JP3542315B2 - Shield for coil - Google Patents

Shield for coil Download PDF

Info

Publication number
JP3542315B2
JP3542315B2 JP2000143431A JP2000143431A JP3542315B2 JP 3542315 B2 JP3542315 B2 JP 3542315B2 JP 2000143431 A JP2000143431 A JP 2000143431A JP 2000143431 A JP2000143431 A JP 2000143431A JP 3542315 B2 JP3542315 B2 JP 3542315B2
Authority
JP
Japan
Prior art keywords
coil
resonance frequency
soft magnetic
resonance circuit
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000143431A
Other languages
Japanese (ja)
Other versions
JP2001326129A (en
Inventor
一男 石塚
美佐夫 金子
博義 石井
住男 海渕
洋司 鈴木
崇 成嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Samgong Co Ltd
Original Assignee
Riken Corp
Samgong Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Samgong Co Ltd filed Critical Riken Corp
Priority to JP2000143431A priority Critical patent/JP3542315B2/en
Publication of JP2001326129A publication Critical patent/JP2001326129A/en
Application granted granted Critical
Publication of JP3542315B2 publication Critical patent/JP3542315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本願の発明は、コイルと外界の物体との電磁的結合を低減させるためのコイル用遮蔽体に関するものである。
【0002】
【従来の技術】
位置センサや金属センサや自動列車停止システム等では、共振回路が組み込まれていて、この共振回路の共振周波数の変化が利用されている。また、ループアンテナによって情報を送受するシステムでは、ループアンテナを含む共振回路が形成されており、位置センサ等とは異なって共振回路の共振周波数が変化しないことが要求されている。インダクタンスL、容量C、抵抗Rを有する共振回路の共振周波数及びQ値は夫々下記の式(1)(2)で表される。
共振周波数=1/{2π(LC)1/2} (1)
Q値=(L/C)1/2/R (2)
【0003】
例えば位置センサや金属センサでは、共振回路中のコイルに交流電流を流して交流磁界を発生させておき、このコイルに金属体が接近すると金属体中に渦電流が誘起されて二次的な交流磁界が発生し、この二次的な交流磁界によってコイルのインダクタンスLが変化し、このインダクタンスLの変化によって共振回路の共振周波数が変化するので、この共振周波数の変化から金属体の位置や存否を検出する。
【0004】
また、自動列車停止システムでは、信号機からの信号によって共振周波数が変化する共振回路を含む地上子が地上に設置されており、ある周波数で発振する発振回路を含む車上子が列車に設置されている。列車を停止させるためには、地上子の共振周波数を車上子の発振周波数と異ならせる様に地上子を制御し、列車の通過による車上子と地上子との電磁的結合によって車上子の発振周波数を地上子の共振周波数に周波数変換させ、この周波数変換を列車側で検知して列車を停止させる。
【0005】
従って、以上の様な位置センサや金属センサ等に組み込まれている共振回路では被検出体以外の物体によって共振周波数が変化しないことが必要最低限の条件であり、また、自動列車停止システム等に組み込まれている共振回路では共振周波数が変化しないことが必要最低限の条件であり、更に、何れの共振回路でもQ値が高いことも望まれている。
【0006】
ところで、位置センサや金属センサ等は机や機械の筐体や床等の上に設置される場合がある。そして、机や機械の筐体が鉄製である場合があり、床等の中にも鉄筋や鉄骨等の鉄材が存在している場合がある。また、自動列車停止システムでも地上子がコンクリート枕木やスラブ道床の上に設置される場合があり、これらの中にも鉄筋等の鉄材が存在している。ところが、共振回路中のコイルの近傍に鉄材等の導電性の物体が存在していると、コイルのインダクタンスLが減少して、共振回路の共振周波数が標準状態と比べて増加する。
【0007】
その理由は、コイルに電流を仮想的に流した場合から理解される。即ち、コイルに流れる電流によって発生した交流磁界が導電性の物体中に渦電流を誘起させ、この渦電流によって二次的な交流磁界が発生する。この二次的な交流磁界はコイルによる交流磁界を打ち消す様に発生する。つまり、コイルに同一量の電流を流しても、導電性の物体が近傍に存在している場合は、コイルによって発生する実質的な交流磁界が少なくなって、コイルのインダクタンスLが減少する。その結果、式(1)から明らかな様に、そのコイルを含む共振回路の共振周波数が標準状態と比べて増加する。
【0008】
また、外界の物体中に渦電流が誘起されると、表皮厚さが十分に厚い場合及び十分に薄い場合は夫々下記の式(3)及び式(4)で表される渦電流損が外界の物体中で生じる。そして、この渦電流損が共振回路の抵抗成分になって、共振回路の抵抗Rが増大する。なお、下記の式(3)(4)において、Hmは磁界の振幅、μは外界の物体の透磁率、ρは外界の物体の抵抗率、fは交流磁界の周波数、tは外界の物体の厚さである。
渦電流損=(πtμHmf)2/6ρ (3)
渦電流損={Hm 2(μρf)1/2}/4π (4)
【0009】
そして、上述の様に外界の物体中で渦電流損が生じて共振回路の抵抗Rが増大すると、式(2)から明らかな様に、共振回路のQ値が低下する。鉄は透磁率μが高いので、式(3)(4)から明らかな様に鉄材で生じる渦電流損が大きい。このため、鉄材の近傍にコイルを設置すると、そのコイルを含む共振回路の抵抗Rがかなり増大し、その結果、Q値がかなり低下する。
【0010】
つまり、位置センサ等に組み込まれている共振回路中のコイルが鉄材の近傍に設置されただけで、共振回路の共振周波数が変化すると共にQ値も低下して、これではこの共振回路が正常には動作しない。この様な不都合を回避するためには、共振回路中のコイルを遮蔽してこのコイルによる磁界が外界の物体、例えば床等の中の鉄材、にまで到達しない様にすればよい。
【0011】
図7(c)(d)は、自動列車停止システムに適用されているコイル用遮蔽体の従来例を示している(例えば、特開平10−53135号公報、特開平8−91217号公報)。このコイル用遮蔽体11は、フェライトのみから成っており、コイル12の巻線部13及びコア部14と、コイル12との電磁的結合を生じ得る物体である鉄材15との間に設置されて、コイル12と鉄材15との電磁的結合を低減させる。
【0012】
【発明が解決しようとする課題】
図7(a)に示す様にコイル用遮蔽体11が備えられておらず鉄材15も存在していない標準状態での共振周波数及びQ値が夫々129.78kHz及び222である共振回路中のコイル12を、図7(b)に示す様に鉄材15に近接させると、共振回路の共振周波数及びQ値が夫々130.27kHz及び125になって、既述の通り共振周波数が変化すると共にQ値が低下する。
【0013】
一方、図7(c)に示した様にこの共振回路のコイル12に上述の従来例のコイル用遮蔽体11を備えると、共振周波数及びQ値は夫々120.05kHz及び231になる。また、コイル用遮蔽体11が備えられているコイル12を図7(d)に示した様に鉄材15に近接させると、共振回路の共振周波数及びQ値は夫々120.24kHz及び175になる。つまり、コイル用遮蔽体11が備えられているコイル12では、コイル用遮蔽体11が備えられていないコイル12を鉄材15に近接させた場合に比べて共振回路のQ値が標準状態に近づいており、鉄材15の存否による共振周波数の変化も0.19kHzに抑制されている。
【0014】
しかし、共振回路中のコイル12にコイル用遮蔽体11を備えるだけで共振周波数が129.78kHzから120.05kHzに変化するので、これでは共振回路が正常には動作しない。従って、本願の発明は、共振回路中のコイルに備えても共振周波数が変化しにくく、外界の物体との電磁的結合による共振周波数の変化及びQ値の低下も生じにくいコイル用遮蔽体を提供することを目的としている。
【0015】
【課題を解決するための手段】
請求項1に係るコイル用遮蔽体では、コイルの軸方向においてコイルの巻線部と直接に対向する軟磁性材が具備されており、コイルから発生する磁界はこの対向部の近傍で最も強いので、軟磁性材が効果的に磁化する。そして、軟磁性材のコイルとは反対側の外界の物体側では、コイルによる磁界の方向と磁化した軟磁性材による磁界の方向とが互いに逆になって、コイルからの漏れ磁束が弱められる。
【0016】
このため、コイルと外界の物体との電磁的結合が低減され、コイルを含む共振回路の共振周波数が外界の物体によって変化しにくい。また、コイルのコア部内ではコイルによる磁界の方向と磁化した軟磁性材による磁界の方向とが同じになるので、コイルのコア部内の磁束が強められて、コイルのインダクタンスが増加する。なお、磁化した軟磁性材から十分な磁界が発生する様に、軟磁性材の比透磁率は10以上であることが好ましい。
【0017】
一方、コイルの軸方向においてコイルのコア部と直接に対向する導電材も具備されている。導電材中にはコイルの磁界によって渦電流が誘起され、しかも、導電材の面積Aが0.5S 1 以上であるので導電材中に渦電流が有効に誘起される。この渦電流による二次的な磁界はコイルによる磁界を打ち消す様に発生するので、コイルからの漏れ磁束が効果的に弱められる。渦電流が有効に誘起される様に、導電材の抵抗率は1×10-2Ω・cm以下が好ましい。また、巻線部とコア部とを含むコイル全体の軸方向への投影面積をS 2 とすると、導電材の面積Aは2S 2 以下が好ましく、これ以上になると導電材の面積の半分以上がコイルの外側になる。コイルの外側の磁界はコイルのコア部内の磁界とは逆向きであるので、面積Aを2S 2 超にすると、コイルからの漏れ磁束を弱める効果が減少する。
【0018】
このため、コイルと外界の物体との電磁的結合が低減され、コイルを含む共振回路の共振周波数が外界の物体によって変化しにくく、外界の物体中で生じる渦電流損も少ない。また、コイルのコア部内ではコイルによる磁界の方向と導電材による磁界の方向とが逆になるので、コイルのコア部内の磁束が弱められて、コイルのインダクタンスが減少する。
【0019】
つまり、コイルのインダクタンスの軟磁性材による増加と導電材による減少とを相殺させることによってコイルのインダクタンスの変化を抑制することができ、共振回路中のコイルにコイル用遮蔽体を備えても共振周波数が標準状態から変化しにくい。また、軟磁性材も導電材も外界の物体側ではコイルからの漏れ磁束を弱めるので、コイルと外界の物体との電磁的結合が低減され、コイルを含む共振回路の共振周波数が外界の物体によって変化しにくい。
【0020】
請求項2に係るコイル用遮蔽体では、軟磁性材の抵抗率が1Ω・cm以上であるので、この軟磁性材は抵抗率の高い非導電軟磁性材である。このため、この軟磁性材中には渦電流が誘起されにくく、軟磁性材中で生じる渦電流損が少なくて、コイル用遮蔽体中で生じる渦電流損が少ない。また、軟磁性材も導電材も外界の物体側ではコイルからの漏れ磁束を弱めるので、外界の物体中で生じる渦電流損も少ない。従って、コイルを含む共振回路のQ値の低下が抑制される。更に、コイルのインダクタンスの変化は、軟磁性材による増加と導電材による減少とを相殺させることによって抑制される。従って、コイルにコイル用遮蔽体を備えても、コイルを含む共振回路の共振周波数が変化しにくい。
【0021】
請求項3に係るコイル用遮蔽体では、軟磁性材の抵抗率が1Ω・cm以上であるので、この軟磁性材は抵抗率の高い非導電軟磁性材であり、軟磁性材中で生じる渦電流損が少ない。更に、導電材の比透磁率が1.0±0.1であるので、この導電材は非磁性導電材であり、式(3)(4)から明らかな様に、導電材中で生じる渦電流損も少ない。また、軟磁性材も導電材も外界の物体側ではコイルからの漏れ磁束を弱めるので、外界の物体中で生じる渦電流損も少ない。従って、コイルを含む共振回路のQ値の低下が抑制される。更に、コイルのインダクタンスの変化は、軟磁性材による増加と導電材による減少とを相殺させることによって抑制される。従って、コイルにコイル用遮蔽体を備えても、コイルを含む共振回路の共振周波数が変化しにくい。
【0022】
請求項4に係るコイル用遮蔽体では、軟磁性材の幅w1がコイルの巻線部の幅W以上であるので、軟磁性材と導電材との間から漏れるコイルの磁界が少ない。このため、外界の物体側ではコイルからの漏れ磁束が効果的に弱められて、コイルと外界の物体と電磁的結合が低減される。その結果、コイルを含む共振回路の共振周波数が外界の物体によって変化しにくく、外界の物体中で生じる渦電流損も少ない。しかし、コイルのインダクタンスは増加する。なお、図8に示されている様に、コイルによる磁界の強度はコイルの巻線部から離隔するに連れて急速に減衰する。このため、巻線部が円筒状の場合はその平均径をDとし、巻線部が円筒状以外の場合は(巻線部の内接円の直径+巻線部の外接円の直径)/2をDとして、軟磁性材が有効に磁化する様に、コイルから軟磁性材までの距離hは0.2D以下が好ましい
【0023】
して、コイルのインダクタンスの軟磁性材による増加と導電材による減少とを相殺させることによって、コイルのインダクタンスの変化が抑制される。その結果、コイルにコイル用遮蔽体を備えても、コイルを含む共振回路の共振周波数が変化しにくい。
【0024】
【発明の実施の形態】
以下、本願の発明の一実施形態及び一実施例を、図1〜8を参照しながら説明する。図1が本実施形態のコイル用遮蔽体を示している。このコイル用遮蔽体21は、コイル12の軸方向においてコイル12の巻線部13と対向する軟磁性材22と、コイル12の軸方向においてコイル12のコア部14と対向する導電材23とを具備している。
【0025】
軟磁性材22の抵抗率は1Ω・cm以上であり、導電材23の比透磁率は1.0±0.1である。また、コイル12の軸と垂直な面内における巻線部13の幅をWとし、軸方向へのコア部14の投影面積をS1として、軟磁性材22の幅w1はW以上であり、導電材23の面積Aは0.5S1以上である。軟磁性材22の幅w1が巻線部13の幅W以上であるので、軟磁性材22と導電材23との間から漏れる磁界24が少ない。
【0026】
コイル12の磁界24によって、図2に示す様に、軟磁性材22が磁化して磁界25が発生する。鉄材15側では、磁界24の方向と磁界25の方向とが互いに逆になって、コイル12からの漏れ磁束が弱められる。このため、コイル12と鉄材15との電磁的結合が低減され、コイル12を含む共振回路の共振周波数が鉄材15の存否による影響を受けにくい。また、仮に鉄材15が存在していても、この鉄材15とコイル12との電磁的結合が弱いので、鉄材15中で生じる渦電流損が少ない。
【0027】
また、軟磁性材22の抵抗率が1Ω・cm以上と高いので、軟磁性材22中に渦電流が誘起されにくく、コイル用遮蔽体21中で生じる渦電流損が少ない。しかし、コア部14内では磁界24の方向と磁界25の方向とが同じになるので、コア部14内の磁束が強められて、コイル12のインダクタンスLが増加する。一方、導電材23の面積Aが0.5S1以上であるので、導電材23中には磁界24によって渦電流が有効に誘起される。
【0028】
この渦電流による二次的な磁界26は磁界24を打ち消す様に発生するので、コイル12からの漏れ磁束が弱められて、コイル12と鉄材15との電磁的結合が低減される。このため、コイル12を含む共振回路の共振周波数が鉄材15の存否による影響を受けにくい。また、仮に鉄材15が存在していても、この鉄材15とコイル12との電磁的結合が弱いので、この鉄材15中で生じる渦電流損が少ない。
【0029】
また、導電材23の比透磁率が1.0±0.1であるので、式(3)(4)から明らかな様に、導電材23中に渦電流が誘起されても、その渦電流損は少ない。また、上述の様に磁界26は磁界24を打ち消す様に発生するので、コア部14内の磁束が弱められて、コイル12のインダクタンスLが減少する。
【0030】
以上の様に、軟磁性材22及び導電材23によってコイル12と鉄材15との電磁的結合が低減されるので、コイル12を含む共振回路の共振周波数が鉄材15の存否によって影響を受けにくい。更に、鉄材15中で生じる渦電流損が少なく、また、軟磁性材22中及び導電材23中の何れで生じる渦電流損も少ないので、これらを具備するコイル用遮蔽体21中で生じる渦電流損も少ない。この結果、コイル12を含む共振回路の抵抗Rの増大が抑制されており、既述の式(2)から明らかな様に共振回路のQ値の低下が抑制されている。
【0031】
一方、軟磁性材22から発生した磁界25は、コイル12のインダクタンスLを増加させるので、既述の式(1)から明らかな様に、コイル12を含む共振回路の共振周波数を減少させる。また、導電材23における渦電流による二次的な磁界26は、コイル12のインダクタンスLを減少させるので、既述の式(1)から明らかな様に、コイル12を含む共振回路の共振周波数を増加させる。
【0032】
図4は、導電材23の面積Aと共振回路の共振周波数との関係を示しており、コイル12を含んでいるがコイル用遮蔽体21は備えられておらず鉄材15も存在していない標準状態での共振回路の共振周波数も示している。面積A=0での標準状態の共振周波数に対する共振周波数の低下分は、軟磁性材22によるコイル12のインダクタンスLの増加分に対応している。
【0033】
図4から明らかな様に、面積Aが0から大きくなるに連れて、軟磁性材22によるコイル12のインダクタンスLの増加分が導電材23によるコイル12のインダクタンスLの減少分で相殺されていって、共振周波数が増加していく。このため、0.5S1以上という既述の範囲内において、共振周波数が標準状態の共振周波数に等しくなる面積Aを採用すれば、共振回路の共振周波数の変化が抑制される。
【0034】
【実施例】
本実施例では、巻線部13の幅W=30mm、平均径D=250mmのコイル12を含む共振回路を用意した。図7(a)に示した様にコイル用遮蔽体21が備えられておらず鉄材15も存在していない標準状態でのこの共振回路の共振周波数及びQ値は夫々129.78kHz及び222であった。しかし、図7(b)に示した様にコイル12から90mm下方に鉄材15としての形鋼を配置すると、この共振回路の共振周波数及びQ値が夫々130.27kHz及び125になって、共振周波数が0.49kHz変化すると共にQ値が97低下した。
【0035】
また、本実施例では、抵抗率が1×104Ω・cmで厚さが3mmであるNi−Znフェライト製の軟磁性材22と抵抗率が2.83×10-6Ω・cmで厚さが1mmであるAl製の導電材23とを具備するコイル用遮蔽体21を用意し、このコイル用遮蔽体21をコイル12に備えた。巻線部13と軟磁性材22との間の距離hは、0.2D以下つまりこの場合は50mm以下が好ましいので、h=10mmとした。
【0036】
そして、図5に示す様に、コイル用遮蔽体21がコイル12に備えられている共振回路で、コイル12から90mm下方に鉄材15としての形鋼が配置されている場合について、導電材23の面積Aと共振周波数及びQ値との関係を実験し、図6の結果を得た。0.5S1〜2S2が190〜1231cm2であるので、図6から、この範囲内で共振周波数が標準状態の共振周波数に略等しくなる導電材23の面積Aとして314cm2(直径200mm)を選択した。
【0037】
コイル12にコイル用遮蔽体21が備えられており鉄材15が存在していない状態では、この共振回路の共振周波数は129.84kHzである。従って、コイル12にコイル用遮蔽体21を備えることによる共振周波数の標準状態(129.78kHz)からの変化は0.06kHzであり、コイル用遮蔽体21を備えても共振周波数は殆ど変化しない。
【0038】
また、コイル12にコイル用遮蔽体21が備えられており鉄材15が存在している状態では、この共振回路の共振周波数及びQ値は夫々129.94kHz及び167である。コイル12にコイル用遮蔽体21が備えられた状態での鉄材15の存否による共振周波数の変化は0.10kHzであり、コイル12にコイル用遮蔽体21が備えられていない状態での鉄材15の存否による共振周波数の変化0.49kHzに比べて、共振周波数の変化が少ない。
【0039】
また、コイル12にコイル用遮蔽体21が備えられていない場合には鉄材15の存在によってQ値が97低下していたが、コイル12にコイル用遮蔽体21が備えられている場合には鉄材15の存在によるQ値の低下は55まで抑えられる。図7(c)(d)に示した既述の従来例と比較すると、コイル12にコイル用遮蔽体21を備えても、共振周波数が標準状態から変化しにくく、且つ、鉄材15の存否による共振周波数の変化も、従来例では0.19kHzであるに対して、本実施例では0.10kHzと小さい。
【0040】
また、本実施例のコイル用遮蔽体21では、Ni−Znフェライト製の軟磁性材22は環帯状であり、従来例のコイル用遮蔽体11に比べて中央部の開口分だけフェライトの量が少ない。AlはNi−Znフェライトに比べて相当に安価であるので、本実施例のコイル用遮蔽体21は従来例のコイル用遮蔽体11に比べて安価である。
【0041】
なお、以上の実施例のコイル用遮蔽体21には、Ni−Znフェライト製の軟磁性材22が用いられているが、Ni−Znフェライト以外の酸化物軟磁性体や酸化物軟磁性体以外の軟磁性材22が用いられてもよい。また、共振周波数を鉄材15の存否によって変化させないという目的のためだけであれば、軟磁性材22が非導電性である必要はなく、導電材23も非磁性である必要はない。
【0042】
【発明の効果】
本願の発明によるコイル用遮蔽体は、軟磁性材と導電材とで構成されている。このため、コイルのインダクタンスの軟磁性材による増加と導電材による減少とを相殺させることによってコイルのインダクタンスの変化を抑制することができ、共振回路中のコイルにコイル用遮蔽体を備えても共振周波数が標準状態から変化しにくい。
【0043】
また、軟磁性材も導電材もコイルから外界の物体側への漏れ磁束を弱めるので、コイルと外界の物体との電磁的結合が低減され、外界の物体中で生じる渦電流損も少ない。従って、共振回路中のコイルにコイル用遮蔽体を備えれば、外界の物体によって共振周波数が変化しにくくQ値も低下しにくい。更に、軟磁性材を非導電性にすると共に導電材を非磁性にすれば、コイル用遮蔽体中で生じる渦電流損も少なく、共振回路中のコイルにコイル用遮蔽体を備えてもQ値が低下しにくい。
【図面の簡単な説明】
【図1】本願の発明の一実施形態がコイルに備えられている状態の側断面図である。
【図2】本願の発明の一実施形態における軟磁性材による磁界とコイルによる磁界との関係を示す側断面図である。
【図3】本願の発明の一実施形態における導電材による磁界とコイルによる磁界との関係を示す側断面図である。
【図4】本願の発明の一実施形態における導電材の面積Aと共振回路の共振周波数との関係を示すグラフである。
【図5】本願の発明の一実施例がコイルに備えられており且つコイルの近傍に鉄材が存在している状態の側断面図である。
【図6】図5に示した本願の発明の一実施例における導電材の面積Aと共振回路の共振周波数及びQ値との関係を示すグラフである。
【図7】(a)はコイルの側断面図、(b)はコイルの近傍に鉄材が存在している状態の側断面図、(c)はコイルに従来例のコイル用遮蔽体が備えられている状態の側断面図、(d)は従来例のコイル用遮蔽体がコイルと鉄材との間に備えられている状態の側断面図である。
【図8】コイルの巻線部からの距離と磁界の強度との関係を示すグラフである。
【符号の説明】
12…コイル、13…巻線部、14…コア部、21…コイル用遮蔽体、22…軟磁性材、23…導電材、24〜26…磁界
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coil shield for reducing electromagnetic coupling between a coil and an external object.
[0002]
[Prior art]
In a position sensor, a metal sensor, an automatic train stop system, and the like, a resonance circuit is incorporated, and a change in the resonance frequency of the resonance circuit is used. Further, in a system for transmitting and receiving information by a loop antenna, a resonance circuit including the loop antenna is formed, and it is required that the resonance frequency of the resonance circuit does not change unlike a position sensor or the like. The resonance frequency and Q value of the resonance circuit having the inductance L, the capacitance C, and the resistance R are expressed by the following equations (1) and (2), respectively.
Resonance frequency = 1 / {2π (LC) 1/2 } (1)
Q value = (L / C) 1/2 / R (2)
[0003]
For example, in a position sensor or a metal sensor, an alternating current is applied to a coil in a resonance circuit to generate an alternating magnetic field, and when a metal body approaches the coil, an eddy current is induced in the metal body to cause a secondary alternating current. A magnetic field is generated, and the inductance L of the coil changes due to the secondary AC magnetic field, and the change in the inductance L changes the resonance frequency of the resonance circuit. To detect.
[0004]
In the automatic train stop system, a grounding element including a resonance circuit whose resonance frequency is changed by a signal from a traffic light is installed on the ground, and a vehicle element including an oscillation circuit oscillating at a certain frequency is installed on the train. I have. In order to stop the train, the grounding element is controlled so that the resonance frequency of the grounding element is different from the oscillation frequency of the vehicle element, and the vehicle element is electromagnetically coupled to the vehicle element by passing the train. The oscillation frequency is converted to the resonance frequency of the grounding element, and this frequency conversion is detected on the train side to stop the train.
[0005]
Therefore, in the above-described resonance circuit incorporated in a position sensor, a metal sensor, or the like, it is a necessary minimum condition that a resonance frequency does not change due to an object other than an object to be detected. The minimum condition is that the resonance frequency does not change in the built-in resonance circuit, and it is also desired that the Q value is high in any of the resonance circuits.
[0006]
By the way, a position sensor, a metal sensor, or the like may be installed on a desk, a housing of a machine, a floor, or the like. In some cases, the desk or the housing of the machine is made of iron, and the floor or the like also contains iron materials such as reinforcing bars and steel frames. Also, even in the automatic train stop system, the ground rails may be installed on concrete sleepers or slab roadbeds, and iron materials such as reinforcing bars are also present in these. However, when a conductive object such as an iron material exists near the coil in the resonance circuit, the inductance L of the coil decreases, and the resonance frequency of the resonance circuit increases as compared with the standard state.
[0007]
The reason is understood from the case where a current is virtually passed through the coil. That is, the AC magnetic field generated by the current flowing through the coil induces an eddy current in the conductive object, and the eddy current generates a secondary AC magnetic field. This secondary AC magnetic field is generated so as to cancel the AC magnetic field generated by the coil. In other words, even if the same amount of current flows through the coil, if a conductive object is present in the vicinity, the substantial AC magnetic field generated by the coil decreases, and the inductance L of the coil decreases. As a result, as is apparent from equation (1), the resonance frequency of the resonance circuit including the coil increases as compared with the standard state.
[0008]
In addition, when an eddy current is induced in an external object, the eddy current loss represented by the following equations (3) and (4) is reduced when the skin thickness is sufficiently large and sufficiently small, respectively. Occurs in objects. Then, the eddy current loss becomes a resistance component of the resonance circuit, and the resistance R of the resonance circuit increases. In the equation (3) (4) below, H m is the amplitude of the magnetic field, the magnetic permeability of μ outside of the object, [rho is the resistivity of the external world of the object, f is the frequency of the alternating magnetic field, t is outside of the object Is the thickness.
Eddy current loss = (πtμH m f) 2 / 6ρ (3)
Eddy current loss = {H m 2 (μρf) 1/2 } / 4π (4)
[0009]
Then, as described above, when eddy current loss occurs in an external object and the resistance R of the resonance circuit increases, the Q value of the resonance circuit decreases as is apparent from the equation (2). Since iron has a high magnetic permeability μ, the eddy current loss generated by the iron material is large as is apparent from the equations (3) and (4). For this reason, when a coil is installed near the iron material, the resistance R of the resonance circuit including the coil increases considerably, and as a result, the Q value decreases considerably.
[0010]
In other words, simply by placing the coil in the resonance circuit incorporated in the position sensor or the like near the iron material, the resonance frequency of the resonance circuit changes and the Q value also decreases. Does not work. To avoid such inconvenience, a coil in the resonance circuit may be shielded so that a magnetic field generated by the coil does not reach an external object, for example, an iron material in a floor or the like.
[0011]
FIGS. 7C and 7D show a conventional example of a coil shield applied to an automatic train stop system (for example, JP-A-10-53135 and JP-A-8-91217). The coil shielding body 11 is made of only ferrite, and is provided between the winding part 13 and the core part 14 of the coil 12 and the iron material 15 which is an object capable of causing electromagnetic coupling with the coil 12. The electromagnetic coupling between the coil 12 and the iron material 15 is reduced.
[0012]
[Problems to be solved by the invention]
As shown in FIG. 7A, a coil in a resonance circuit having a resonance frequency and a Q value of 129.78 kHz and 222 in a standard state where the coil shield 11 is not provided and the iron material 15 is not present, respectively. 7B, the resonance frequency and the Q value of the resonance circuit become 130.27 kHz and 125, respectively, and the resonance frequency changes and the Q value as described above. Decreases.
[0013]
On the other hand, when the coil 12 of this resonance circuit is provided with the above-described conventional coil shield 11 as shown in FIG. 7C, the resonance frequency and the Q value become 120.05 kHz and 231 respectively. When the coil 12 provided with the coil shield 11 is brought close to the iron material 15 as shown in FIG. 7D, the resonance frequency and the Q value of the resonance circuit become 120.24 kHz and 175, respectively. That is, in the coil 12 provided with the coil shield 11, the Q value of the resonance circuit approaches the standard state as compared with the case where the coil 12 not provided with the coil shield 11 is brought close to the iron material 15. Thus, the change in the resonance frequency due to the presence or absence of the iron material 15 is also suppressed to 0.19 kHz.
[0014]
However, since the resonance frequency changes from 129.78 kHz to 120.05 kHz only by providing the coil shield 11 in the coil 12 in the resonance circuit, the resonance circuit does not operate normally with this. Therefore, the invention of the present application provides a coil shielding body in which the resonance frequency does not easily change even when the coil is provided in the resonance circuit, and the resonance frequency does not easily change and the Q value does not decrease due to electromagnetic coupling with an external object. It is intended to be.
[0015]
[Means for Solving the Problems]
The coil shield according to claim 1 includes a soft magnetic material that directly faces the winding portion of the coil in the axial direction of the coil, and a magnetic field generated from the coil is strongest in the vicinity of the facing portion. The soft magnetic material is effectively magnetized. Then, on the object side of the outside world opposite to the coil of the soft magnetic material, the direction of the magnetic field by the coil and the direction of the magnetic field by the magnetized soft magnetic material are opposite to each other, and the leakage magnetic flux from the coil is weakened.
[0016]
For this reason, the electromagnetic coupling between the coil and the external object is reduced, and the resonance frequency of the resonance circuit including the coil is hardly changed by the external object. In the core of the coil, the direction of the magnetic field generated by the coil is the same as the direction of the magnetic field generated by the magnetized soft magnetic material. Therefore, the magnetic flux in the core of the coil is strengthened, and the inductance of the coil is increased. The soft magnetic material preferably has a relative permeability of 10 or more so that a sufficient magnetic field is generated from the magnetized soft magnetic material.
[0017]
On the other hand, a conductive material that directly faces the core of the coil in the axial direction of the coil is also provided. During conductive material eddy currents are induced by the magnetic field of the coil, moreover, the area A of the conductive material is 0.5S 1 or more in the eddy currents in the conductive material because is effectively induced. Since the secondary magnetic field due to the eddy current is generated so as to cancel the magnetic field generated by the coil, the leakage magnetic flux from the coil is effectively reduced . The resistivity of the conductive material is preferably 1 × 10 −2 Ω · cm or less so that an eddy current is effectively induced. When the projected area in the axial direction of the entire coil including the winding part and the core part is S 2 , the area A of the conductive material is preferably 2S 2 or less. Outside the coil. Since the magnetic field outside the coil is opposite to the magnetic field inside the core of the coil, if the area A is more than 2S 2 , the effect of weakening the magnetic flux leaking from the coil is reduced.
[0018]
Therefore, the reduced electromagnetic coupling between the coil and the outside world of the object, the resonance frequency of the resonance circuit including the coil rather difficulty varies with the outside world of the object, an eddy current loss occurring in the outside world of the object also have little. In addition, since the direction of the magnetic field generated by the coil and the direction of the magnetic field generated by the conductive material are reversed in the core of the coil, the magnetic flux in the core of the coil is weakened, and the inductance of the coil is reduced.
[0019]
In other words, the change in coil inductance can be suppressed by canceling the increase in the inductance of the coil due to the soft magnetic material and the decrease in the inductance due to the conductive material. Even if the coil in the resonance circuit is provided with the coil shield, the resonance frequency can be reduced. Is unlikely to change from the standard state. Also, both the soft magnetic material and the conductive material weaken the magnetic flux leakage from the coil on the object side of the external world, so the electromagnetic coupling between the coil and the external world object is reduced, and the resonance frequency of the resonance circuit including the coil is affected by the external object. Hard to change.
[0020]
In the coil shield according to claim 2, since the resistivity of the soft magnetic material is 1 Ω · cm or more, the soft magnetic material is a non-conductive soft magnetic material having a high resistivity. Therefore, an eddy current is hardly induced in the soft magnetic material, an eddy current loss generated in the soft magnetic material is small, and an eddy current loss generated in the coil shield is small. Further, since both the soft magnetic material and the conductive material weaken the magnetic flux leaking from the coil on the object side in the outside, eddy current loss generated in the object in the outside is small. Therefore, a decrease in the Q value of the resonance circuit including the coil is suppressed. Further, the change in the inductance of the coil is suppressed by canceling the increase due to the soft magnetic material and the decrease due to the conductive material. Therefore, even if the coil is provided with the coil shield, the resonance frequency of the resonance circuit including the coil does not easily change.
[0021]
In the coil shield according to the third aspect, since the soft magnetic material has a resistivity of 1 Ω · cm or more, the soft magnetic material is a non-conductive soft magnetic material having a high resistivity, and a vortex generated in the soft magnetic material. Low current loss. Furthermore, since the relative magnetic permeability of the conductive material is 1.0 ± 0.1, this conductive material is a non-magnetic conductive material, and as is apparent from the equations (3) and (4), the vortex generated in the conductive material. Low current loss. Further, since both the soft magnetic material and the conductive material weaken the magnetic flux leaking from the coil on the object side in the outside, eddy current loss generated in the object in the outside is small. Therefore, a decrease in the Q value of the resonance circuit including the coil is suppressed. Further, the change in the inductance of the coil is suppressed by canceling the increase due to the soft magnetic material and the decrease due to the conductive material. Therefore, even if the coil is provided with the coil shield, the resonance frequency of the resonance circuit including the coil does not easily change.
[0022]
The coil shield according to claim 4, since the width w 1 of the soft magnetic material is at least the width W of the winding of the coil, the magnetic field of the coil is small leaking from between the soft magnetic material and the conductive material. Therefore, at ambient to the object side is leakage flux from the coil is weakened effectively, electromagnetic coupling between the object of the coil and the outer boundary is reduced. As a result, the resonance frequency of the resonance circuit including the coil is hardly changed by an external object, and the eddy current loss generated in the external object is small. However, the inductance of the coil increases. As shown in FIG. 8, the strength of the magnetic field generated by the coil rapidly decreases as the distance from the winding of the coil increases. Therefore, when the winding portion is cylindrical, the average diameter is D, and when the winding portion is other than cylindrical, (diameter of the inscribed circle of the winding portion + diameter of the circumscribed circle of the winding portion) / 2 is D, the distance h from the coil to the soft magnetic material is preferably 0.2D or less so that the soft magnetic material is effectively magnetized .
[0023]
Their to, by offsetting the decrease due to the increase and the conductive material by a soft magnetic material of the inductance of the coil, the change in inductance of the coil can be suppressed. As a result, even if the coil is provided with the coil shield, the resonance frequency of the resonance circuit including the coil does not easily change.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment and an example of the present invention will be described with reference to FIGS. FIG. 1 shows a coil shield of the present embodiment. The coil shield 21 includes a soft magnetic material 22 facing the winding portion 13 of the coil 12 in the axial direction of the coil 12 and a conductive material 23 facing the core portion 14 of the coil 12 in the axial direction of the coil 12. I have it.
[0025]
The resistivity of the soft magnetic material 22 is 1 Ω · cm or more, and the relative magnetic permeability of the conductive material 23 is 1.0 ± 0.1. The width w 1 of the soft magnetic material 22 is not less than W, where W is the width of the winding portion 13 in a plane perpendicular to the axis of the coil 12, and S 1 is the projected area of the core portion 14 in the axial direction. The area A of the conductive material 23 is 0.5 S 1 or more. Since the width w 1 of the soft magnetic material 22 is equal to or larger than the width W of the winding portion 13, the magnetic field 24 leaking from between the soft magnetic material 22 and the conductive material 23 is small.
[0026]
As shown in FIG. 2, the soft magnetic material 22 is magnetized by the magnetic field 24 of the coil 12 to generate a magnetic field 25. On the iron material 15 side, the direction of the magnetic field 24 and the direction of the magnetic field 25 are opposite to each other, and the leakage magnetic flux from the coil 12 is weakened. Therefore, the electromagnetic coupling between the coil 12 and the iron material 15 is reduced, and the resonance frequency of the resonance circuit including the coil 12 is hardly affected by the presence or absence of the iron material 15. Even if the iron material 15 is present, the electromagnetic coupling between the iron material 15 and the coil 12 is weak, so that the eddy current loss generated in the iron material 15 is small.
[0027]
Further, since the resistivity of the soft magnetic material 22 is as high as 1 Ω · cm or more, eddy current is hardly induced in the soft magnetic material 22 and eddy current loss generated in the coil shield 21 is small. However, since the direction of the magnetic field 24 and the direction of the magnetic field 25 in the core portion 14 are the same, the magnetic flux in the core portion 14 is strengthened, and the inductance L of the coil 12 increases. On the other hand, since the area A of the conductive material 23 is 0.5 S 1 or more, an eddy current is effectively induced in the conductive material 23 by the magnetic field 24.
[0028]
Since the secondary magnetic field 26 due to the eddy current is generated so as to cancel the magnetic field 24, the leakage magnetic flux from the coil 12 is weakened, and the electromagnetic coupling between the coil 12 and the iron material 15 is reduced. Therefore, the resonance frequency of the resonance circuit including the coil 12 is hardly affected by the presence or absence of the iron material 15. Even if the iron material 15 exists, the electromagnetic coupling between the iron material 15 and the coil 12 is weak, so that the eddy current loss generated in the iron material 15 is small.
[0029]
Further, since the relative magnetic permeability of the conductive material 23 is 1.0 ± 0.1, as apparent from the equations (3) and (4), even if an eddy current is induced in the conductive material 23, The loss is small. Further, since the magnetic field 26 is generated so as to cancel the magnetic field 24 as described above, the magnetic flux in the core portion 14 is weakened, and the inductance L of the coil 12 decreases.
[0030]
As described above, since the electromagnetic coupling between the coil 12 and the iron material 15 is reduced by the soft magnetic material 22 and the conductive material 23, the resonance frequency of the resonance circuit including the coil 12 is hardly affected by the presence or absence of the iron material 15. Furthermore, the eddy current loss generated in the iron material 15 is small, and the eddy current loss generated in the soft magnetic material 22 and the conductive material 23 is also small. Less loss. As a result, an increase in the resistance R of the resonance circuit including the coil 12 is suppressed, and a decrease in the Q value of the resonance circuit is suppressed as is apparent from the above-described equation (2).
[0031]
On the other hand, the magnetic field 25 generated from the soft magnetic material 22 increases the inductance L of the coil 12, so that the resonance frequency of the resonance circuit including the coil 12 decreases as is apparent from the above-described equation (1). Further, since the secondary magnetic field 26 due to the eddy current in the conductive material 23 reduces the inductance L of the coil 12, the resonance frequency of the resonance circuit including the coil 12 is increased as is apparent from the above-described equation (1). increase.
[0032]
FIG. 4 shows the relationship between the area A of the conductive material 23 and the resonance frequency of the resonance circuit, and includes the coil 12, but does not include the coil shield 21 and does not include the iron material 15. The resonance frequency of the resonance circuit in the state is also shown. The decrease in the resonance frequency with respect to the resonance frequency in the standard state at the area A = 0 corresponds to the increase in the inductance L of the coil 12 due to the soft magnetic material 22.
[0033]
As is clear from FIG. 4, as the area A increases from 0, the increase in the inductance L of the coil 12 due to the soft magnetic material 22 is offset by the decrease in the inductance L of the coil 12 due to the conductive material 23. As a result, the resonance frequency increases. For this reason, if the area A where the resonance frequency is equal to the resonance frequency in the standard state is adopted within the above-mentioned range of 0.5 S 1 or more, the change in the resonance frequency of the resonance circuit is suppressed.
[0034]
【Example】
In the present embodiment, a resonance circuit including the coil 12 having a winding portion 13 having a width W = 30 mm and an average diameter D = 250 mm was prepared. As shown in FIG. 7A, the resonance frequency and the Q value of this resonance circuit in the standard state where the coil shielding body 21 is not provided and the iron material 15 is not present are 129.78 kHz and 222, respectively. Was. However, when a section steel as the iron material 15 is arranged 90 mm below the coil 12 as shown in FIG. 7B, the resonance frequency and the Q value of this resonance circuit become 130.27 kHz and 125, respectively. Changed by 0.49 kHz and the Q value decreased by 97.
[0035]
Further, in this embodiment, the soft magnetic material 22 made of Ni—Zn ferrite having a resistivity of 1 × 10 4 Ω · cm and a thickness of 3 mm and a resistivity of 2.83 × 10 −6 Ω · cm A coil shield 21 including an Al conductive material 23 having a length of 1 mm was prepared, and the coil shield 21 was provided on the coil 12. Since the distance h between the winding portion 13 and the soft magnetic material 22 is preferably 0.2 D or less, that is, 50 mm or less in this case, h is set to 10 mm.
[0036]
As shown in FIG. 5, in a resonance circuit in which the coil shield 21 is provided in the coil 12, in a case where a shaped steel as the iron material 15 is disposed 90 mm below the coil 12, the conductive material 23 is used. The relationship between the area A, the resonance frequency, and the Q value was tested, and the results in FIG. 6 were obtained. Since 0.5S 1 to 2S 2 is 190 to 1231 cm 2 , FIG. 6 shows that 314 cm 2 (diameter 200 mm) is set as the area A of the conductive material 23 in which the resonance frequency is substantially equal to the resonance frequency in the standard state within this range. Selected.
[0037]
When the coil 12 is provided with the coil shield 21 and the iron material 15 is not present, the resonance frequency of the resonance circuit is 129.84 kHz. Accordingly, the change in the resonance frequency from the standard state (129.78 kHz) due to the provision of the coil shield 21 in the coil 12 is 0.06 kHz, and the resonance frequency hardly changes even if the coil shield 21 is provided.
[0038]
Further, when the coil 12 is provided with the coil shield 21 and the iron material 15 is present, the resonance frequency and the Q value of the resonance circuit are 129.94 kHz and 167, respectively. The change in resonance frequency due to the presence or absence of the iron material 15 in the state where the coil shielding body 21 is provided in the coil 12 is 0.10 kHz, and the change in the resonance frequency of the iron material 15 in the state where the coil shielding body 21 is not provided in the coil 12. The change in the resonance frequency is smaller than the change in the resonance frequency due to the presence or absence of 0.49 kHz.
[0039]
In addition, when the coil 12 was not provided with the coil shield 21, the Q value was reduced by 97 due to the presence of the iron material 15. However, when the coil 12 was provided with the coil shield 21, The decrease in the Q value due to the presence of 15 is suppressed to 55. 7C and 7D, even when the coil 12 is provided with the coil shielding body 21, the resonance frequency is hardly changed from the standard state, and it depends on the presence or absence of the iron material 15. The change in the resonance frequency is 0.19 kHz in the conventional example, but as small as 0.10 kHz in the present embodiment.
[0040]
Further, in the coil shield 21 of the present embodiment, the soft magnetic material 22 made of Ni—Zn ferrite has an annular shape, and the amount of ferrite by the central opening is smaller than that of the conventional coil shield 11. Few. Since Al is considerably less expensive than Ni-Zn ferrite, the coil shield 21 of the present embodiment is less expensive than the conventional coil shield 11.
[0041]
Although the soft magnetic material 22 made of Ni-Zn ferrite is used for the coil shielding body 21 of the above embodiment, the soft magnetic material other than Ni-Zn ferrite and the soft magnetic material other than oxide soft magnetic material are used. May be used. Further, only for the purpose of not changing the resonance frequency depending on the presence or absence of the iron material 15, the soft magnetic material 22 does not need to be non-conductive, and the conductive material 23 does not need to be non-magnetic.
[0042]
【The invention's effect】
The coil shield according to the invention of the present application is composed of a soft magnetic material and a conductive material. For this reason, the change in the inductance of the coil can be suppressed by canceling the increase in the inductance of the coil due to the soft magnetic material and the decrease in the inductance due to the conductive material, and the resonance can be suppressed even if the coil in the resonance circuit is provided with the coil shield. The frequency is hard to change from the standard state.
[0043]
In addition, since both the soft magnetic material and the conductive material weaken the leakage flux from the coil to the external object side, the electromagnetic coupling between the coil and the external object is reduced, and the eddy current loss generated in the external object is small. Therefore, if the coil in the resonance circuit is provided with a coil shield, the resonance frequency is hardly changed by an external object, and the Q value is hardly reduced. Furthermore, if the soft magnetic material is made non-conductive and the conductive material is made non-magnetic, the eddy current loss generated in the coil shield is small, and even if the coil in the resonance circuit is provided with the coil shield, the Q value is reduced. Is difficult to decrease.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a state in which an embodiment of the present invention is provided in a coil.
FIG. 2 is a side sectional view showing a relationship between a magnetic field of a soft magnetic material and a magnetic field of a coil according to an embodiment of the present invention.
FIG. 3 is a side sectional view showing a relationship between a magnetic field generated by a conductive material and a magnetic field generated by a coil according to the embodiment of the present invention.
FIG. 4 is a graph showing a relationship between an area A of a conductive material and a resonance frequency of a resonance circuit in one embodiment of the present invention.
FIG. 5 is a side sectional view showing a state where an embodiment of the present invention is provided in a coil and an iron material is present near the coil.
FIG. 6 is a graph showing the relationship between the area A of the conductive material and the resonance frequency and Q value of the resonance circuit in the embodiment of the present invention shown in FIG. 5;
7A is a side sectional view of a coil, FIG. 7B is a side sectional view of a state in which an iron material is present near the coil, and FIG. 7C is a coil provided with a conventional coil shield. (D) is a side sectional view of a state in which a conventional coil shield is provided between a coil and an iron material.
FIG. 8 is a graph showing a relationship between a distance of a coil from a winding portion and a magnetic field intensity.
[Explanation of symbols]
12 coil, 13 winding part, 14 core part, 21 shield for coil, 22 soft magnetic material, 23 conductive material, 24 to 26 magnetic field

Claims (4)

コイルの軸方向において前記コイルの巻線部と直接に対向する軟磁性材と、
前記軸方向において前記コイルのコア部と直接に対向する導電材と
を具備し、
前記軸方向への前記コア部の投影面積をS 1 として、前記軸と垂直な面内における前記導電材の面積Aが0.5S 1 以上であるコイル用遮蔽体。
A soft magnetic material that directly faces the winding part of the coil in the axial direction of the coil;
A conductive material that directly faces the core of the coil in the axial direction ,
Wherein the projected area of the core portion as S 1, the shaft and the conductive material of the area A is 0.5S 1 or Der Ru coil shield in a plane perpendicular to the axial direction.
前記軟磁性材の抵抗率が1Ω・cm以上である請求項1記載のコイル用遮蔽体。The coil shield according to claim 1, wherein the soft magnetic material has a resistivity of 1 Ω · cm or more. 前記導電材の比透磁率が1.0±0.1である請求項2記載のコイル用遮蔽体。3. The coil shield according to claim 2, wherein the relative permeability of the conductive material is 1.0 ± 0.1. 記面内における前記巻線部の幅をWとして、前記面内における前記軟磁性材の幅w1がW以上である請求項1〜3の何れか1項記載のコイル用遮蔽体。The width of the winding portion before Symbol plane and is W, coil shield according to any one of claims 1-3 width w 1 of the soft magnetic material in the plane is not less than W .
JP2000143431A 2000-05-16 2000-05-16 Shield for coil Expired - Lifetime JP3542315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143431A JP3542315B2 (en) 2000-05-16 2000-05-16 Shield for coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143431A JP3542315B2 (en) 2000-05-16 2000-05-16 Shield for coil

Publications (2)

Publication Number Publication Date
JP2001326129A JP2001326129A (en) 2001-11-22
JP3542315B2 true JP3542315B2 (en) 2004-07-14

Family

ID=18650251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143431A Expired - Lifetime JP3542315B2 (en) 2000-05-16 2000-05-16 Shield for coil

Country Status (1)

Country Link
JP (1) JP3542315B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073383B2 (en) * 2007-07-02 2012-11-14 株式会社日本コンラックス Coin identification device
JP2020156180A (en) * 2019-03-19 2020-09-24 Tdk株式会社 Coil unit, wireless power transmission device, wireless power receiving device, and wireless power transmission system

Also Published As

Publication number Publication date
JP2001326129A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
WO2015008662A1 (en) Foreign matter detection device and method for contactless power supply device
US5336997A (en) Non-symmetrical inductive sensors having ferrite coil geometries with different top and base geometries
EP1146319B1 (en) Position transducer
JPH05504642A (en) Detection devices for safety systems
US6853182B2 (en) Proximity switch
US20030107377A1 (en) Metal detector
CN101573636B (en) Arrangement and method for detecting and/or locating a magnetic material in a region of action, use of an arrangement in the examination of buildings
JP3542315B2 (en) Shield for coil
US20050184814A1 (en) Inductive proximity switch with differential coil arrangement
EP0771478B1 (en) Attenuator
JPS632623B2 (en)
JP6182346B2 (en) Oscillator, rectifier and transmission / reception device
JP2012198158A (en) Current sensor
JP4281974B1 (en) Metal detector
JP2727882B2 (en) DC bias detection method of transformer and polarity determination method of DC bias
JP2588034B2 (en) Inductance displacement sensor
US5334935A (en) Apparatus and method for detecting weak magnetic fields having a saturable core shaped to cancel magnetic fields parallel to the core
JP2823071B2 (en) Automatic train stop system
Berger Current-induced oscillations of a Bloch wall in magnetic thin films
JP3093532B2 (en) DC current sensor
JPH07255700A (en) Rf coil for mri
JP2004077135A (en) Displacement sensor
JPH05144355A (en) Proximity switch
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body
JP6471779B2 (en) Transceiver

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250