JP3543802B2 - Method for producing syntactic foam - Google Patents

Method for producing syntactic foam Download PDF

Info

Publication number
JP3543802B2
JP3543802B2 JP2002004457A JP2002004457A JP3543802B2 JP 3543802 B2 JP3543802 B2 JP 3543802B2 JP 2002004457 A JP2002004457 A JP 2002004457A JP 2002004457 A JP2002004457 A JP 2002004457A JP 3543802 B2 JP3543802 B2 JP 3543802B2
Authority
JP
Japan
Prior art keywords
filler
resin
mixture
syntactic foam
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002004457A
Other languages
Japanese (ja)
Other versions
JP2003206372A (en
Inventor
俊郎 広幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002004457A priority Critical patent/JP3543802B2/en
Publication of JP2003206372A publication Critical patent/JP2003206372A/en
Application granted granted Critical
Publication of JP3543802B2 publication Critical patent/JP3543802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、気泡の無い高品質なシンタクチックフォームを工程増等を招かずに製造できるシンタクチックフォームの製造方法に関する。
【0002】
【従来の技術】
樹脂にガラス等からなる中空球状のマイクロバルーンを含有させたシンタクチックフォームは、軽量な成形体として有用である。さらに、チタン酸ストロンチウム等の高誘電率の無機フィラーを添加して所望の誘電率に調整すれば、軽量かつ電気特性に優れた材料が得られ、レーダードームや電波レンズ等に有用である。
【0003】
この樹脂とマイクロバルーンから成るシンタクチックフォームは、通常、樹脂を溶かしてワニス化した後、マイクロバルーンを混合し、その後、溶剤を除去して混合物を加熱硬化するが、この方法では溶剤を完全に除去できないため、成形品に気泡が残存する。
【0004】
そこで、その問題を解決するために、特開平6−157808号公報は、溶剤を除去した粒径150μm以下の粉末樹脂に、その樹脂と同等の粒子径を有するマイクロバルーンを混合し、これを加圧加熱する方法を提案している。
【0005】
【発明が解決しようとする課題】
マイクロバルーンと高誘電率フィラーと云った粒径の大きく異なる2種類の粉末を樹脂に含有させる場合、エポキシ等の液状樹脂にマイクロバルーンとフィラーを同時に添加して混合し、脱泡後、注型する方法があるが、この方法ではマイクロバルーンやフィラーの添加量が多くなると樹脂と粉末が十分に混ざり合わず、混合物が粘土状になる。
【0006】
このため、気泡が混合物の内部に封じ込められて真空脱泡処理を行っても十分に脱泡が進まず、成形体に気泡が発生する。
【0007】
前掲の公報に示される方法は、溶剤を除去した粉末樹脂からの成形であるので、脱泡処理が不要であるが、加圧せずに混合原料を加熱成形して硬化させると、粒子間の空隙が埋らず、成形体中に空隙(気泡)が生じる。従って、成形時の加圧が不可欠であり、成形法が、オートクレーブ成形かプレス成形に限定される。
【0008】
また、この方法は、通常の液状樹脂やワニス、ペレット等の形態の樹脂を使用する場合には不要な樹脂の粉末化の工程が余分に必要になり、コストおよび生産性の面で不利になる。
【0009】
この発明は、上記の問題点を併せて解決できるシンタクチックフォームの製造方法を提供する。
【0010】
【課題を解決するための手段】
この発明では、特開平6−157808号公報が開示している方法の欠点をなくすために、液状樹脂に粒径の異なるフィラーAとフィラーBを混合し、その混合物を加熱硬化させる方法を採る。
【0011】
また、この方法で混合物が粘土状になることを防止するために、原料の混合過程において、先ず粒径の小さいフィラーBを液状樹脂に加えて均一分散させ、その後に粒径の大きいフィラーAを混合する方法を採る。
【0012】
粒径の小さいフィラーBのみを先に混合すると、樹脂とフィラーBが十分に混ざり合って液状になる。その後、粒径の大きいフィラーAを混合すると、混合物は粘土状にならず、液状状態を保つことを見出した。これにより、2種類のフィラーを加えた混合物についても真空脱泡が可能になり、気泡の無い高品質な成形体が得られる。
【0013】
樹脂は、溶剤を含まない液状樹脂であればよく、種類を選ばない。エポキシ樹脂、不飽和ポリエステル樹脂などの液状の熱硬化性樹脂を使用できる。
【0014】
フィラーAとしては、例えば、ガラスの中空球状マイクロバルーンが挙げられる。ガラスのマイクロバルーンに限定されるものではないが、材質が何であるにせよ、その平均粒径が10〜300μmのものを含有させるときにこの発明を適用すると効果的である。その平均粒径が300μmを超えると成形体の表面に凹凸が生じ、製品の種類によっては性能等に影響が出る。また、その平均粒径が10μm未満では、フィラーBとの粒径差が小さすぎてこの発明の効果が十分に発揮されない。このフィラーAの添加量は限定されないが、体積比で20〜80%の場合に効果的である。その量が80%を超えると混合物が液状にならない。また、20%未満ならば2種類のフィラーを同時に添加する従来法でも液状になり、この発明を適用する必要がない。
【0015】
フィラーBとしては、平均粒径が0.1〜10μmの場合に、この発明の効果が顕著である。このフィラーBとしては、チタン酸ストロンチウム、チタン酸バリウム等の高誘電率フィラー、シリカ、炭酸カルシウム、アルミナ等の無機フィラー等が挙げられる。その添加量は限定されないが、体積比で1〜50%のときに効果的である。このフィラーBの添加量が50%を超えると混合物が液状にならず、1%未満では、フィラーBによる特性付与効果が不十分になる。
【0016】
【発明の実施の形態】
−実施例−
下記の樹脂を配合したのち、チタン酸ストロンチウムを加え、100℃で10分撹拌し、その後にマイクロバルーン、エコスフィアS1を加え、100℃で15分間撹拌した。得られた混合物は液状であった。
【0017】
この混合物を100℃、真空下において脱泡処理した後、注型し、150℃で4時間加圧無しで加熱して硬化させた。その結果得られた成形品には気泡が無かった。

Figure 0003543802
【0018】
−比較例−
チタン酸ストロンチウムとエコスフィアS1を粉末状態で混合したものを実施例と同じ樹脂配合物に加えて100℃で15分間撹拌した。このことを除いて実施例と同じ方法で成形体を製造した。その結果、未硬化樹脂とマイクロバルーン及びフィラーの混合物は粘土状になり、真空脱泡ができなかった。また、そのために得られた成形体には多数の気泡があった。
【0019】
【発明の効果】
以上述べたように、この発明の方法によれば、粒径の大きく異なるフィラーを液状樹脂に添加して混合物の液状状態を確保することができ、フィラー添加量の多い混合物も真空脱泡が可能になる。そのため、工程数増を招く粉末樹脂を使わずに、また、加圧を行わずに気泡の無い高品質な成形体(シンタクチックフォーム)が得られる。
【0020】
また、フィラーAとしてマイクロバルーンを、フィラーBとして高誘電率フィラーを用いる場合には、軽量で所望の誘電率に調整された気泡の無い電気特性に優れた成形体が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a syntactic foam capable of producing a high-quality syntactic foam without bubbles without increasing the number of steps.
[0002]
[Prior art]
A syntactic foam containing a hollow spherical microballoon made of glass or the like in a resin is useful as a lightweight molded body. Furthermore, if a desired dielectric constant is adjusted by adding a high dielectric constant inorganic filler such as strontium titanate, a light-weight material having excellent electric properties can be obtained, which is useful for a radar dome, a radio wave lens, and the like.
[0003]
The syntactic foam composed of this resin and microballoons is usually prepared by dissolving the resin to form a varnish, mixing the microballoons, then removing the solvent and heating and curing the mixture. Since it cannot be removed, air bubbles remain in the molded article.
[0004]
Therefore, in order to solve the problem, Japanese Patent Application Laid-Open No. 157808/1994 discloses a method in which a solvent-removed powder resin having a particle diameter of 150 μm or less is mixed with a microballoon having a particle diameter equivalent to that of the resin, and added. A method of pressure heating is proposed.
[0005]
[Problems to be solved by the invention]
When two kinds of powders with very different particle sizes, such as microballoons and high dielectric fillers, are included in the resin, the microballoons and fillers are simultaneously added to a liquid resin such as epoxy, mixed, defoamed, and then cast. However, in this method, if the added amount of the microballoon or the filler is large, the resin and the powder are not sufficiently mixed, and the mixture becomes clay-like.
[0006]
For this reason, even if air bubbles are sealed in the mixture and vacuum defoaming is performed, defoaming does not proceed sufficiently, and air bubbles are generated in the molded article.
[0007]
The method described in the above-mentioned publication is molding from a powdered resin from which a solvent has been removed, so that defoaming treatment is not required. The voids are not filled, and voids (bubbles) are generated in the molded body. Therefore, pressure during molding is indispensable, and the molding method is limited to autoclave molding or press molding.
[0008]
In addition, this method requires an extra resin powdering step when using a resin in the form of a normal liquid resin, varnish, pellet, or the like, which is disadvantageous in terms of cost and productivity. .
[0009]
The present invention provides a method for producing a syntactic foam that can solve the above problems.
[0010]
[Means for Solving the Problems]
In the present invention, in order to eliminate the drawbacks of the method disclosed in JP-A-6-157808, a method is employed in which fillers A and B having different particle sizes are mixed with a liquid resin, and the mixture is cured by heating.
[0011]
Further, in order to prevent the mixture from becoming clay-like by this method, in the process of mixing the raw materials, first, a filler B having a small particle size is added to a liquid resin and uniformly dispersed, and then a filler A having a large particle size is added. Take the method of mixing.
[0012]
If only the filler B having a small particle size is mixed first, the resin and the filler B are sufficiently mixed to become a liquid. Thereafter, it was found that when filler A having a large particle size was mixed, the mixture did not become clay-like but kept in a liquid state. This enables vacuum defoaming even for a mixture to which two types of fillers are added, so that a high-quality molded article without bubbles can be obtained.
[0013]
The resin may be a liquid resin containing no solvent, and may be of any type. Liquid thermosetting resins such as epoxy resins and unsaturated polyester resins can be used.
[0014]
Examples of the filler A include hollow spherical microballoons made of glass. Although the present invention is not limited to glass microballoons, it is effective to apply the present invention to a material having an average particle diameter of 10 to 300 μm, regardless of the material. If the average particle size exceeds 300 μm, irregularities are formed on the surface of the molded product, and the performance is affected depending on the type of the product. If the average particle size is less than 10 μm, the difference in particle size from the filler B is too small, and the effect of the present invention cannot be sufficiently exhibited. The amount of the filler A is not limited, but is effective when the volume ratio is 20 to 80%. If the amount exceeds 80%, the mixture does not become liquid. If it is less than 20%, it becomes liquid even in the conventional method in which two kinds of fillers are added simultaneously, and there is no need to apply the present invention.
[0015]
When the average particle size of the filler B is 0.1 to 10 μm, the effect of the present invention is remarkable. Examples of the filler B include a high dielectric constant filler such as strontium titanate and barium titanate, and an inorganic filler such as silica, calcium carbonate and alumina. Although the amount of addition is not limited, it is effective when the volume ratio is 1 to 50%. When the addition amount of the filler B exceeds 50%, the mixture does not become liquid, and when the addition amount is less than 1%, the effect of imparting properties by the filler B becomes insufficient.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
-Example-
After blending the following resin, strontium titanate was added, and the mixture was stirred at 100 ° C. for 10 minutes. Thereafter, microballoons and Ecosphere S1 were added, and the mixture was stirred at 100 ° C. for 15 minutes. The resulting mixture was liquid.
[0017]
This mixture was subjected to a defoaming treatment at 100 ° C. under vacuum, then cast, and cured by heating at 150 ° C. for 4 hours without pressure. The resulting molded article had no bubbles.
Figure 0003543802
[0018]
-Comparative example-
A mixture of strontium titanate and Ecosphere S1 in a powder state was added to the same resin composition as in the example, and the mixture was stirred at 100 ° C. for 15 minutes. Except for this, a molded article was produced in the same manner as in the example. As a result, the mixture of the uncured resin, the microballoon, and the filler became clay-like, and could not be vacuum-defoamed. Further, the molded article obtained therefor had many bubbles.
[0019]
【The invention's effect】
As described above, according to the method of the present invention, fillers having significantly different particle diameters can be added to a liquid resin to ensure a liquid state of a mixture, and a mixture having a large amount of fillers can be vacuum defoamed. become. Therefore, a high-quality molded product (syntactic foam) free of air bubbles can be obtained without using a powdered resin that increases the number of steps and without applying pressure.
[0020]
When a microballoon is used as the filler A and a high-dielectric filler is used as the filler B, a molded article that is lightweight and has excellent electric properties without bubbles adjusted to a desired dielectric constant can be obtained.

Claims (2)

平均粒子径が10〜300μmのフィラーAと、平均粒子径が0.1〜10μmのフィラーBと、未硬化状態の液状熱硬化性樹脂の混合物で形成されるシンタクチックフォームの製造方法において、原料の混合過程において先ずフィラーBを液状樹脂に加えて均一分散させ、その後にフィラーAを加えて混合することを特徴とするシンタクチックフォームの製造方法。In a method for producing a syntactic foam formed of a mixture of a filler A having an average particle diameter of 10 to 300 μm, a filler B having an average particle diameter of 0.1 to 10 μm, and an uncured liquid thermosetting resin, Wherein the filler B is first added to the liquid resin to be uniformly dispersed in the mixing step, and then the filler A is added and mixed. フィラーAがマイクロバルーンであり、フィラーBが高誘電率フィラーであることを特徴とする請求項1記載のシンタクチックフォームの製造方法。The method for producing a syntactic foam according to claim 1, wherein the filler A is a microballoon and the filler B is a high dielectric constant filler.
JP2002004457A 2002-01-11 2002-01-11 Method for producing syntactic foam Expired - Fee Related JP3543802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002004457A JP3543802B2 (en) 2002-01-11 2002-01-11 Method for producing syntactic foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004457A JP3543802B2 (en) 2002-01-11 2002-01-11 Method for producing syntactic foam

Publications (2)

Publication Number Publication Date
JP2003206372A JP2003206372A (en) 2003-07-22
JP3543802B2 true JP3543802B2 (en) 2004-07-21

Family

ID=27643778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004457A Expired - Fee Related JP3543802B2 (en) 2002-01-11 2002-01-11 Method for producing syntactic foam

Country Status (1)

Country Link
JP (1) JP3543802B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717368B2 (en) * 2010-07-07 2015-05-13 横浜ゴム株式会社 Method for producing syntactic foam
JP2018520313A (en) * 2015-06-12 2018-07-26 スリーエム イノベイティブ プロパティズ カンパニー Buoyancy module
CN106496627B (en) * 2016-10-12 2020-01-14 武汉理工大学 Negative pressure foaming method for preparing epoxy resin foam by taking air as foaming agent

Also Published As

Publication number Publication date
JP2003206372A (en) 2003-07-22

Similar Documents

Publication Publication Date Title
CN111164047B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
KR960007474B1 (en) Open-cell porous material, method for preparing the material and mold for pressure-cast-molding ceramic article formed from the material
KR20160117472A (en) Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
JPS61501211A (en) Fiber-reinforced syntactic foam composite and its foaming method
JP6516553B2 (en) Hexagonal boron nitride powder
JP3543802B2 (en) Method for producing syntactic foam
US4267402A (en) Polymer concrete body with vibration molded threads, method of making same, and electrical insulator provided with the same
JP2006022316A (en) Filler for use in epoxy resin composition
US3943217A (en) Process for manufacturing bodies of various shapes from inorganic powders
JPS6155123A (en) Producion of powdered epoxy resin composition
EP0579088A1 (en) Producing process of an epoxy-resin mass containing a magnetisable filter
JPH06215618A (en) Manufacture of conductive resin composition containing tic whiskers
HUT72759A (en) Gelled reactive resin compositions
JPH06287055A (en) Production of sintered article of ceramic
JP7072220B2 (en) Method for manufacturing unfired silica solidified body
JPS594630A (en) Resin composition
RU2057379C1 (en) Polymeric magnet manufacturing process
CN1757078A (en) Process for producing oxide magnetic material based permanent magnet
JPH0217577B2 (en)
JPH1027871A (en) Manufacture of epoxy resin molding material for semiconductor sealing
JP2000077220A (en) Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JPH11124442A (en) Production of plastic composite machine part
JPS60206300A (en) Diaphragm for electro-acoustic transducer
JPH056581B2 (en)
JPS60226300A (en) Diaphragm member for electroacoustic transducer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees