分割するとともに、分割した面に設けた電極の全てを導体で電気的に接続した構成としてあり、溝により厚み縦振動と不要な振動モ−ドを分離できるため、高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
上記第2の超音波流量計において、電極方向の振動を主モードとする深さの溝で圧電体を分割した構成としたもの、及び溝の深さが送受波面と垂直な方向の厚みに対し90%以上100%未満としたものは、圧電体を完全に分離しないため圧電体の取り扱いが容易なうえ、厚み縦振動と不要な振動モ−ドが実用するうえで問題ない程度に分離できるため高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
また第2の超音波流量計において、溝によって分割されたそれぞれの面の縦および横の長さを電極方向の振動が主モードとなるように設定したもの、及び溝によって分割されたそれぞれの面の縦および横の長さ厚みに対する比を全て0.8以下としたものは、厚み縦振動と不要な振動モ−ドが実用するうえで問題ない程度に分離できるうえ厚み縦振動を主モ−ドとして利用できるため、高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
また第2の超音波流量計において、圧電体に設ける溝を複数としたものは、さらに周波数や寸法の選択幅が広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
第3の参考実施形態における超音波流量計は、流路と、この流路中の流体流量を測定する如く配置した超音波送受波器とを備え、上記超音波送受波器は対向する面に電極を設けると共に上記対向する一方の面を送受波面としてその送受波面を前記流路に臨ませた複数の圧電体を有し、この各圧電体の送受波面および前記送受波面と対向する面に設けた各電極をそれぞれ導体で接続した構成としてあり、複数の分離された圧電体を有するため、不要な振動モ−ドの影響が少なくなるため高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
上記第3の超音波流量計において、各圧電体のそれぞれの面の縦および横の全ての長さを、電極方向の振動が主モードとなるように設定したもの、及び各圧電体の送受波面の縦及び横の長さの厚みに対する比を全て0.8以下としたものは、厚み縦振動を主モ−ドとして利用できるため高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
第4の参考実施形態における超音波流量計は、第1から第3の形態の超音波流量計において、電極に垂直な方向に分極された複数の圧電体を分極方向が互いに反対となるように積層し、この積層してなる圧電体の前記電極方向の振動を主モ−ドとする構成としてあり、超音波送受波器の電気的インピ−ダンスを小さくできるためノイズに対して強い特性を得ることができ、さらに高精度な超音波流量計を得ることができる。
第5の参考実施形態における超音波流量計は、第1から第4の形態の超音波流量計において、その流路は所定の位置に所定の幅の隙間を有し、所定の幅をおいて配置された2枚の平行平板に挟まれた構成としてあり、流路の断面形状を長方形にすることにより流路断面内での流速分布を単純化でき、得られた流速より流量を高精度に導出できることが可能となり、さらに高精度な超音波流量計を得ることができる。
第6の参考実施形態における超音波流量計は、第1から第5の形態の超音波流量計において、一対の超音波送受波器の送受波面を相対向する位置に配置した構成としてあり、一対の超音波送受波器の位置合わせが容易となり、さらに高精度な超音波流量計を得ることができる。
第7の参考実施形態における超音波流量計は、第1から第6の形態の超音波流量計において、導体は超音波送受波器から送波される超音波の波長に比べて十分薄い導体を用いた構成としてあり、超音波送受波器の特性に影響を与えずに電極を接続でき、かつ圧電体の取り扱いも容易となるため、高感度な小型な超音波送受波器が得られ、さらに高精度な超音波流量計を得ることができる。
第8の参考実施形態における超音波流量計は、第1から第7の形態の超音波流量計において、超音波送受波器の送受波面上に音響整合層を具備させた構成としてあり、被測定流体との超音波の送受信が容易になるため、高感度な超音波送受波器が得られ、さらに高精度な超音波流量計を得ることができる。
第9の参考実施形態における超音波流量計は、第1から第8の形態の超音波流量計において、超音波送受波器の送受波面と相対向する面に背面負荷材を具備させてあり、残響時間の短い超音波パルスが送受信可能な超音波送受波器が得られ、さらに高精度な超音波流量計を得ることができる。
第1の参考実施形態における超音波送受波器は、対向する面に電極を設けると共に上記対向する一方の面を送受波面とした圧電体を備え、上記圧電体の送受波面の縦及び横の長さの厚みに対する比を共に0.6以下とした構成としてあり、圧電体の厚み縦振動を主モ−ドとして利用するため高感度、高速応答性、小型な超音波送受波器を得ることができる。
第2の参考実施形態における超音波送受波器は、対向する面に電極を設けると共に上記対向する一方の面を送受波面とした圧電体を備え、上記圧電体は送受波面または前記送受波面と対向する面の少なくとも一方を溝で分割し、前記溝の深さは電極を設けた面で挟まれた厚みに対し90%以上100%未満とすると共に、上記溝により分割された面の全ての電極を導体で電気的に接続した構成としてあり、溝により厚み縦振動と不要な振動モ−ドを分離できるため、高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができる。
上記第2の超音波送受波器において、溝を複数設けたものは、さらに周波数や寸法の選択幅が広い、小型な超音波送受波器を得ることができる。
上記第2の超音波送受波器において、溝によって分割されたそれぞれの面の縦および横の長さの厚みに対する比を全て0.6以下としたものは、厚み縦振動と不要な振動モ−ドが実用するうえで問題ない程度に分離できるうえ厚み縦振動を主モ−ドとして利用できるため、高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができる。
第3の参考実施形態における超音波送受波器は、対向する面に電極を設けると共に上記対向する一方の面を送受波面とした複数個の圧電体を備え、各圧電体の送受波面の縦及び横の長さの厚みに対する比を全て0.6以下とすると共に、上記送受波面の各電極および上記送受波面と対向する面の各電極をそれぞれ導体で接続した構成としてあり、複数の分離された圧電体を用いるため不要な振動モ−ドの影響をあまり受けずに厚み縦振動を主モ−ドとして利用できるため、高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができる。
第4の参考実施形態における超音波送受波器は、第1から第3の形態の超音波送受波器において、電極に垂直な方向に分極された複数の圧電体を分極方向が互いに反対となるように積層し、この積層してなる圧電体の前記電極方向の振動を主モ−ドとする構成とてしてあり、超音波送受波器の電気的インピ−ダンスを小さくできるためノイズに対して強い超音波送受波器を得ることができる。
第5の参考実施形態における超音波送受波器は、第1から第4の形態の超音波送受波器において、導体は超音波送受波器から送波される超音波の波長に比べて十分薄い導体を用いた構成としてあり、超音波送受波器の特性に影響を与えずに電極を接続でき、かつ圧電体の取り扱いも容易となるため、高感度な小型な超音波送受波器を得ることができる。
第6の参考実施形態における超音波送受波器は、第1から第5の形態の超音波送受波器において、超音波送受波器の送受波面上に音響整合層を具備させた構成としてあり、被測定流体との超音波の送受信が容易になるため、高感度な超音波送受波器を得ることができる。
第7の参考実施形態における超音波送受波器は、第1から第6の形態の超音波送受波器において、超音波送受波器の送受波面と相対向する面に背面負荷材を具備させた構成としてあり、残響時間の短い超音波パルスが送受信可能な超音波送受波器を得ることができる。
以下、本発明の第1の実施例について、図面を参照しながら説明する。
(1)実施例1
図1は本発明の第1の実施例における超音波流量計の流量検出部の概略図である。図1において、1は被測定流体である空気、2は空気1が流速Vで流れる流路、3、4、5、6は流路2を構成する上板、底板、側板A、側板B、7は側板A5に配置した超音波送受波器A、8は側板B6に配置した超音波送受波器B、9は流路2の入口側、10は流路2の出口側である。また、図2は図1を真上から見た図であり、超音波送受波器の配置位置を示す。
以上のように構成された超音波流量計の流量検出部の作製方法の一例について図1、図2を用いて簡単に説明する。流路2を構成する上板3、底板4、側板A5、側板B6に用いる材料は被測定流体に対して化学変化を生じない材質の平板を用いる。本実施例では被測定流体を例えば空気1としたため、上記条件に適合し絶縁体である材質としてアクリル板を選択した。
側板A5および側板B6はあらかじめ超音波送受波器を取付ける角度を考えて斜めに二分割しておく。二分割した側板A5、側板B6を底板4上に例えばエポキシ樹脂系接着剤で超音波送受波器を取付ける幅の溝ができるよう接着する。この時溝幅と等しい幅で側板A5および側板B6に設ける両方の溝を貫通する長さの例えばテフロン(R)製の角棒を位置決め棒として側板A5、側板B6に設ける溝に超音波送受波器のかわりに挿入しておく。
側板A5および側板B6の上方に上板3を例えばエポキシ樹脂系接着剤で接着し、流路2を構成する。あらかじめ挿入しておいた位置決め棒を取り除き、側板A5の溝に超音波送受波器A7、側板B6に超音波送受波器B8を挿入する。
超音波送受波器A7と超音波送受波器B8は流路2の中心に対して対称で、上板3に対し平行となる位置にエポキシ樹脂系接着剤で接着固定する。ただし超音波送受波器A7と超音波送受波器B8は流路2内の突起物とならないように側板A5および側板B6に配置する。また流路2内を流れる空気1が側板に設けた溝と超音波送受波器の間にできた隙間から漏れないように接着剤を注入し、密閉する。
以上のように構成された超音波流量計の流量検出部に用いる超音波送受波器の作製方法の一例を図3を用いて簡単に示す。超音波送受波器の電気信号と機械振動の変換を行う圧電板11は形状および寸法により複数の振動モ−ドを有し、これら複数の振動モ−ドのうち最も効率の良い振動モ−ドは厚み縦振動であり、厚み縦振動を主モ−ドとして用いると感度の高い超音波送受波器が得られる。
ここで圧電板11の送受波面となる面の縦及び横の長さと厚みとの寸法関係を検討すべく有権要素法を用いた圧電解析を行った結果、圧電板11が直方体で超音波送受波面の形状が長方形の場合、圧電板11の送受波面の縦及び横の長さが厚みよりも小さければ良いが、これは厚みに対する縦の比が0.6以下で、かつ厚みに対する幅の比が0.6以下の条件を満足するとき圧電板11は不要な振動モ−ドの影響を受けずに最も効率良く厚み縦振動ができることがわかった。例えば圧電セラミックからなる上記形状の圧電板11の上面と下面に例えば銀焼き付けで形成した電極面にリ−ド線14をハンダ付けする。
次に空気1と圧電板11の音響的整合を取り超音波を効率良く空気1に伝搬させるため圧電板11の上面に例えばポリオレフィン系微多孔膜からなる整合層12を例えばエポキシ系接着剤を用い接着する。また尾引きが短く立ち上がりのはやい超音波パルスを得るため、圧電板11の下面には例えばフェライトゴムからなる背面負荷材13を例えばエポキシ系接着剤を用い接着し、超音波送受波器を作製する。
以上のように構成された流量検出部を用いた超音波流量計についてその動作を説明する。側板A5と側板B6に配置した超音波送受波器A7と超音波送受波器B8の中心を結ぶ線と流路2の長手方向となす角をθ、超音波送受波器A7と超音波送受波器B8の距離をLとする。超音波送受波器A7と超音波送受波器B8は、リ−ド線14を介して図示されていない送信部、受信部および流量解析部に接続されている。また流路2の上板3と底板4の間隔である高さと圧電体11の超音波送受波面の少なくとも短辺の長さは等しいとする。
被測定流体である空気1は入口側9から流路2内に流れ込み出口側10から流出する。断面形状が長方形の流路2内を流れる空気1の流速分布は、断面形状が円板に比べると単純で、高さ方向の分布は少なく短軸方向に分布を持つ。流路2内での空気1の流速をV、無風状態での空気1の音速をCとすると、従来の技術で示したように超音波送受波器A7から送波された超音波が空気1を伝搬し超音波送受波器B8で受信される時間t1は式1で示される。同様に超音波送受波器B8から照射された超音波が空気1を伝搬し超音波送受波器A7で受信される伝搬時間t2は式2で示される。式1、式2から空気1の音速Cを消去すると式3で示される。空気1の流速Vを上式より求めると式4のように示される。
超音波送受波器A7から超音波を送波し超音波送受波器B8で受信、超音波送受波器B8から超音波を送波し超音波送受波器A7で受信を繰り返し行い、上式を用い空気1の流速Vを測定し、図示されていない流量解析部にて流量を導出できる。
ここで、超音波送受波器A7および超音波送受波器B8の超音波放射面、即ち送受波面の短辺と流路2の高さは等しいため、超音波送受波器A7と超音波送受波器B8で送受信された超音波は、流路2の高さ方向の流れに関するすべての情報を得ることができる。このため流路2に流れに分布や乱れがあっても その影響を解消することが可能となる。
以上のように本実施例によれば、断面形状が長方形の流路2に、厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下の圧電板11と整合層12と背面負荷材13からなる超音波送受波器A7と超音波送受波器B8を対向させて配置させることにより、流路2内を流れる空気1の流量を短時間で高精度に測定することができる。
なお、第1の実施例において被測定流体を空気としたが、被測定流体は空気以外の気体および液体でも良い。また流路2の断面形状を長方形としたが、円形状でもよく、あるいは上板3と底板4が平行で側板A5と側板B6は平行である必要はない。また流路2の高さと送受波面の短辺は等しいとしたが、必ずしも等しい必要はない。また超音波送受波器は超音波流量計の流量検出部に用いるとしたが、開空間で用いる空中用や水中用の超音波送受波器として用いても良い。また、背面負荷材13を設けるとしたが、低電圧で駆動するような条件下でさらに高感度な超音波送受波器が必要な場合は背面負荷材13は設ける必要はない。また、圧電板11の超音波送受波面および対向する面の電極は全面にある必要はない。また、整合層12はポリオレフィン系多孔膜としたが、被測定流体に適した音響整合材料ならなんでも良い。また、背面負荷材13はフェライトゴムとしたが、不要な振動の減衰効果が得られる材料ならなんでも良い。
(2)実施例2
以下、本発明の第2の実施例について、図面を参照しながら説明する。
図4は本発明の第2実施例における超音波流量計に用いる超音波送受波器の構成概略図である。図4において、18は整合層、19は背面負荷材、20はリ−ド線で、以上は図3の構成と同様なものである。図3の構成と異なるのは、厚みに対する縦の比又は厚みに対する幅の比のどちらか一方が0.6以上である圧電板15に対し、厚みの90%以上で100%未満の深さの溝16を設け電極面の形状が厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下となるよう圧電板15を2分割した点と、2分割された電極が分割前と同様に1枚の電極となるよう導体17に電気的に接続した点と、溝16に液体および固体等の物質を充填しない点である。
上記のように構成された超音波送受波器の作製方法の一例を図4を用い簡単に説明する。コンパクトな超音波流量計を構築しようとすると、超音波送受波器に許される寸法は小さくなる。しかし超音波送受波器の特性を考えると可能なかぎり大きな圧電板を用いることが望ましく、例えば流路2の高さと超音波送受波面の少なくとも流路の高さに対応する1辺の長さが等しい長方形の例えば圧電セラミックからなる圧電板15を選択することがある。このため使用周波数や流路2の高さによっては圧電板15は厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下であるとは限らない。しかし厚みに対する縦の比が0.6以上あるいは厚みに対する幅の比が0.6以上の圧電板15を用いると、厚み振動と他の振動モ−ドが混在し特性が悪化する。
そこでこの実施例では厚み振動と他の振動モ−ドを分離するため、圧電板15を分割して厚み振動と他の振動モ−ドを分離してある。圧電板の厚みに対し90%以上の深さの溝を設ければ、圧電板が完全に分割している場合とほぼ等しい効果が得られるので、圧電板15の取り扱いを考慮し、例えばダイサで厚みに対し深さが90%以上で100%未満の溝16を一本加工する。ただし溝16は2分割された圧電板15の電極が設けてある各面の厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下となる位置に加工する。
次に圧電板15の2分割された面と例えば厚み0.02mmで面積が圧電板15とほぼ等しい銅箔からなる導体17を加圧しながら例えばエポキシ樹脂系接着剤で接着する。接着層が薄ければ、圧電板15の電極と導体17は電気的接続が得られる。なお横方向の振動の結合を避けるため、溝16には液体および固体等の物質を充填しない。導体17と圧電板15の未分割面にリ−ド線20を例えばハンダ付けする。導体17と例えばフェライトゴムからなる背面負荷材19を例えばエポキシ樹脂系接着剤で接着する。また圧電板15の未分割面と例えばポリオレフィン系微多孔膜からなる整合層18を例えばエポキシ樹脂系接着剤で接着し超音波送受波器を作製する。
以上のように作製した超音波送受波器は、溝16により圧電板15は厚み縦振動を主モ−ドとするため高感度となる。さらに整合層18と背面負荷材19が配置されているため、尾引きが短く立ち上がりの早い超音波パルスを送信することが可能となる。
超音波流量計の流量検出部の作製方法、および超音波送受波器A7と超音波送受波器B8を用いた断面形状が長方形の流路2を流れる空気1の流量を測定する超音波流量計の動作方法は実施例1と同様になるため省略する。
以上のように本実施例によれば、厚みに対する縦の比が0.6以上あるいは厚みに対する幅の比が0.6以上の直方体の圧電板15に対し、厚みの90%以上で100%未満の溝16を設け、圧電板15の一方の電極面が厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下となるよう2分割した圧電板15を用いることにより高感度、高速応答性で、周波数や寸法の選択幅が広い小型な超音波送受波器が得られ、流路2内を流れる空気1の流量を短時間で高精度に測定することができる。
なお、第2の実施例において、圧電板15の超音波送受波面の厚みに対する縦の比が0.6以上あるいは厚みに対する幅の比が0.6以上としたが、この送受波面の縦及び横寸法は電極方向の振動が主モードとなるような寸法であればよく、厚みに対する縦の比が0.6以上かつ厚みに対する幅の比が0.6以上でも構わない。また溝の深さも電極方向の振動が主モードとなるような寸法で有れば任意に設定できる。そしてこの送受波面の縦及び横寸法と溝の深さは以下に述べる各実施例においても同様である。
加えて溝16は1本としたが2本以上でも構わない。また圧電板15の分割した電極に銅箔を接着剤で接着するとしたが、導電性のリ−ド線をハンダ付けしたり波長に比べて薄い導体17と導電性ペ−スト等を用い分割した圧電板15の電極の電気的接続を行っても良い。また圧電板15の2分割した面に接着した導体17を背面負荷材19と接着するとしたが、導体17を整合層18と接着しても良い。また超音波送受波器は超音波流量計の流量検出部に用いるとしたが、開空間で用いる空中用や水中用の超音波送受波器として用いても良い。また横方向の振動の結合を避けるため溝16には液体および固体等の物質を充填しないとしたが、圧電板の機械的強度を増加させるため比較的振動の伝わりにくい例えばシリコンゴムを溝16に充填しても良い。
また流路2の高さと超音波送受波面の少なくとも流路の高さに対応する1辺の長さが等しいとしたが、必ずしも等しい必要はない。また、背面負荷材19を設けるとしたが、低電圧で駆動するような条件下でさらに高感度な超音波送受波器が必要な場合は背面負荷材19は設ける必要はない。また、圧電板15の超音波送受波面および対向する面の電極は全面にある必要はない。また圧電板15を直方体としたが、円筒形でも同様の効果は得られる。また溝16は厚み縦振動と不要な振動モ−ドを分離できるなら、圧電体15の電極を設けた面に対し垂直な方向に設ける必要はない。また、整合層18はポリオレフィン系多孔膜としたが、被測定流体に適した音響整合材料ならなんでも良い。また、背面負荷材19はフェライトゴムとしたが、不要な振動の減衰効果が得られる材料ならなんでも良い。
(3)実施例3
以下、本発明の第3の実施例について、図面を参照しながら説明する。
図5は本発明の第3の実施例における超音波流量計に用いる超音波送受波器の構成概略図である。図5において、25は整合層、26は背面負荷材、27はリ−ド線で、以上は図3の構成と同様なものである。図3の構成と異なるのは、厚みに対する縦の比が0.6以上かつ厚みに対する幅の比が0.6以上の圧電板21に対し厚みの90%以上で100%未満の深さの溝A22と溝B23を電極面の形状が厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下となるよう十字に交差するように設けた点と、分割された電極が分割前と同様に1枚の電極となるよう導体24に電気的に接続した点と、溝A22および溝B23に液体および固体等の物質を充填しない点である。
上記のように構成された超音波送受波器の作製方法の一例を図5を用い簡単に説明する。コンパクトな超音波流量計を構築しようとすると、超音波送受波器に許される寸法は小さくなる。しかし超音波送受波器の特性を考え可能なかぎり大きな圧電板を用いることが望ましく、例えば流路2の高さと超音波送受波面の2辺の長さが等しい正方形の例えば圧電セラミックからなる圧電板21を選択することがある。使用周波数や流路2の高さによっては圧電板21は、厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下であるとは限らない。しかし厚みに対する縦の比が0.6以上かつ厚みに対する幅の比が0.6以上の圧電板21を用いると、厚み振動と他の振動モ−ドが混在し特性が悪化する。
そこでこの実施例でも厚み振動と他の振動モ−ドを分離するため、圧電板21を分割して厚み振動と他の振動モ−ドを分離してある。圧電板の厚みに対し90%以上の深さの溝を設ければ、圧電板が完全に分割している場合とほぼ等しい効果が得られるので、圧電板21の取り扱いを考慮し、例えばダイサで厚みに対し深さが90%以上で100%未満の溝A22および溝B23を加工する。ただし溝A22および溝B23は圧電板21の一方の電極面の中心付近で交差させ、4分割された全ての電極面が厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下となるようするよう十字に加工する。ただし横方向の振動の結合を避けるため、溝A22および溝B23には液体および固体等の物質を充填しない。
次に圧電板21の4分割された面と例えば厚み0.02mmで面積が圧電板21とほぼ等しい銅箔からなる導体24を加圧しながら例えばエポキシ樹脂系接着剤で接着する。接着層が薄ければ、圧電板21の電極と導体24は電気的接続が得られる。なお横方向の振動の結合を避けるため、溝A22および溝B23には液体および固体等の物質を充填しない。導体24と圧電板21の未分割面にリ−ド線27を例えばハンダ付けする。導体24と例えばフェライトゴムからなる背面負荷材26を例えばエポキシ樹脂系接着剤で接着する。また圧電板21の未分割面と例えばポリオレフィン系微多孔膜からなる整合層25を例えばエポキシ樹脂系接着剤で接着し超音波送受波器を作製する。
以上のように作製した超音波送受波器は、溝A22および溝B23により圧電板21は厚み縦振動を主モ−ドとするため高感度となる。さらに整合層25と背面負荷材26が配置されているため、尾引きが短く立ち上がりの早い超音波パルスを送信することが可能となる。
超音波流量計の流量検出部の作製方法、および超音波送受波器A7と超音波送受波器B8を用いた断面形状が長方形の流路2を流れる空気1の流量を測定する超音波流量計の動作方法は実施例1と同様になるため省略する。
以上のように本実施例によれば、厚みに対する縦の比が0.6以上かつ厚みに対する幅の比が0.6以上の圧電板21に対し、厚みの90%以上で100%未満の深さの溝A22と溝B23を電極面の形状が厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下となるよう十字に交差するように設けることにより高感度、高速応答性で、周波数や寸法の選択幅が広い小型な超音波送受波器が得られ、流路2内を流れる空気1の流量を短時間で高精度に測定することができる。
なお、第3の実施例において、圧電板21の超音波送受波面を正方形としたが、長方形でも円筒形でも構わない。また圧電板21の分割した電極に銅箔を接着剤で接着するとしたが、リ−ド線をハンダ付けしたり波長に比べて薄い導体24と導電性ペ−スト等を用い分割した圧電板21の電極の電気的接続を行っても良い。また圧電板21の4分割した面に接着した導体24を背面負荷材26に接着するとしたが、導体24を整合層25と接着しても良い。また超音波送受波器は超音波流量計の流量検出部に用いるとしたが、開空間で用いる空中用や水中用超音波送受波器として用いても良い。また溝A22および溝B23には液体および固体等の物質を充填しないとしたが、圧電板の機械的強度を増加させるため比較的振動の伝わりにくい例えばシリコンゴムを溝A22および溝B23に充填しても良い。
また流路2の高さと超音波送受波面の2辺の長さが等しいとしたが、必ずしも等しい必要はない。また、背面負荷材26を設けるとしたが、低電圧で駆動するような条件下でさらに高感度な超音波送受波器が必要な場合は背面負荷材26は設ける必要はない。また、圧電板21の超音波送受波面および対向する面の電極は全面にある必要はない。また溝A22および溝B23は厚み縦振動と不要な振動モ−ドを分離できるなら、圧電体21の電極を設けた面に対し垂直な方向に設ける必要はない。また、整合層25はポリオレフィン系多孔膜としたが、被測定流体に適した音響整合材料ならなんでも良い。また、背面負荷材26はフェライトゴムとしたが、不要な振動の減衰効果が得られる材料ならなんでも良い。
(4)実施例4
以下、本発明の第4の実施例について、図面を参照しながら説明する。
図6は本発明の第4の実施例における超音波流量計に用いる超音波送受波器の構成概略図である。図6において、33は整合層、34は背面負荷材、35はリ−ド線で、以上は図3の構成と同様なものである。図3の構成と異なるのは、厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下で厚みの等しい2枚の圧電板A28と圧電板B29を背面負荷材34上に互いに接触しないように隙間30を設けて配置する点と、圧電板A28と圧電板B29の超音波送受波面側と背面負荷材側のそれぞれに導体A31と導体B32を電気的に接続した点と、隙間30には液体および固体等の物質を充填しない点である。
上記のように構成された超音波送受波器の作製方法の一例を図6を用いて説明する。コンパクトな超音波流量計を構築しようとすると、超音波送受波器に許される寸法は小さくなる。しかし超音波送受波器の特性を考え可能なかぎり大きな圧電板を用いることが望ましいため、例えば厚みに対する縦の比が0.6以上で厚みに対する幅の比が0.6以下の直方体の例えば圧電セラミックからなる圧電板を選択することがある。このような形状の圧電板は厚み振動と他の振動モ−ドが混在し特性が悪化する。そこでこの実施例でも圧電板を2分割して厚み振動と他の振動モ−ドの分離してある。実施例2および実施例3では厚み振動と他の振動モ−ドの分離と圧電板の取り扱いを考慮して圧電板を完全に分割しないとしたが、圧電板を完全に分割したほうが厚み振動と他の振動モ−ドの分離が完全に行えるので本実施例では圧電板を完全に分割する。
例えば厚みに対する縦の比が0.6以上で厚みに対する幅の比が0.6以下の直方体の圧電セラミックからなる圧電板に対し、圧電板の電極より大きな寸法の例えば厚みが0.02mmの銅箔からなる導体B32を加圧しながら例えばエポキシ樹脂系接着剤で接着する。接着層が薄ければ、圧電板の電極と導体B32は電気的接続が得られる。導体B32と例えばフェライトゴムからなる背面負荷材34を例えばエポキシ樹脂系接着剤で接着する。圧電板からはみ出している導体B32の一部を折り曲げ背面負荷材34の側面に例えばエポキシ樹脂系接着剤で接着する。
背面負荷材34と一体となった圧電板を例えばダイサで完全に2分割する。ただし形成された圧電板A28と圧電板B29が厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下となるように分割する。また導体B32の折り曲げた部分は完全に切断しない。圧電板A28と圧電板B29の上方に例えば厚みが0.02mmの銅箔からなる導体A31を例えばエポキシ樹脂系接着剤で接着する。なお横方向の振動の結合を避けるため、隙間30には液体および固体等の物質を充填しない。導体A31と導体B32にリ−ド線35を例えばハンダ付けする。導体A31に例えばポリオレフィン系微多孔膜からなる整合層25を例えばエポキシ樹脂系接着剤で接着し超音波送受波器を作製する。
以上のように作製した超音波送受波器は、圧電板A28と圧電板B29は隙間30だけ離れて配置されているため、不要な振動モ−ドの影響を受けにくく厚み縦振動を主モ−ドとするため高感度となる。さらに整合層33と背面負荷材34が配置されているため、尾引きが短く立ち上がりの早い超音波パルスを送信することが可能となる。
超音波流量計の流量検出部の作製方法、および超音波送受波器A7と超音波送受波器B8を用いた断面形状が長方形の流路2を流れる空気1の流量を測定する超音波流量計の動作方法は実施例1と同様になるため省略する。
以上のように本実施例によれば、厚みに対する縦の比が0.6以上で厚みに対する幅の比が0.6以下の圧電板を厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下の2枚の圧電板A28、圧電板B29に分割より高感度、高速応答性で、周波数や寸法の選択幅が広い小型な超音波送受波器が得られ、流路2内を流れる空気1の流量を短時間で高精度に測定することができる。
なお、第4の実施例において、厚みに対する縦の比が0.6以上で厚みに対する幅の比が0.6以下の圧電板を用いたが、厚みに対する縦の比が0.6以下で厚みに対する幅の比が0.6以上あるいは厚みに対する縦の比が0.6以上かつ厚みに対する幅の比が0.6以上の圧電板を用いても良い。また、圧電板A28と圧電板B29の2枚に分割するとしたが、3枚以上に分割しても構わない。また1枚の圧電板を背面負荷材34に接着した後分割して用いるとしたが、厚みの等しい2枚以上の圧電板を背面負荷材34に接着しても良い。また圧電板A28と圧電板B29に銅箔を接着剤で接着するとしたが、リ−ド線をハンダ付けしたり導電性ペ−スト等の導体A31と導体B32を用いて電気的接続を行っても良い。また隙間30には液体および固体等の物質を充填しないとしたが、圧電板の機械的強度を増加させるため比較的振動の伝わりにくい例えばシリコンゴムを隙間30に充填しても良い。また超音波送受波器は超音波流量計の流量検出部に用いるとしたが、開空間で用いる空中用や水中用超音波送受波器として用いても良い。
また、流路2の高さと少なくとも超音波送受波面の流路2の高さに対応する辺の長さは等しいことが望ましいが、等しくなくてもよい。また、背面負荷材34を設けるとしたが、低電圧で駆動するような条件下でさらに高感度な超音波送受波器が必要な場合は背面負荷材34は設ける必要はない。また、圧電板A28あるいは圧電板B29の超音波送受波面および対向する面の電極は全面にある必要はない。また隙間30は厚み縦振動と不要な振動モ−ドを分離できるなら、圧電板A28あるいは圧電板B29の電極を設けた面に対し垂直な方向に設ける必要はない。また、圧電板A28と圧電板B29は厚み縦振動する圧電板であればたとえば円柱形状の複数の圧電体を用いてもよい。また、整合層33はポリオレフィン系多孔膜としたが、被測定流体に適した音響整合材料ならなんでも良い。また、背面負荷材34はフェライトゴムとしたが、不要な振動の減衰効果が得られる材料ならなんでも良い。
(5)実施例5
以下、本発明の第5の実施例について、図面を参照しながら説明する。
図7は本発明の第5の実施例における超音波流量計に用いる超音波送受波器の構成概略図である。図7において、39は整合層、40は背面負荷材で、以上は図3の構成と同様なものである。図3の構成と異なるのは、圧電板が厚みの等しい3枚の圧電板を積層して構成されかつ積層した圧電板の全体の厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下でかつ3枚の圧電板の分極方向が互いに反対となるよう配置してある点と、3枚の圧電板の電極が1枚おきに同電位となるようにリ−ド線A41とリ−ド線B41を設けた点である。
上記のように構成された超音波送受波器の作製方法の一例を図7を用い簡単に説明する。コンパクトで安価な超音波流量計を構築しようとすると、超音波送受波器に許される寸法は小さく、使用する周波数は回路の値段を考慮すると低周波ほど良い。このため厚み振動を用いる圧電板では電気的インピ−ダンスが高くなり回路との電気的整合が取りにくくなり、ノイズの影響が無視できなくなり、超音波送受波器が持つ性能を十分発揮できない場合がある。
特に低電圧で駆動する条件下では、受信される超音波パルスの絶対値が小さいため、S/Nが悪くなり流量計測の精度に大きな影響を与えることがある。そこで圧電板の電気的インピ−ダンスを低減させ、ノイズの影響等を低減させる必要がある。
そこで例えば3枚の圧電板を厚み方向に積層することを考える。厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下の条件を満足する圧電板の厚みをTとすると、積層する圧電板A36、圧電板B37、圧電板C38の厚みはT/3となる。
上記寸法の例えば圧電セラミックからなる圧電板A36、圧電板B37、圧電板C38の分極方向が互いに反対となるよう例えばエポキシ樹脂系接着剤を用いて加圧しながら接着する。接着層が薄ければ、圧電板A36と圧電板B37の間の電極、圧電板B37と圧電板C38の間の電極は互いに電気的に接続する。圧電板A36の上方の電極と圧電板B37と圧電板C38の間の電極は圧電板の側面から見える部分に対し例えば銀ペ−ストを用いリ−ド線A41を接着し電気的に接続する。また圧電板A36と圧電板B37の間の電極と圧電板C38の下方の電極は圧電板の側面から見える部分に対し例えば銀ペ−ストを用いリ−ド線B42を接着し電気的に接続する。リ−ド線A41とリ−ド線B42で圧電板A36、圧電板B37、圧電板C38を接続する。
このように3枚の圧電板を積層して構成された圧電板の厚み方向の振動は、厚みTに起因する周波数でも厚み縦振動することができる。また電気的インピ−ダンスに関しては、各圧電板の境界面の接着層の影響等があるため、厚みがT/3で、電極面積が3倍の圧電板と同じ電気的インピ−ダンスにはならないが、厚みがTの圧電板より小さい電気的インピ−ダンスとなる。このように厚みがT/3で、電極面積が3倍の一枚の圧電板を重ね折りした場合と同様な効果が得られ、一枚の直方体の圧電板に比べ電気的インピ−ダンスが低減できる。
また圧電板A36、圧電板B37、圧電板C38を接着して形成した圧電板は、厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下となるような形状となるため、厚み振動のみを選択的に利用可能となる。圧電板C38の下方に例えばフェライトゴムからなる背面負荷材34を例えばエポキシ樹脂系接着剤で接着する。圧電板A36の上方に例えばポリオレフィン系微多孔膜からなる整合層39を例えばエポキシ樹脂系接着剤で接着し、超音波送受波器を作製する。
超音波流量計の流量検出部の作製方法、および超音波送受波器A7と超音波送受波器B8を用いた断面形状が長方形の流路2を流れる空気1の流量を測定する超音波流量計の動作方法は実施例1と同様になるため省略する。
以上のように本実施例によれば、厚みが等しい3枚の圧電板A36、圧電板B37、圧電板C38の分極方向が互いに反対になるように積層し積層した圧電板の全体の厚みに対する縦の比が0.6以下でかつ厚みに対する幅の比が0.6以下となる圧電板を用いることにより電気的インピ−ダンスが低減でき、ノイズの影響を受けにくい、高感度、高速応答性で、周波数や寸法の選択幅が広い小型な超音波送受波器が得られ、流路2内を流れる空気1の流量を短時間で高精度に測定することができる。
なお、第5の実施例において、積層する圧電板の枚数を3枚としたが5枚以上の奇数枚でも2枚以上の偶数枚でも構わない。また積層した圧電板が厚みに対する縦の比が0.6以上で厚みに対する幅の比が0.6以下としたが、厚みに対する縦の比が0.6以上あるいは厚みに対する幅の比が0.6以上となっても構わない。ただし上記形状の場合は実施例3、実施例4、実施例5と同様に分割する必要がある。また超音波送受波器は超音波流量計の流量検出部に用いるとしたが、開空間で用いる空中用超音波送受波器として用いても良い。
また、流路2の高さと少なくとも超音波送受波面の流路2の高さに対応する辺の長さは等しいことが望ましいが、等しくなくてもよい。また、背面負荷材40を設けるとしたが、低電圧で駆動するような条件下でさらに高感度な超音波送受波器が必要な場合は背面負荷材40は設ける必要はない。また、圧電板A36、圧電板C38、圧電板C38の超音波送受波面と等しい方向の面および対向する面の電極は全面にある必要はない。また、圧電板A36、圧電板C38、圧電板C38は直方体でなくても円柱形状の複数の圧電体を用いてもよい。また、整合層39はポリオレフィン系多孔膜としたが、被測定流体に適した音響整合材料ならなんでも良い。また、背面負荷材40はフェライトゴムとしたが、不要な振動の減衰効果が得られる材料ならなんでも良い。
(6)実施例6
以下、本発明の第6の実施例について、図面を参照しながら説明する。
本実施例では、実施例1から実施例4に用いる超音波送受波器に対して行った具体的な検討事例を示す。
まず、圧電体の送受波面の縦および横の長さの厚みに対する関係について図8と図9を用いて述べる。図8は本発明の一実施例における超音波流量計に用いる超音波送受波器の構成部品の一つである圧電体の形状である。図8において、60は直方体形状の圧電体、61は圧電体60の送受波面、62は圧電体60の縦、63は圧電体60の横、64は圧電体60の厚みである。図9は図8の形状で、圧電体60に圧電セラミックを用い、厚み64を一定(8mm)とし、送受波面61の縦62および横63の長さを変え有限要素法を用いて行った、インピ−ダンス解析結果である。いずれの図も横軸は周波数、縦軸はインピ−ダンスであり、縦62の長さをL、横63の長さをW、厚み64をTとする。図9(a)はL/T=W/T=0.4、図9(b)はL/T=W/T=0.6、図9(c)はL/T=0.6、W/T=0.8の場合である。
図9(a)において、厚み64での厚み縦振動の共振周波数は180kHz付近に現れている谷の部分で、反共振周波数は260kHz付近に現れる山の部分である。図示された範囲には他の振動モードの共振周波数(山)や反共振周波数(谷)は見られない。図9(b)では図9(a)同様に、厚み縦振動の共振周波数、反共振周波数がはっきり確認できる。また、厚み縦振動に影響を与えない程度離れた周波数(430kHz付近)に他の振動モードの共振周波数、反共振周波数も確認できる。図9(c)では厚み縦振動の共振周波数(180kHz付近)と反共振周波数(260kHz付近)の間に他の振動モ−ドの共振周波数、反共振周波数が見られ、厚み縦振動と他の振動モ−ドが混在していることがわかる。この解析結果より圧電板60の送受波面61の縦62および横63の長さの厚み64に対するすべての比が0.6以下のとき、厚み縦振動を主モ−ドとして最も効率よく利用できることがわかった。
次に図10に示す流路断面に適した寸法の圧電体の検討を行う。例えば流路高さ65を8mm、流路幅66を40mmとする。超音波流量計の計測精度および工業的視点から、圧電体60の縦62と横63の長さを流路高さ65と等しい8mm、厚み64を5mmとした場合を考える。送受波面61の縦62および横63の長さの厚み64に対するすべての比が0.6以下という条件を用いると、例えば送受波面61を少なくとも9個に分割する必要がある。しかし分割するために設ける溝の数が増えると加工時間が長くなり製造コストの増大につながる。そこで溝の本数を少なくし、厚み縦振動と他の不要振動モ−ドを実用上問題ない程度に分離できる形状の検討を行った。
図11は圧電体67に対し2本の溝68を設けた場合で、図12は圧電体72に対し2本の溝73を設けた場合で、再度有限要素法を用い、インピ−ダンス解析を行った。ただしインピ−ダンス解析は、圧電体が完全に分割された図8に示す形状で行った。図13(a)は図11の場合に対応し、縦62および横63はともに4mm(L/T=W/T=0.8)、図13(b)は図12の場合に対応し、横62を2.7mm、縦63を8mm(L/T=0.5、W/T=1.6)とした。比較のため図13(c)には縦62および横63がともに3mm(L/T=W/T=0.6)の解析結果を示す。
図13(a)では図13(c)に比べ、厚み縦振動に対し他の不要な振動モ−ドが近い周波数に存在しているが、その影響は少ないと推定できる。図13(b)では厚み縦振動と他の不要な振動モ−ドが混在していることがわかる。以上の結果より、縦62および横63は4mmの条件でも、実用上問題が少ないと判断し、図11に示すように圧電体67に溝68を設けることとした。
最後に溝の深さの効果を、実際に圧電体にダイサで溝を設け評価した。圧電体67の縦71と横70の長さは8mm、厚み69は5mmとした。また2本の溝68は図13に示すように送受波面の中央付近で交差するように設けた。また2本の溝68の深さは等しくなるように設けた。
図14(a)は溝68の深さが厚み69に対し0%、図14(b)は溝68の深さが厚み69に対し80%、図14(c)は溝68の深さが厚み69に対し90%、図14(d)は完全に切断した場合である。インピ−ダンス軌跡だけでは厚み縦振動と他の不要な振動モ−ドの分離について明確な結論は出せないが、溝68の深さが厚み69に対し90%以上であれば実用上問題ない程度に厚み縦振動と不要な振動モ−ドが分離できると推定できる。
圧電体67の縦71と横70の長さは8mm、厚み69は5mm、十字の溝68を設けた図11に示す形状の圧電体67を用いて超音波送受波器を試作し、特性を評価した。
超音波送受波器の外観図を図15、断面図を図16、超音波パルスを図17に示す。図15において、74は超音波送受波器、75はエポキシ樹脂とガラスバル−ンからなる円板形状の整合層、76は真鍮からなる円筒形のケ−スである。
図16において、77は十字の溝78を設けた圧電セラミックからなる圧電体である。なお、電池電圧程度で駆動することを想定し、高感度な超音波送受波器74を得るため背面負荷材は設けていない。図17は、流路高さ65が8mm、流路幅66が40mmの断面形状を有する流路に対し、一対の超音波送受波器74を対向配置し、一方の超音波送受波器74を3周期の方形波で駆動し、他方の超音波送受波器で受信した超音波パルスである。この超音波パルスより、超音波送受波器74は実用上問題ない特性を有すことを確認した。
以上のように本実施例によれば、溝の深さが送受波面と垂直な方向の厚みに対し90%以上100%未満であれば、実用上問題ない程度に厚み縦振動と他の不要な振動モ−ドを分離できる。また、溝によって分割された超音波送受波面のそれぞれの面の縦および横の長さの厚みに対する全ての比が0.8以下、望ましくは0.6以下の場合、実用上問題ない程度に厚み縦振動と他の不要な振動モ−ドを分離でき、厚み縦振動を主モ−ドとして利用することができる。
なお、整合層75は円板形状としたが、正方形でも楕円形でも構わない。ケース76は円筒形としたが、圧電体77が内側に配置可能ならば他の形状でも構わない。整合層75およびケ−ス76に用いる材質は、使用環境、コスト等により最適な材料を選択すればよいことは言うまでもない。
なお上記実施例において、ケース76は有天筒状に形成して下面開口をケース76と同様の真鍮製蓋板76aで覆い、これら両板を接合して圧電体77を密封してある。したがって圧電体77が電荷を蓄積しスパークを飛ばすようなことがあってもケース76と蓋板76aとによるシールド効果でこれを遮断することができ、測定する流体が可燃性ガスや可燃性の液体であっても安全性を確保することができる。またケース内76と蓋板76aとで囲まれた空間79の空気は乾燥させてあり、よってこの空間79内で露結が生じてこれにより圧電体77のセラミックが溶解し破壊することを防止でき、信頼性を向上させることができる。またケース76の天井部は電極を兼ねさせてリード線の一方は蓋板76aに接続すればよいようにしてあるのでリード線取り出し構成の簡素化も図れる。図中80は蓋板76aに一体化した絶縁体で、もう一方のリード線が引き出しある。
図18は実施例3の変形例、図19は実施例4の変形例を示し、いずれも圧電板を円筒形状としたものである。
以上のように本実施例の第1の超音波流量計は、流路と、この流路中の流体流量を測定する如く配置した超音波送受波器とを備え、上記超音波送受波器は対向する面に電極を設けると共に上記対向する一方の面を送受波面としてその送受波面を前記流路に臨ませた圧電体を有し、上記圧電体は電極方向の振動を主モードとするようその送受波面の縦及び横の長さを設定した構成としてあり、圧電体の厚み縦振動を主モ−ドとして利用するため高感度、高速応答性、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
また本実施例の第2の超音波流量計は、流路と、この流路中の流体流量を測定する如く配置した超音波送受波器とを備え、上記超音波送受波器は対向する面に電極を設けると共に上記対向する一方の面を送受波面としてその送受波面を前記流路に臨ませた圧電体を有し、上記圧電体は送受波面または前記送受波面と対向する面の少なくとも一方を溝で分割するとともに、分割した面に設けた電極の全てを導体で電気的に接続した構成としてあり、溝により厚み縦振動と不要な振動モ−ドを分離できるため、高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
この実施例において、電極方向の振動を主モードとする深さの溝で圧電体を分割した構成としたもの、及び溝の深さが送受波面と垂直な方向の厚みに対し90%以上100%未満としたものは、圧電体を完全に分離しないため圧電体の取り扱いが容易なうえ、厚み縦振動と不要な振動モ−ドが実用するうえで問題ない程度に分離できるため高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
更に、この実施例において、溝によって分割されたそれぞれの面の縦および横の長さを電極方向の振動が主モードとなるように設定したもの、及び溝によって分割されたそれぞれの面の縦および横の長さ厚みに対する比を全て0.8以下としたものは、厚み縦振動と不要な振動モ−ドが実用するうえで問題ない程度に分離できるうえ厚み縦振動を主モ−ドとして利用できるため、高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
また、この実施例において、圧電体に設ける溝を複数としたものは、さらに周波数や寸法の選択幅が広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
本実施例の第3の超音波流量計は、流路と、この流路中の流体流量を測定する如く配置した超音波送受波器とを備え、上記超音波送受波器は対向する面に電極を設けると共に上記対向する一方の面を送受波面としてその送受波面を前記流路に臨ませた複数の圧電体を有し、この各圧電体の送受波面および前記送受波面と対向する面に設けた各電極をそれぞれ導体で接続した構成としてあり、複数の分離された圧電体を有するため、不要な振動モ−ドの影響が少なくなるため高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
この実施例において、各圧電体のそれぞれの面の縦および横の全ての長さを、電極方向の振動が主モードとなるように設定したもの、及び各圧電体の送受波面の縦及び横の長さの厚みに対する比を全て0.8以下としたものは、厚み縦振動を主モ−ドとして利用できるため高感度、高速応答性で、周波数や寸法の選択幅の広い、小型な超音波送受波器を得ることができ、高精度でコンパクトな超音波流量計を得ることができる。
本実施例の第4の超音波流量計は、第1から第3の発明の超音波流量計において、電極に垂直な方向に分極された複数の圧電体を分極方向が互いに反対となるように積層し、この積層してなる圧電体の前記電極方向の振動を主モ−ドとする構成としてあり、超音波送受波器の電気的インピ−ダンスを小さくできるためノイズに対して強い特性を得ることができ、さらに高精度な超音波流量計を得ることができる。
本実施例の第5の超音波流量計は、第1から第4の発明の超音波流量計において、その流路は所定の位置に所定の幅の隙間を有し、所定の幅をおいて配置された2枚の平行平板に挟まれた構成としてあり、流路の断面形状を長方形にすることにより流路断面内での流速分布を単純化でき、得られた流速より流量を高精度に導出できることが可能となり、さらに高精度な超音波流量計を得ることができる。
以上のように、本発明は、可燃性被測定流体が流れる流路と、前記流路に設けられ超音波信号を送受信する超音波送受波器とを備えた超音波流量計であって、前記超音波送受波器は、圧電体と前記圧電体を前記可燃性被測定流体から遮断するケースとで形成されている超音波流量計であり、測定する流体が可燃性ガスや可燃性の液体であっても安全性を確保することができる。
本発明の第1の実施例における超音波流量計の構成を示す図 同第1の実施例における流路に対する超音波送受波器の配置を示す図 同第1の実施例における超音波送受波器の構成を示す図 同第2の実施例における超音波送受波器の構成を示す図 同第3の実施例における超音波送受波器の構成を示す図 同第4の実施例における超音波送受波器の構成を示す図 同第5の実施例における超音波送受波器の構成を示す図 同解析に用いた圧電体の構成を示す図 同第6の実施例における有限要素法によるインピーダンス解析結果を示す図 同第6の実施例における流路断面を示す図 同第6の実施例における2本の溝を構成した圧電体を示す図 同第6の実施例における3本の溝を構成した圧電体を示す図 同第6の実施例における有限要素法によるインピーダンス解析結果を示す図 同第6の実施例における溝を設けた圧電体のインピーダンス測定結果を示す図 同第6の実施例における超音波送受波器の外観構成を示す図 同第6の実施例における超音波送受波器の断面構成を示す図 同第6の実施例における超音波送受波器の超音波パルスを示す図 同第3の実施例における超音波送受波器の変形例の外観構成を示す図 同第4の実施例における超音波送受波器の変形例の外観構成を示す図 従来の超音波流量計の構成を示す図 従来の気体用超音波振動子の構成を示す図
符号の説明
2 流路
74 超音波送受波器
75 整合層
76 ケ−ス
76a 蓋板
77 圧電体
78 溝
79 空間

Claims (1)

  1. 可燃性被測定流体が流れる流路と、前記流路に設けられ超音波信号を送受信する超音波送受波器とを備えた超音波流量計であって、前記超音波送受波器は、圧電体と前記圧電体を前記可燃性被測定流体から遮断するケースとで形成されており、前記ケースの外側に整合層を設け、前記圧電体は送受波面側に溝を有する超音波流量計。
JP2003379759A 1995-12-13 2003-11-10 超音波流量計 Expired - Lifetime JP3543820B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379759A JP3543820B2 (ja) 1995-12-13 2003-11-10 超音波流量計

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32422395 1995-12-13
JP2003379759A JP3543820B2 (ja) 1995-12-13 2003-11-10 超音波流量計

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52192997A Division JP3554336B2 (ja) 1995-12-13 1996-12-12 超音波流量計及び超音波送受波器

Publications (2)

Publication Number Publication Date
JP2004045441A JP2004045441A (ja) 2004-02-12
JP3543820B2 true JP3543820B2 (ja) 2004-07-21

Family

ID=31719148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379759A Expired - Lifetime JP3543820B2 (ja) 1995-12-13 2003-11-10 超音波流量計

Country Status (1)

Country Link
JP (1) JP3543820B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7069779B2 (en) * 2004-06-30 2006-07-04 Codman & Shurtleff, Inc. Thermal flow sensor having an inverted substrate
US7181963B2 (en) * 2004-06-30 2007-02-27 Codman & Shurtleff, Inc Thermal flow sensor having streamlined packaging
US7036369B2 (en) * 2004-06-30 2006-05-02 Codman & Shurtleff, Inc. Thermal flow sensor having recesses in a substrate

Also Published As

Publication number Publication date
JP2004045441A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
JP3554336B2 (ja) 超音波流量計及び超音波送受波器
US5598051A (en) Bilayer ultrasonic transducer having reduced total electrical impedance
GB1423061A (en) Acoustic signal sensing arrangement
JPH083433B2 (ja) 流量計および流量測定法
US3988620A (en) Transducer having enhanced acceleration cancellation characteristics
CN104090032A (zh) 基于气体基1-3型压电复合材料的空耦传感器
Bernstein et al. Advanced MEMS ferroelectric ultrasound 2D arrays
CN106525181A (zh) 双壳体带温补气体超声换能器
JPWO2005095946A1 (ja) 超音波トランスデューサの駆動方法
JP3543820B2 (ja) 超音波流量計
EP1452243A2 (en) Ultrasonic transmitting/receiving device and method of fabricating the same
CN214471088U (zh) 超声波流量计振子及超声波流量计
US3363228A (en) Pressure gradient hydrophone
CN210665625U (zh) 一种具有高灵敏度的双晶复合超声探头
CA3045679C (en) Thickness-planar mode transducers and related devices
CN112697262A (zh) 水听器及其制造方法
JP3629481B2 (ja) 超音波振動子およびそれを用いた超音波流量計
US4471475A (en) Single element cantilever mounted shear wave transducer
JPH08110376A (ja) 超音波送受波器
JPS584075A (ja) 超音波流量計用圧電変換器
CN215932137U (zh) 一种超声波传感器
WO2023054162A1 (ja) 振動伝搬部材、これを用いた振動送受波器、流量計、流速計、濃度計、及び製造方法
JPS60169716A (ja) 流速測定トランスデユ−サ
JP2003315122A (ja) 超音波流量計
CN116625443A (zh) 一种适配超声波立柱对射式流量计的换能器

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

EXPY Cancellation because of completion of term