JP3542488B2 - Image forming device - Google Patents

Image forming device Download PDF

Info

Publication number
JP3542488B2
JP3542488B2 JP03236498A JP3236498A JP3542488B2 JP 3542488 B2 JP3542488 B2 JP 3542488B2 JP 03236498 A JP03236498 A JP 03236498A JP 3236498 A JP3236498 A JP 3236498A JP 3542488 B2 JP3542488 B2 JP 3542488B2
Authority
JP
Japan
Prior art keywords
image
photosensitive drum
charging
transfer
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03236498A
Other languages
Japanese (ja)
Other versions
JPH11218975A (en
Inventor
常見  健夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03236498A priority Critical patent/JP3542488B2/en
Publication of JPH11218975A publication Critical patent/JPH11218975A/en
Application granted granted Critical
Publication of JP3542488B2 publication Critical patent/JP3542488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、像担持体上に形成された潜像に現像剤を付着させて可視化する、電子写真方式や静電記録方式などの複写機、プリンタ等の画像形成装置に関するものである。
【0002】
【従来の技術】
従来、画像形成装置としては種々のものが知られているが、つぎに示すようなレーザービームプリンタが広く実用に供されている。
【0003】
このレーザービームプリンタは、帯電手段で一様に帯電された像担持体上の表面を、ディジタル画像信号に対応してレーザ発光素子から発光されたレーザービームで走査して、像担持体の表面に静電潜像を形成し、この静電潜像を現像装置により現像剤(トナーまたはトナーとキャリア)を用いて現像して可視化し、得られたトナー像を転写手段で記録材に転写し、その後、定着手段でトナー像を記録材に定着して出力するものである。
【0004】
【発明が解決しようとする課題】
上記従来のプリンタでは、帯電手段や転写手段での放電による像担持体表面のダメージや、クリーニング手段、特にいわゆるクリーニングブレードでの像担持体表面の摺擦により、画像形成を繰り返すにともない、像担持体表面の感光層に小さな傷やミクロな凹凸が発生し、像担持体の表面粗さが大きくなる。
【0005】
像担持体の表面粗さが大きくなると、一般にトナーと像担持体との吸着力が強くなる。そのメカニズムは完全には解明されていないが、像担持体表面のトナーとの接触面積が大きくなるため、トナーの像担持体表面への物理的吸着が強くなると考えられる。
【0006】
トナーと像担持体との吸着力が強くなると、像担持体上のトナー像の転写材への転写効率が低下し、その結果、画像濃度が低下したり、文字、細線などのラインの中央部が転写しなくなる、いわゆる中抜け現象が顕著に発生する問題があった。
【0007】
本発明の目的は、画像形成の繰り返しにともなって、像担持体の表面粗さが大きくなっても、トナー像の転写効率の低下や中抜けの発生を抑制することを可能とした画像形成装置を提供することである。
【0008】
【課題を解決するための手段】
上記目的は、本発明にかかる画像形成装置にて達成される。要約すれば、本発明の一態様によれば、帯電手段により像担持体の表面を帯電し、像露光して静電潜像を形成し、この潜像を現像手段により現像剤を用いて現像して可視化し、得られた可視画像を前記像担持体の表面に接触する転写ローラにより転写材に転写する画像形成装置において、
前記像担持体の表面を形成する感光層の膜厚を膜厚測定手段により測定して、前記測定された感光層の膜厚が薄くなるに従って、転写ローラ表面の周速と像担持体表面の周速の差を大きくすることを特徴とする画像形成装置が提供される。
本発明の他の態様によれば、帯電手段により像担持体の表面を帯電し、像露光して静電潜像を形成し、この潜像を現像手段により現像剤を用いて現像して可視化し、得られた可視画像を前記像担持体の表面に接触する転写ローラにより転写材に転写する画像形成装置において、
前記像担持体の表面を形成する感光層の膜厚を膜厚測定手段により測定して、前記測定された感光層の膜厚が薄くなるに従って、前記像担持体への前記転写ローラの当接圧を小さくすることを特徴とする画像形成装置が提供される。
【0009】
上記本発明にて、好ましくは、前記帯電手段は像担持体表面に接触する帯電ローラであり、非画像形成時、前記帯電ローラに直流電圧またはこれに交流電圧を重畳した帯電バイアスを印加し、前記膜厚測定手段は、そのとき流れる帯電バイアスの直流成分の電流値を検出することにより、前記感光層の膜厚を測定する。
【0010】
【発明の実施の形態】
以下、本発明の実施例を図面に即して詳細に説明する。
【0011】
実施例1
図1は、本発明の画像形成装置の一実施例を示す概略構成図である。
【0012】
本発明が適用できる画像形成装置は、感光体、誘電体等の像担持体、たとえば感光ドラム10の表面を帯電ローラ11により一様帯電し、その感光ドラム10の表面上に電子写真方式、静電記録方式等によって画像情報信号に対応した像露光12を行って、画像情報信号に対応した静電潜像を形成し、この静電潜像を現像剤を用いた現像手段13によって現像して、潜像をトナー像として可視化し、このトナー像を転写ローラ14で記録材15に転写し、最後に定着手段18でトナー像を記録材15に定着して、出力するものである。
【0013】
現像手段13は、現像剤担持体として感光ドラム10と対向配置された現像スリーブ16を有し、この現像スリーブ16上に現像剤(トナーまたはトナーとキャリア)を担持して、感光ドラム10と対向した現像部に搬送する。そして現像バイアス電源17で現像スリーブ16に少なくとも直流電圧を含む現像バイアス電圧を印加することにより、現像スリーブ16上のトナーまたは現像剤中のトナーを感光ドラム10の表面上に形成された静電潜像に付着させて現像し、潜像をトナー像として可視化する。
【0014】
一次帯電手段や転写手段として用いられている帯電手段は、コロナ放電を用いたコロナ帯電器が広く用いられてきたが、近年、環境問題に対する意識の高まりから、コロナ帯電で発生するオゾン量を著しく低減可能な帯電ローラが、特に小型プリンターや低速複写機において使用される。
【0015】
本実施例では、上述したように、一次帯電手段および転写手段として帯電ローラ11および転写ローラ14を使用している。これら帯電ローラ11および転写ローラ14には、それぞれ帯電バイアス電源30および転写バイアス電源20から所定のバイアスが印加される。
【0016】
帯電ローラ11は、金属の芯金の周りに適度な抵抗と弾性を有するゴム層を形成してなっており、コロナ帯電器に比べてバイアスの総電流、電圧の低減も可能である。ゴム材料としては、エピクロルヒドリンゴム、ニトリルゴム、ウレタンゴムなどに各種の導電材を混合、分散して、所望の抵抗値にしたものが使用可能である。
【0017】
本実施例では、帯電ローラ11として、抵抗値が106 Ω(200V印加時)程度、硬度が約60度(アスカーC硬度、500g加重)のものを用いた。帯電ローラ11の直径は16mm、長さは300mmである。
【0018】
帯電バイアス電源30は、直流電圧と交流電圧を重畳して帯電ローラ11に印加できるようになっている。本実施例では、帯電バイアス30により帯電ローラ11に、周波数約1kHz、電圧約2kVppの正弦波電圧に、約−700Vの直流電圧を重畳した電圧を印加することにより、感光ドラム10の表面を約−700Vの一定電位に帯電させた。
【0019】
本実施例によれば、帯電バイアス電源30にドラム膜厚測定回路19が接続されている。この膜厚測定回路19は、電源30による帯電バイアスの印加で帯電ローラ11に流れた直流成分の電流値を測定するようになっており、後述するように、その電流値から感光ドラム10の感光層膜厚が求められる。この膜厚測定回路19の出力側は転写バイアス電源20に接続されている。
【0020】
前述したように、画像形成が繰り返され、画像形成装置の使用が進むと、帯電ローラ11や転写ローラ14による放電で感光ドラム10の表面がダメージを受け、またクリーナ21のクリーニングブレード21aによる転写残りのトナーの掻き取りで、感光ドラム10の表面が摺擦されることにより、感光ドラム10の表面が粗され、かつ徐々に削られていく。
【0021】
そこで、画像形成枚数と感光ドラム10表面の感光層膜厚の変化および帯電ローラ11に流れた直流成分電流値との関係を調べるために、図1の画像形成装置を用いて、30×103 枚(3万枚)の間欠画像形成の耐久試験を行った。この間、帯電ローラ11の直流成分電流値Idc[mA]は、上記のドラム膜厚測定回路19により、5000枚ごとの前回転時(感光ドラム10が回転し始めてから画像形成を始めるまでの時間)に測定した。また感光層の膜厚[μm]は、渦電流を用いた膜厚計により別途、1万枚ごとに測定した。結果を図2に示す。
【0022】
この図2の画像形成枚数と感光層膜厚の変化および直流成分電流値との関係、および膜厚が既知の種々の感光ドラムについて調べた膜厚と直流成分電流値との関係から、感光層膜厚と直流成分電流値との関係を調べると、図3のように、感光層膜厚と直流成分電流値とは1対1の関係にある。すなわち、直流成分電流値によって感光ドラム10の感光層膜厚が求められることが分かる。
【0023】
一方、感光ドラム10の表面粗さRz[μm](10点平均粗さ)は、図4のように、画像形成枚数が増すにつれて徐々に大きくなっている。前述したように、感光ドラム10の表面が粗れると、トナーと感光ドラム10との物理的吸着力が強まるために、感光ドラム10上のトナー像の転写材への転写効率の低下や、線画像等の中抜け発生が引き起こされる。
【0024】
これらを抑制するには、転写電界を大きくして、トナーに働く転写材方向への静電気力を大きくしてやればよく、従って転写電流を大きくしてやればよい。しかし、画像形成の初期から過剰な転写電流を流すと、感光ドラム10表面へのトナーの融着や、感光ドラム10表面の傷、削れ、あるいは感光ドラム10表面のメモリ(ドラムメモリ)などの弊害がもたらされる。
【0025】
そこで、本実施例では、非画像形成時に、膜厚測定回路19により感光ドラム10の感光層膜厚を測定し、膜厚が薄くなるに従って(すなわち感光ドラム10の表面粗さが大きくなるにつれて)、転写電流を徐々に大きくなるように、測定回路19の測定出力に基づき転写バイアス電源20を制御した。具体的には、感光ドラム10の膜厚に対して転写電流Itrを、図5に示すように制御した。
【0026】
本実施例に従い間欠3万枚の画像形成を行ったときの画像の中抜け、画像濃度(O.D.=Optical Density)および感光ドラム10表面の傷等の結果を表1に示す。比較のために、膜厚による転写電流の増加制御を行わなかった場合の結果も表1に示す。表1において、符号は、○:非常に良好、□:かなり良好、△:普通ないしやや不良、×:不良を意味する。
【0027】
【表1】

Figure 0003542488
【0028】
本実施例1では、感光ドラム10の感光層膜厚が薄くなるに従って、転写電流を徐々に大きくなるように制御したので、表1に示されるように、3万枚の画像形成によっても画像の中抜けがほとんど悪化していないことが分かる。また、転写電流を増加することによって、感光ドラム10の傷の発生はわずかに悪化するものの、転写効率の低下を抑制して画像濃度を維持することができている。
【0029】
以上の実施例では、帯電ローラ11に印加する帯電バイアスは直流電圧に交流電圧を重畳したものとしたが、本発明はこれに限られず、直流電圧のみを印加してもよく、同様な効果を得ることができる。
【0030】
実施例2
図6は、本発明の画像形成装置の他の実施例を示す概略構成図である。
【0031】
本実施例では、感光ドラム10の感光層膜厚に応じて制御する転写条件として、(1)転写電流の増加の他に、(2)転写ローラ14の感光ドラム10に対する表面の移動速度の差、すなわち周速の差も加えた。
【0032】
これに対応して、転写ローラ14に駆動装置22を設けて、転写ローラ14の回転を感光ドラム10の従動回転でなく、駆動装置22により駆動回転するようにした。本実施例における感光ドラム10の膜厚測定法方法などその他の点は実施例1と同様で、図6において図1に付した符号と同一の符号は同一の部材を示す。
【0033】
駆動装置22による転写ローラ14の駆動回転での周速差は、具体的には、転写ローラ14が感光ドラム10よりも約1.5%速くなるように設定した。そして、感光ドラム10の感光層膜厚が若干薄くなる程度の画像形成枚数104 枚(1万枚)までは、転写ローラ14を感光ドラム10と等速とし、画像形成枚数が104 枚以降は、感光ドラム10に対する転写ローラ14の周速差を1.5%に制御した。
【0034】
本実施例における画像の中抜け防止等の結果を先の表1に示す。
【0035】
表1に示されるように、本実施例2では、感光ドラム10の傷発生が、実施例1のときよりも少し悪くなるものの、中抜けの発生は実施例1よりもさらに改善された。
【0036】
実施例3
図7は、本発明の画像形成装置のさらに他の実施例を示す概略構成図である。
【0037】
本実施例では、感光ドラム10の感光層膜厚に応じて制御する転写条件として、(1)転写電流の増加、(2)転写ローラ14の感光ドラム10に対する周速差の他に、図7に示すように、(3)バネ部材23による転写ローラ14の感光ドラム10への当接圧を可変にして、感光ドラム10の感光層の膜厚が減少するに従って、転写ローラ14の当接圧を低減できるようにした。
【0038】
具体的には、感光ドラム10の感光層の膜厚が若干薄くなる程度の画像形成枚数104 枚(1万枚)までは、転写ローラ14の感光ドラム10への当接圧(線圧)は、初期の15kgf/cmを維持し、画像形成枚数が104 枚以降は当接圧を減少して、5kgf/cmの軽圧とした。
【0039】
転写ローラ14の感光ドラム10との周速差は、実施例2と同様、駆動装置2での転写ローラ14の回転駆動により、転写ローラ14が感光ドラム10よりも約1.5%速くなるように設定し、画像形成枚数104 枚までは等速、画像形成枚数が104 枚以降は周速差1.5%とする。
【0040】
本実施例における結果を先の表に示す。
【0041】
感光ドラム10の膜厚が画像形成装置の使用にともなって薄くなり、かつ感光ドラム10の表面粗さが大きくなるのに対し、表1に示すように、転写電流を初期の15μAから徐々に増していくことによって、転写効率は低下することがなく、従って本実施例3でも、画像濃度(O.D.)が実施例1、2同様に安定している結果が得られた。
【0042】
また中抜けレベルは初期から画像形成枚数3×104 まで常に実用上問題なく、さらに転写ローラ14の当接力を軽くしたので、感光ドラム10表面の傷の発生も抑制できた。また表1に示さなかったが、感光ドラム10の表面の傷防止とともに、感光ドラム10表面へのトナーの融着の発生も抑制できた。
【0043】
なお、本発明の実施例において、感光層膜厚の測定は、1万枚ごとの前回転時に帯電ローラに直流電圧と交流電圧を重畳した帯電バイアスを印加し、そのとき流れる直流成分の電流値を検出することにより行った。
【0044】
しかし、感光層膜厚の測定方法やタイミングは、上記実施例に限定するものではない。タイミングとしては、前回転時や後回転時(感光ドラムの画像形成プロセスが終了してから、感光ドラムの回転が止まるまでの時間)を用いてもよい。
【0045】
また測定間隔は短いほど正確な制御を行うことができるが、あまり頻繁に測定しても膜厚の変化は小さく、また測定時に印加する帯電バイアスにより感光ドラムの表面がダメージを受けて削れやすくなる。
【0046】
原稿自動送り装置やソータを用いて連続的に多量の画像形成を行う場合には、途中で画像形成を止めることなく一連のジョブの最初か最後に行えばよい。
【0047】
また測定は一定ごとに行ってもよいし、多数枚画像形成の初期やある枚数以後のみ頻度を上げるなどしてもよい。
【0048】
実施例4
本実施例は、実施例3において、転写ローラ14の回転速度を感光ドラム10と等速(すなわち感光ドラムに従動)とし、感光ドラム10の膜厚の減少にともなって制御する転写条件を、転写電流の増加と転写ローラ10の当接力の減少の2つとした。
【0049】
このような本実施例によれば、中抜けレベルは実施例3に比較して若干低下する可能性があるが、転写ローラ14の当接力が軽くなることと、感光ドラム10との周速差がないために、感光ドラム10表面のダメージが一層少なく、感光ドラム10表面の傷やトナー融着がより発生しにくい。また転写ローラ14は感光ドラム10に対して従動回転とするので、画像形成装置の構成が簡単になる。
【0050】
以上では、画像形成装置の転写条件を制御したが、画像形成装置が分離帯電器や除電針を用いる場合には、それらのバイアス条件も制御対象とすることができる。
【0051】
【発明の効果】
以上説明したように、本発明によれば、像担持体の一次帯電に使用する帯電ローラ等の帯電手段に直流電圧またはこれに交流電圧を重畳した帯電バイアスを印加し、そのとき帯電手段に流れる直流成分の電流値を検出するなどの方法により、像担持体表面の感光層の膜厚を測定し、感光層の膜厚に応じて、像担持体上に形成したトナー像を転写材に転写する転写条件の、像担持体に対する転写ローラの周速差および転写ローラの像担持体への当接圧などの少なくとも1つを変更するようにしたので、画像形成の繰り返しによって像担持体の表面粗さが大きくなっても、トナー像の転写効率の低下や中抜けの発生を抑制して、濃度が十分で高品質な画像を得ることができ、また像担持体表面のトナー融着や傷などの弊害も防止される。

【図面の簡単な説明】
【図1】本発明の画像形成装置の一実施例を示す概略構成図である。
【図2】画像形成装置での画像形成枚数に対する感光ドラムの感光層膜厚の変化および帯電ローラから流れる直流成分電流値の変化を示すグラフである。
【図3】感光ドラムの感光層膜厚と帯電ローラから流れる直流成分電流値の関係を示すグラフである。
【図4】画像形成装置での画像形成枚数に対する感光ドラムの表面粗さの変化を示すグラフである。
【図5】図1の画像形成装置での画像形成における感光ドラムの感光層膜厚の減少に対する転写電流の制御法を示すグラフである。
【図6】本発明の画像形成装置の他の実施例を示す概略構成図である。
【図7】本発明の画像形成装置のさらに他の実施例を示す概略構成図である。
【符号の説明】
10 感光ドラム
11 帯電ローラ
14 転写ローラ
19 ドラム膜厚測定回路
20 転写バイアス電源
23 バネ部材
30 帯電バイアス電源[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an image forming apparatus such as a copying machine of an electrophotographic system or an electrostatic recording system or a printer for visualizing a latent image formed on an image carrier by attaching a developer thereto.
[0002]
[Prior art]
Conventionally, various types of image forming apparatuses are known, and the following laser beam printers are widely used in practice.
[0003]
This laser beam printer scans the surface of the image carrier uniformly charged by the charging means with a laser beam emitted from a laser light emitting element in accordance with a digital image signal, and scans the surface of the image carrier. An electrostatic latent image is formed, the electrostatic latent image is developed by a developing device using a developer (toner or toner and carrier) and visualized, and the obtained toner image is transferred to a recording material by a transfer unit; After that, the toner image is fixed on the recording material by a fixing unit and output.
[0004]
[Problems to be solved by the invention]
In the above-described conventional printer, image formation is repeated due to damage to the surface of the image carrier due to discharge in the charging unit and transfer unit, and rubbing of the surface of the image carrier with a cleaning unit, particularly a so-called cleaning blade. Small scratches and microscopic irregularities occur on the photosensitive layer on the body surface, and the surface roughness of the image carrier increases.
[0005]
As the surface roughness of the image carrier increases, the attraction between the toner and the image carrier generally increases. Although the mechanism is not completely elucidated, it is considered that since the contact area of the surface of the image carrier with the toner increases, the physical adsorption of the toner to the surface of the image carrier increases.
[0006]
When the attraction force between the toner and the image carrier increases, the transfer efficiency of the toner image on the image carrier to the transfer material decreases. Is not transferred, that is, there is a problem that a so-called hollow phenomenon occurs remarkably.
[0007]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an image forming apparatus capable of suppressing a decrease in transfer efficiency of toner images and the occurrence of voids even when the surface roughness of an image carrier increases with the repetition of image formation. It is to provide.
[0008]
[Means for Solving the Problems]
The above object is achieved by an image forming apparatus according to the present invention. In summary, according to one aspect of the present invention, the surface of the image carrier is charged by the charging unit , the image is exposed to form an electrostatic latent image, and the latent image is developed by the developing unit using a developer. In an image forming apparatus that transfers the obtained visible image to a transfer material by a transfer roller that contacts the surface of the image carrier,
The film thickness of the photosensitive layer forming the surface of the image carrier is measured by a film thickness measuring means, and as the measured film thickness of the photosensitive layer decreases, the peripheral speed of the transfer roller surface and the image carrier surface An image forming apparatus characterized in that a difference in peripheral speed is increased.
According to another aspect of the present invention , the surface of the image carrier is charged by a charging unit, an image is exposed to form an electrostatic latent image, and the latent image is developed by a developing unit using a developer to be visualized. Then, in an image forming apparatus that transfers the obtained visible image to a transfer material by a transfer roller that contacts the surface of the image carrier,
The thickness of the photosensitive layer forming the surface of the image carrier is measured by a film thickness measuring means, and as the measured thickness of the photosensitive layer decreases, the transfer roller comes into contact with the image carrier. An image forming apparatus characterized by reducing pressure is provided.
[0009]
In the present invention, preferably, the charging unit is a charging roller that comes into contact with the surface of the image carrier, and when a non-image is formed, a DC voltage or a charging bias obtained by superimposing an AC voltage on the charging roller is applied to the charging roller, The film thickness measuring means measures the film thickness of the photosensitive layer by detecting the current value of the DC component of the charging bias flowing at that time.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
Example 1
FIG. 1 is a schematic configuration diagram showing an embodiment of the image forming apparatus of the present invention.
[0012]
An image forming apparatus to which the present invention can be applied includes an image carrier such as a photoconductor or a dielectric, for example, the surface of a photosensitive drum 10 is uniformly charged by a charging roller 11, and the surface of the photosensitive drum 10 is electrophotographically and statically charged. An image exposure 12 corresponding to the image information signal is performed by an electric recording method or the like to form an electrostatic latent image corresponding to the image information signal, and the electrostatic latent image is developed by a developing unit 13 using a developer. The latent image is visualized as a toner image, the toner image is transferred to the recording material 15 by the transfer roller 14, and finally, the toner image is fixed to the recording material 15 by the fixing unit 18 and output.
[0013]
The developing means 13 has a developing sleeve 16 disposed opposite to the photosensitive drum 10 as a developer carrying member, and carries a developer (toner or toner and carrier) on the developing sleeve 16 to face the photosensitive drum 10. Transported to the developed developing unit. By applying a developing bias voltage including at least a DC voltage to the developing sleeve 16 by the developing bias power supply 17, the toner on the developing sleeve 16 or the toner in the developer is electrostatically charged on the surface of the photosensitive drum 10. The latent image is visualized as a toner image by attaching to the image and developing.
[0014]
Corona chargers using corona discharge have been widely used as primary charging means and transfer means.However, in recent years, the amount of ozone generated by corona charging has been significantly reduced due to increasing awareness of environmental issues. Reducible charging rollers are used especially in small printers and low speed copiers.
[0015]
In this embodiment, as described above, the charging roller 11 and the transfer roller 14 are used as the primary charging unit and the transfer unit. A predetermined bias is applied to the charging roller 11 and the transfer roller 14 from a charging bias power supply 30 and a transfer bias power supply 20, respectively.
[0016]
The charging roller 11 has a rubber layer having appropriate resistance and elasticity formed around a metal core, and can reduce the total bias current and voltage as compared with the corona charger. As the rubber material, a material having a desired resistance value obtained by mixing and dispersing various conductive materials in epichlorohydrin rubber, nitrile rubber, urethane rubber, or the like can be used.
[0017]
In the present embodiment, a charging roller 11 having a resistance value of about 10 6 Ω (when 200 V is applied) and a hardness of about 60 degrees (Asker C hardness, 500 g weight) was used. The charging roller 11 has a diameter of 16 mm and a length of 300 mm.
[0018]
The charging bias power supply 30 can superimpose a DC voltage and an AC voltage and apply the DC voltage and the AC voltage to the charging roller 11. In the present embodiment, the surface of the photosensitive drum 10 is applied to the charging roller 11 by applying a voltage obtained by superimposing a DC voltage of about -700 V on a sine wave voltage of about 1 kHz and a voltage of about 2 kVpp to the charging roller 11 by the charging bias 30. It was charged to a constant potential of -700V.
[0019]
According to the present embodiment, the drum thickness measuring circuit 19 is connected to the charging bias power supply 30. The film thickness measuring circuit 19 measures a current value of a DC component flowing to the charging roller 11 by application of a charging bias from the power supply 30. As described later, the photosensitive drum 10 The layer thickness is required. The output side of the film thickness measuring circuit 19 is connected to a transfer bias power supply 20.
[0020]
As described above, as the image formation is repeated and the use of the image forming apparatus progresses, the surface of the photosensitive drum 10 is damaged by the discharge of the charging roller 11 and the transfer roller 14, and the transfer residual by the cleaning blade 21a of the cleaner 21 is removed. The surface of the photosensitive drum 10 is rubbed by the scraping of the toner, so that the surface of the photosensitive drum 10 is roughened and gradually scraped.
[0021]
Therefore, in order to examine the relationship between the DC component value of the current that flowed to the change and the charging roller 11 of the photosensitive layer thickness of the image formation amount and the photosensitive drum 10, using the image forming apparatus of FIG. 1, 30 × 10 3 A durability test for intermittent image formation of 30,000 sheets was performed. During this time, the DC component current value Idc [mA] of the charging roller 11 is determined by the drum film thickness measuring circuit 19 at the time of pre-rotation every 5,000 sheets (time from the start of rotation of the photosensitive drum 10 to the start of image formation). Was measured. The film thickness [μm] of the photosensitive layer was separately measured every 10,000 sheets by a film thickness meter using eddy current. FIG. 2 shows the results.
[0022]
From the relationship between the number of formed images and the change in the thickness of the photosensitive layer and the DC component current value in FIG. 2 and the relationship between the film thickness and the DC component current value of various photosensitive drums having known film thicknesses, Examining the relationship between the film thickness and the DC component current value, there is a one-to-one relationship between the photosensitive layer thickness and the DC component current value as shown in FIG. That is, it is understood that the thickness of the photosensitive layer of the photosensitive drum 10 can be obtained from the DC component current value.
[0023]
On the other hand, the surface roughness Rz [μm] (10-point average roughness) of the photosensitive drum 10 gradually increases as the number of formed images increases, as shown in FIG. As described above, when the surface of the photosensitive drum 10 is rough, the physical attraction between the toner and the photosensitive drum 10 is increased, so that the transfer efficiency of the toner image on the photosensitive drum 10 to the transfer material is reduced, Occurrence of a hollow image or the like is caused.
[0024]
To suppress these, the transfer electric field may be increased to increase the electrostatic force acting on the toner in the direction of the transfer material, and therefore the transfer current may be increased. However, if an excessive transfer current is applied from the initial stage of image formation, adverse effects such as fusion of toner on the surface of the photosensitive drum 10, scratches and abrasion on the surface of the photosensitive drum 10, and memory (drum memory) on the surface of the photosensitive drum 10 are caused. Is brought.
[0025]
Therefore, in the present embodiment, during non-image formation, the thickness of the photosensitive layer of the photosensitive drum 10 is measured by the thickness measuring circuit 19, and as the thickness decreases (that is, as the surface roughness of the photosensitive drum 10 increases). The transfer bias power supply 20 was controlled based on the measurement output of the measurement circuit 19 so that the transfer current gradually increased. Specifically, the transfer current Itr was controlled with respect to the thickness of the photosensitive drum 10 as shown in FIG.
[0026]
Table 1 shows the results of image dropout, image density (OD = Optical Density), scratches on the surface of the photosensitive drum 10, and the like when forming 30,000 sheets of images intermittently according to this embodiment. For comparison, Table 1 also shows the results when the increase control of the transfer current by the film thickness was not performed. In Table 1, the symbols ○: very good, □: fairly good, Δ: normal or slightly poor, ×: poor.
[0027]
[Table 1]
Figure 0003542488
[0028]
In the first embodiment, the transfer current is controlled so as to gradually increase as the thickness of the photosensitive layer of the photosensitive drum 10 becomes thinner. It can be seen that the hollowing has hardly deteriorated. Further, by increasing the transfer current, although the occurrence of scratches on the photosensitive drum 10 is slightly deteriorated, a decrease in transfer efficiency can be suppressed and the image density can be maintained.
[0029]
In the above embodiment, the charging bias applied to the charging roller 11 is obtained by superimposing an AC voltage on a DC voltage. However, the present invention is not limited to this, and only a DC voltage may be applied. Obtainable.
[0030]
Example 2
FIG. 6 is a schematic configuration diagram showing another embodiment of the image forming apparatus of the present invention.
[0031]
In the present embodiment, the transfer conditions controlled according to the thickness of the photosensitive layer of the photosensitive drum 10 include (1) an increase in the transfer current and (2) a difference in the moving speed of the surface of the transfer roller 14 with respect to the photosensitive drum 10. That is, the difference in peripheral speed was also added.
[0032]
In response to this, the transfer roller 14 is provided with a driving device 22 so that the rotation of the transfer roller 14 is driven not by the driven rotation of the photosensitive drum 10 but by the driving device 22. In other respects, such as a method for measuring the thickness of the photosensitive drum 10 in this embodiment, the same members as those in the first embodiment are denoted by the same reference numerals in FIG.
[0033]
Specifically, the peripheral speed difference in the drive rotation of the transfer roller 14 by the drive device 22 was set so that the transfer roller 14 was about 1.5% faster than the photosensitive drum 10. Then, the photosensitive layer thickness image formation amount 10 four Slightly thinner the photosensitive drum 10 to (10,000 sheets), the transfer roller 14 and the photosensitive drum 10 and the constant speed, image number 10 four subsequent Controlled the peripheral speed difference of the transfer roller 14 with respect to the photosensitive drum 10 to 1.5%.
[0034]
Table 1 above shows the results of preventing image dropout and the like in this embodiment.
[0035]
As shown in Table 1, in the second embodiment, although the occurrence of scratches on the photosensitive drum 10 is slightly worse than that in the first embodiment, the occurrence of hollowing is further improved than in the first embodiment.
[0036]
Example 3
FIG. 7 is a schematic configuration diagram showing still another embodiment of the image forming apparatus of the present invention.
[0037]
In this embodiment, the transfer conditions controlled according to the thickness of the photosensitive layer of the photosensitive drum 10 include (1) an increase in the transfer current, (2) a difference in the peripheral speed of the transfer roller 14 with respect to the photosensitive drum 10, and FIG. As shown in (3), (3) the contact pressure of the transfer roller 14 against the photosensitive drum 10 by the spring member 23 is varied, and as the film thickness of the photosensitive layer of the photosensitive drum 10 decreases, the contact pressure of the transfer roller 14 decreases. Can be reduced.
[0038]
Specifically, the contact pressure of the film thickness of the photosensitive layer of the photosensitive drum 10 is the number of image formation 10 four Slightly thinner until (10,000) is the photosensitive drum 10 of the transfer roller 14 (linear pressure) maintains the initial 15 kgf / cm, image number 10 four subsequent decrease the contact pressure, and the light pressure of 5 kgf / cm.
[0039]
The peripheral speed difference between the transfer roller 14 and the photosensitive drum 10 is about 1.5% faster than the photosensitive drum 10 by the rotation of the transfer roller 14 by the driving device 2 as in the second embodiment. set to up to 10 four the number of image formation constant velocity, the number of formed images is 10 four subsequent to 1.5% peripheral speed difference.
[0040]
Table 1 shows the results in this example.
[0041]
While the thickness of the photosensitive drum 10 becomes thinner and the surface roughness of the photosensitive drum 10 becomes larger as the image forming apparatus is used, as shown in Table 1, the transfer current is gradually increased from the initial value of 15 μA. As a result, the transfer efficiency did not decrease. Therefore, in Example 3, the result that the image density (OD) was stable as in Examples 1 and 2 was obtained.
[0042]
In addition, the hollow level was always practically no problem from the initial stage to the number of image formations of 3 × 10 4 , and the contact force of the transfer roller 14 was reduced, so that the occurrence of scratches on the surface of the photosensitive drum 10 could be suppressed. Although not shown in Table 1, it was possible to prevent the surface of the photosensitive drum 10 from being damaged and to suppress the toner from being fused to the surface of the photosensitive drum 10.
[0043]
In the embodiment of the present invention, the photosensitive layer thickness was measured by applying a charging bias in which a DC voltage and an AC voltage were superimposed on the charging roller during the pre-rotation of every 10,000 sheets, and the current value of the DC component flowing at that time. Was carried out.
[0044]
However, the method and timing for measuring the thickness of the photosensitive layer are not limited to those in the above embodiment. The timing may be the time of pre-rotation or the time of post-rotation (the time from the end of the image forming process of the photosensitive drum to the stop of the rotation of the photosensitive drum).
[0045]
The shorter the measurement interval, the more accurate the control can be performed. However, even if the measurement is performed too frequently, the change in the film thickness is small, and the surface of the photosensitive drum is easily damaged by the charging bias applied during the measurement. .
[0046]
When a large number of images are continuously formed using an automatic document feeder or a sorter, the image formation may be performed at the beginning or end of a series of jobs without stopping image formation.
[0047]
The measurement may be performed at regular intervals, or the frequency may be increased only at the initial stage of forming a large number of sheets or after a certain number of sheets.
[0048]
Example 4
In the present embodiment, in the third embodiment, the rotation speed of the transfer roller 14 is set to be the same as that of the photosensitive drum 10 (that is, driven by the photosensitive drum), and the transfer condition controlled by the decrease in the film thickness of the photosensitive drum 10 is defined as the transfer condition. The current is increased and the contact force of the transfer roller 10 is decreased.
[0049]
According to this embodiment, although the hollow level may be slightly lower than that of the third embodiment, the contact force of the transfer roller 14 is reduced and the peripheral speed difference between the photosensitive drum 10 and the transfer roller 14 is reduced. Since there is no damage, damage to the surface of the photosensitive drum 10 is further reduced, and scratches on the surface of the photosensitive drum 10 and toner fusion are less likely to occur. Further, since the transfer roller 14 is driven to rotate with respect to the photosensitive drum 10, the configuration of the image forming apparatus is simplified.
[0050]
In the above description, the transfer conditions of the image forming apparatus are controlled. However, when the image forming apparatus uses a separation charger or a static elimination needle, those bias conditions can also be controlled.
[0051]
【The invention's effect】
As described above, according to the present invention, a DC voltage or a charging bias obtained by superimposing an AC voltage is applied to a charging unit such as a charging roller used for primary charging of an image carrier, and then the charging bias flows to the charging unit. The thickness of the photosensitive layer on the surface of the image carrier is measured by, for example, detecting the current value of a DC component, and the toner image formed on the image carrier is transferred to a transfer material according to the thickness of the photosensitive layer. transfer conditions. Thus changes at least one of such contact pressure of the image bearing member of the peripheral speed difference and the transfer roller of the transfer roller against the image bearing member, the surface of the image bearing member by repeating the image formation Even if the roughness becomes large, it is possible to obtain a high-quality image having a sufficient density by suppressing a decrease in the transfer efficiency of the toner image and the occurrence of a hollow image, and to prevent the toner from being fused or damaged on the surface of the image carrier. Such adverse effects are also prevented.

[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an image forming apparatus of the present invention.
FIG. 2 is a graph showing a change in a photosensitive layer thickness of a photosensitive drum and a change in a DC component current value flowing from a charging roller with respect to the number of formed images in an image forming apparatus.
FIG. 3 is a graph showing a relationship between a photosensitive layer thickness of a photosensitive drum and a DC component current value flowing from a charging roller.
FIG. 4 is a graph showing a change in surface roughness of a photosensitive drum with respect to the number of images formed in the image forming apparatus.
5 is a graph showing a method of controlling a transfer current with respect to a decrease in a photosensitive layer thickness of a photosensitive drum in image formation in the image forming apparatus of FIG.
FIG. 6 is a schematic configuration diagram showing another embodiment of the image forming apparatus of the present invention.
FIG. 7 is a schematic configuration diagram showing still another embodiment of the image forming apparatus of the present invention.
[Explanation of symbols]
Reference Signs List 10 photosensitive drum 11 charging roller 14 transfer roller 19 drum film thickness measuring circuit 20 transfer bias power supply 23 spring member 30 charging bias power supply

Claims (3)

帯電手段により像担持体の表面を帯電し、像露光して静電潜像を形成し、この潜像を現像手段により現像剤を用いて現像して可視化し、得られた可視画像を前記像担持体の表面に接触する転写ローラにより転写材に転写する画像形成装置において、
前記像担持体の表面を形成する感光層の膜厚を膜厚測定手段により測定して、前記測定された感光層の膜厚が薄くなるに従って、転写ローラ表面の周速と像担持体表面の周速の差を大きくすることを特徴とする画像形成装置。
The surface of the image carrier is charged by a charging unit, the image is exposed to light to form an electrostatic latent image, and the latent image is developed by a developing unit using a developer to be visualized. In an image forming apparatus that transfers to a transfer material by a transfer roller that contacts a surface of a carrier,
The film thickness of the photosensitive layer forming the surface of the image carrier is measured by a film thickness measuring means, and as the measured film thickness of the photosensitive layer decreases, the peripheral speed of the transfer roller surface and the image carrier surface An image forming apparatus characterized by increasing a difference in peripheral speed.
帯電手段により像担持体の表面を帯電し、像露光して静電潜像を形成し、この潜像を現像手段により現像剤を用いて現像して可視化し、得られた可視画像を前記像担持体の表面に接触する転写ローラにより転写材に転写する画像形成装置において、
前記像担持体の表面を形成する感光層の膜厚を膜厚測定手段により測定して、前記測定された感光層の膜厚が薄くなるに従って、前記像担持体への前記転写ローラの当接圧を小さくすることを特徴とする画像形成装置。
The surface of the image carrier is charged by a charging unit, the image is exposed to light to form an electrostatic latent image, and the latent image is developed by a developing unit using a developer to be visualized. In an image forming apparatus that transfers to a transfer material by a transfer roller that contacts a surface of a carrier,
The thickness of the photosensitive layer forming the surface of the image carrier is measured by a film thickness measuring means, and as the measured thickness of the photosensitive layer decreases, the transfer roller comes into contact with the image carrier. An image forming apparatus characterized by reducing pressure.
前記帯電手段は像担持体表面に接触する帯電ローラであり、非画像形成時、前記帯電ローラに直流電圧またはこれに交流電圧を重畳した帯電バイアスを印加し、前記膜厚測定手段は、そのとき流れる帯電バイアスの直流成分の電流値を検出することにより、前記感光層の膜厚を測定する請求項1又は2に記載の画像形成装置。The charging unit is a charging roller that comes into contact with the surface of the image carrier, and applies a charging bias obtained by superimposing a DC voltage or an AC voltage on the charging roller during non-image formation, and the film thickness measuring unit is by detecting the current value of the DC component of the charging bias flow, the image forming apparatus according to claim 1 or 2 for measuring the film thickness of the photosensitive layer.
JP03236498A 1998-01-30 1998-01-30 Image forming device Expired - Fee Related JP3542488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03236498A JP3542488B2 (en) 1998-01-30 1998-01-30 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03236498A JP3542488B2 (en) 1998-01-30 1998-01-30 Image forming device

Publications (2)

Publication Number Publication Date
JPH11218975A JPH11218975A (en) 1999-08-10
JP3542488B2 true JP3542488B2 (en) 2004-07-14

Family

ID=12356910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03236498A Expired - Fee Related JP3542488B2 (en) 1998-01-30 1998-01-30 Image forming device

Country Status (1)

Country Link
JP (1) JP3542488B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234301A (en) * 2004-02-20 2005-09-02 Ricoh Co Ltd Image forming apparatus
JP4899516B2 (en) * 2006-02-14 2012-03-21 富士ゼロックス株式会社 Image forming apparatus
JP4911363B2 (en) * 2007-09-07 2012-04-04 富士ゼロックス株式会社 Image forming apparatus, image carrier life information generation method, and image carrier life information generation program
JP5537483B2 (en) * 2011-03-31 2014-07-02 京セラドキュメントソリューションズ株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JPH11218975A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP3768800B2 (en) Image forming apparatus
JP2003156971A (en) Image forming apparatus
JPH10232521A (en) Image forming device
US6029029A (en) Image forming apparatus
JP5121216B2 (en) Image forming apparatus
JP2005189319A (en) Image forming apparatus
JP3768931B2 (en) Image forming apparatus
JPH09101657A (en) Controlling method for image forming device
JP3542488B2 (en) Image forming device
JP2008009149A (en) Image forming apparatus
JP2006163118A (en) Image forming apparatus
JPH10198131A (en) Electrifier and image forming device
JP3273458B2 (en) Image forming device
JPH10221931A (en) Image forming device
JPH103222A (en) Image forming device
JP4523354B2 (en) Image forming apparatus
US7155135B2 (en) Image forming apparatus with mode having prolonged rotation time of image bearing member at non-image forming time
JP2005165114A (en) Image forming apparatus
JPH08194364A (en) Image forming device
JP2005003728A (en) Image forming apparatus
JP2002214888A (en) Image forming apparatus
JP4032643B2 (en) Image forming apparatus
JP2024010632A (en) Image forming apparatus
JP3548198B2 (en) Image forming device
JP2000147873A (en) Electrifier and image forming device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees