JP3541612B2 - Superconducting coil inspection method - Google Patents

Superconducting coil inspection method Download PDF

Info

Publication number
JP3541612B2
JP3541612B2 JP10454197A JP10454197A JP3541612B2 JP 3541612 B2 JP3541612 B2 JP 3541612B2 JP 10454197 A JP10454197 A JP 10454197A JP 10454197 A JP10454197 A JP 10454197A JP 3541612 B2 JP3541612 B2 JP 3541612B2
Authority
JP
Japan
Prior art keywords
coil
current
test
inspected
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10454197A
Other languages
Japanese (ja)
Other versions
JPH10294231A (en
Inventor
高明 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10454197A priority Critical patent/JP3541612B2/en
Publication of JPH10294231A publication Critical patent/JPH10294231A/en
Application granted granted Critical
Publication of JP3541612B2 publication Critical patent/JP3541612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超電導コイルの出荷検査におけるコイルの耐電磁力固定補強の検査方法に係り、特に、実機システムの断熱容器にコイルを組込む前にコイルの耐電磁力固定補強の十分さを診断できる超電導コイルの検査方法に関するものである。
【0002】
【従来の技術】
数テスラの磁場を発生するデバイスとして超電導線材を巻線した超電導コイルがある。超電導コイルを用いた実機システムの一例を図5に示す。このシステムは、4つのコイル1,2,3,4から構成されている。そして、例えばコイル1が磁場B1=9Tを発生し、コイル2が磁場B2=4Tを発生し、コイル3が磁場B3=8Tを発生し、コイル4が磁場B4=3Tを発生し、合計でB=B1+B2+B3+B4=24Tの磁場を発生する仕組みとなっている。最内層が酸化物超電導線材からなるコイル4で、他は金属系超電導線材からなるコイル1,2,3である。
【0003】
これらのコイル1,2,3,4は、断熱容器5内に置かれる。そして、超流動液体ヘリウム6、液体ヘリウム7、液体窒素8で断熱容器5が冷却される。このようなコイルには、コイル線材の通電電流密度をJ、発生磁場をB、コイル半径をrとすると、電磁力F=J・B・rが加わる。超電導コイルは、この電磁力で歪まないようにコイルを補強固定する必要がある。通常は、コイル巻線の際に、耐力の大きな素材を補強材として超電導線材と共巻し、巻線完了後にエポキシ樹脂でコイルごと含浸する手法が採られている。このようなコイルの固定補強対策は超電導コイルの重要課題の一つである。具体的には、エポキシ樹脂の含浸方法の改善、巻線方法の改善、高強度補強材の開発、超電導線材の高強度化などが対策として検討されている。
【0004】
超電導コイルとして完成されたものは、通常、実運転環境下と同じ冷却環境、外部磁場環境下において通電試験が行われる。図5の最内層コイルが被検査コイルの場合は、図5のような大型装置の環境に被検査コイルを置いて通電試験が行われる。
【0005】
【発明が解決しようとする課題】
超電導コイルの作製完成後に、コイルの固定補強が運転時の電磁力に対して十分なのか、不十分なのかを判断するには通電しないと分からない。しかし、通電試験を行うにはコイルを運転温度まで冷却する必要がある。図5に示すような大型装置の場合は、コイルを断熱容器に組込む前の予備検査としての定格電流の通電試験が事実上不可能である。また、超電導コイルがクエンチしたときは、定格電流通電時より大きな電流がコイル線材に一瞬流れる場合もあり、その時は定格通電時より大きな電磁力がコイルに加わる。設計上はこのような異常時も含めた最大電磁力に耐えることを保証できる補強構造としなければならない。しかし、このような異常通電電流を模擬的にコイルに負荷する検査は通常行われていない。その理由は、検査のためにコイルを冷却せねばならず、液体ヘリウム等の費用と手間とを要するからである。
【0006】
図5のようなシステムの場合、4つのコイルでそれぞれ異なる線材を用いており、それぞれの手法の異なる固定補強対策が必要である。しかし、実運転と同じ電磁力をコイルに与えるには4つのコイルを同時に通電して初めて可能になる。仮に、コイル4単独に通電した場合では磁場がB4=3Tしか発生しない。しかし、実際の運転時には、コイル4は最大磁場21T中に置かれる。コイル4単独通電の場合、同じ定格通電試験を行っても、その時に加わる電磁力は実際に加わる電磁力の約3÷(21+3)=1/8である。
【0007】
また、通電による電磁力はコイルを破損させるものであるが、破損は外観上明らかな場合もあるが、見掛け上特に異常が見当たらず、微小なクラックのみ生じている場合もある。外観上の変化が観測されない場合は、実運転を数回繰り返すことによって、劣化が進行して行く場合もある。このような耐電磁力対策の不備はコイル自体の問題であるが、コイル単体の合理的な診断手段が今のところ提案されていない。
【0008】
そこで、本発明の目的は、上記課題を解決し、実機システムの断熱容器にコイルを組込む前にコイルの耐電磁力固定補強の十分さを診断できる超電導コイルの検査方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明は、50K以下の低温域で定格電流I0 で実運転される銀又は銀合金被覆酸化物超電導線材を用いた超電導コイルを検査する方法において、
まず、初期試験として、
試験1:被検査コイルを液体窒素で冷却し、直流通電試験で電圧対電流特
性を評価する
を行い、
次いで、耐試験として、
試験2:冷却された被検査コイルに、この被検査コイルの発生磁場と実運転時に該被検査コイルに加わる外部磁場との関係から求まる負荷
係数cに基づき、通電電流c・I0 のパルス電流を通電する
を行い、
その後、再度、試験1を行い、耐試験による被検査コイルの電圧対電流特性の変化の有無を調べるものである。
【0010】
上記試験2は、液体窒素で冷却された被検査コイルにコンデンサーバンク型の電源で発生したパルス電流を通電し、このコンデンサーバンク電源から放出するエネルギが、断熱状態の超電導線材が77Kから許容温度に温度上昇するのに要する熱エネルギに等しいQ値以下となるように定めてもよい。
【0011】
上記直流通電試験は、被検査コイルの発生電圧が所定の範囲となる電流域で電流値を掃引して行ってもよい。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて詳述する。ここでは、被検査コイル(被診断コイル)を実機システムに組込む前に検査する形態とする。図1は、被検査コイルを検査する装置の概要を示したものである。この検査装置は、主に、被検査コイル9を格納すると共に液体窒素18が収容される断熱容器5と、被検査コイルに直流通電を行う直流定電流電源14と、被検査コイルにパルス通電を行うパルス電流発生電源15と、被検査コイル端子間の電圧対電流特性の評価を行う評価手段20とから構成されている。
【0013】
この検査装置は、被検査コイル9が実運転時に受けるのと同じ最大電磁力を与えるようなパルス電流を被検査コイル9に通電し、このパルス通電試験の前後に液体窒素温度における電圧対電流特性(V−I特性)を測定して、パルス通電試験に対するV−I特性の変化の有無を調べるものであり、被検査コイル9を実運転温度に冷却することなく、また、実機システムに組込むことなく、被検査コイル9の耐電磁力固定補強の十分さを診断することができる。
【0014】
検査の手順は、次の試験1と試験2とを数回繰り返すことであり、試験2を経ることによるV−I特性の変化を調べ、これによってパルス電流負荷回数当たりのコイルの劣化を知ることができる。
試験1:被検査コイル9を液体窒素含浸で冷却し、4端子法の直流通電試験で被検 査コイル端子間のV−I特性を被検査コイル端子間電圧が1mVから10 mV発生するまで評価(測定)する。
【0015】
試験2:液体窒素18で冷却された被検査コイル9に最大通電電流がc・I0 のパルス電流を数回通電する。cは負荷係数である。
【0016】
次に、パルス電流の最大通電電流の決定方法(負荷係数cの決定方法)を説明する。被検査コイル9単体としての発生磁場をBS (T)、実運転時に被検査コイル9に加わる外部磁場をBa(T)、実運転時の被検査コイル9の定格電流をI0 (A)、実運転時の被検査コイル9の負荷として想定される異常電流をI1 (A)、但し、I0 <I1 とする。
【0017】
(1)ケース1:Ba<BS のとき
c={1.0+(Ba/BS )}・I1 /I0 (1)
とする。
【0018】
(2)ケース2:Ba>BS のとき
被検査コイル9の内径がRa、外径がRbであるとき、
c={(Ba+BS )/BS ×(Rb/Ra) (2)
とする。
【0019】
なお、負荷係数cは、1.0以上の値をとる。
【0020】
このように、負荷係数cは、被検査コイル9の発生磁場BS と実運転時に被検査コイル9に加わる外部磁場Baとの関係から決まる。負荷係数cが決まれば、パルス電流の最大通電電流c・I0 が決まる。
【0021】
次に、被検査コイル9へのパルス電流供給方法を説明する。パルス電流の発生には、コンデンサーバンク型の電源を用いる。被検査コイルの線材の許容温度を100Kに設定し、この線材が77Kから許容温度に達するまでに要する熱エネルギ(J)を予め計算しておく。この熱エネルギの計算は、線材の長さあたりの熱容量と線材長との積を77Kから許容温度の100Kまで積分する計算である。この熱エネルギの値をQ値とする。コンデンサーバンク電源から放出する電気エネルギは、このようにして計算されたQ値以下又はQ値を越えない値とする。
【0022】
図2は、超電導コイルで構成される実機システムを示したものである。この実機システムは、コイル9が断熱容器5内に格納され、液体ヘリウム10で冷却されるものである。本実施形態では、実機システムにおけるコイル9を被検査コイルと考え、実機システムに組込む前に図1の検査装置で検査した。表1は、被検査コイル9即ちコイル9の実運転時の使用環境を示したものである。表2は、被検査コイル9のコイル用線材の仕様を示したものである。表3は、被検査コイル9の仕様を示したものである。
【0023】
【表1】

Figure 0003541612
【0024】
【表2】
Figure 0003541612
【0025】
【表3】
Figure 0003541612
【0026】
図1に示されるように、断熱容器5に格納された被検査コイル9の端子には、通電するための電流リード11(銅リードの断面積は2mm2 程度)とコイル端子間の電圧を測定するための電圧リード12とを取り付ける。コイル端子間と電流リード11とはパルス通電時に高電圧下に置かれるので、アース接地された断熱容器5とこれらのリード線とは、5kVの耐圧を有する絶縁体13を介して電気的に絶縁されている。電流リード11には、シャント抵抗16を介して直流定電流電源14とパルス電流発生電源15とが接続されており、それぞれの電源ラインには、スイッチ21,22が挿入されている。評価手段20として、シャント抵抗16の両端間電圧と電圧リード12間電圧とを測定する電圧評価装置17が設けられている。そして、検査の際には、断熱容器5に液体窒素18が収容され、被検査コイル9は液体窒素浸漬冷却される。
【0027】
まず、初期試験として、試験1を行う。スイッチ21により被検査コイル9に直流定電流電源14を接続し、電流値を掃引してV−I特性を評価する。このとき通電電流は、被検査コイルの発生電圧が10μV以上、10mV以下となる電流域で使用する。実測では、電流スイープ速度は1A/分とし、0Aから10AまでのV−I特性を調べた。
【0028】
また、本実施形態では、0A→10A→0A→10A→0A→10Aと電流スイープを繰り返し、電流増加3回目の電流スイープのときのV−I特性を被検査コイル9の初期特性値とした。図3は、3回目の電流増加時のV−I特性測定結果を示したものである。このように電流スイープを往復数回繰り返したのは、超電導線材の磁場ヒストリー効果の影響を考慮したためである。超電導線材のV−I特性は、電流スイープ1回目と電流スイープ2回目以降とで若干異なる場合がある。しかし、電流スイープ2回目以降のV−I特性は、ほぼ再現するようになっている。これは、超電導線材の磁場ヒストリー効果によるものと解釈され、線材の機械的劣化とは別のメカニズムに起因している。
【0029】
また、本実施形態では、電圧タップ間に半田接続した常電導接続部及び銅リード部を含んでいる。図3のV−I特性(初期特性)の低電流域で観測されている線形抵抗性電圧は、銅リード部及び半田接続部によるものである。
【0030】
初期試験終了後、スイッチ21により直流定電流電源14を切り離し、スイッチ22により被検査コイル9にパルス電流発生電源15を接続する。パルス電流発生電源15は、コンデンサーバンク型のもので、蓄積エネルギが10kJのものである。実運転時の外部磁場Baが零(表3)なので、パルス電流の最大値は、式(1)より実運転時の異常電流I1 と等しく700A(表1)である。
【0031】
耐試験として試験2を行う。パルス通電は、コンデンサーバンクの蓄積エネルギを徐々にあげながら、最大瞬間通電電流が700Aになるまで、複数回行う。ちなみに、700A通電時の端子間の発生電圧は約2kV、通電時間は数m秒であった。通電電流値の計測は、シャント抵抗16の両端間電圧をオシロスコープ(電圧評価装置17)で評価して行った。パルス電流発生電源15のコンデンサ放出エネルギを4kJに設定したとき、最大通電電流が700Aと評価された。
被検査コイルが冷却温度T から通電時の許容温度T まで上昇するのに要する熱エネルギQは、許容温度における線材長さX当たりの体積比熱をc (100) 、冷却温度における線材長さX当たりの体積比熱をc (77) としたとき、Q=X×{c (100) +c (77) }/2×(T −T )で求めることができる。本コイルの場合、温度77Kから許容温度100Kまで温度上昇するのに要する熱エネルギQは、前記温度と、表2、表3の仕様値とを上記の式に代入して求めると、Q=19900(J)であり、前記設定値4kJはこのQ値より小さい。よって、4kJに設定することは、パルス通電のジュール発熱による線材の焼き切れは起らない条件であると考えられる。
【0032】
パルス通電による耐試験終了後、再度、試験1を行う。直流通電の電流値が10A時の端子間発生電圧を基準値VS とする。測定結果として、パルス通電回数(パルス電流負荷回数)と基準値VS とを表4に示す。
【0033】
【表4】
Figure 0003541612
【0034】
基準値VS の初期値は0.2mVであったが、パルス通電回数を経ることで発生電圧値は一定の値に落ち着くようになった。
【0035】
700Aのパルス通電時は、被検査コイル9に計算上100MPaの電磁力が瞬間的にかかっていることになる。複数回のパルス通電後もV−I特性の変化がないことから、この被検査コイル9は瞬間的な電磁力に対しては全く影響を受けないことが確認できた。
【0036】
以上の検査の終了後、図2の実機システムに被検査コイル9を組み込み、液体ヘリウム10で冷却し、定格電流500Aの通電試験を実施したところ、被検査コイル9が破損しないことが最終的に確認された。
【0037】
次に、他の実施形態を説明する。
【0038】
図4は、超電導コイルで構成される実機システムを示したものである。このシステムのように被検査コイル9が外層コイル19による外部磁場下で使用される場合、図1の検査装置においては、パルス電流の最大値は式(2)を用いて決定する。ここでは、外部磁場Ba=15T、BS =7.4Tであるとする。この場合、負荷係数c=5である。従って、パルス電流の最大値は2500Aである。端子間の発生電圧は約8kV、コンデンサーバンクの蓄積エネルギは16kJである。
【0039】
実機システムの冷却環境は様々であり、液体ヘリウムで冷却される以外では、冷凍機冷却、超流動ヘリウム、超臨界ヘリウム、液体ネオン、液体水素等が考えられる。検査装置の冷却環境においても、これらの冷却物質を使用して良いことは勿論である。
【0040】
上記実施形態では、実機システムの断熱容器に被検査コイルを組込む前に検査を行ったが、これに限らず、例えば、実機システムの運転使用後の再検査としても本発明の方法を適用可能である。
【0041】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0042】
(1)被検査コイルを実機システムに組込む前に実機システムによる検査と同等の電磁力を付加する検査ができる。
【0043】
(2)実機システムでは困難な異常電流を流す検査ができる。
【0044】
(3)液体窒素冷却を用いるので、実機システムでの冷却に比べて簡易に行うことができる。
【0045】
(4)実機システムに組立て前に被検査コイルの異常を発見できる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す検査装置の構成図である。
【図2】超電導コイルで構成される実機システムの構成図である。
【図3】本発明により得られる被検査コイルのV−I特性図である。
【図4】超電導コイルで構成される実機システムの構成図である。
【図5】超電導コイルで構成される実機システムの構成図である。
【符号の説明】
9 コイル(被検査コイル)
14 直流定電流電源
15 パルス電流発生電源
18 液体窒素
20 評価手段[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inspection method of fixing and reinforcing electromagnetic resistance of a coil in a shipping inspection of a superconducting coil. The present invention relates to a coil inspection method.
[0002]
[Prior art]
As a device for generating a magnetic field of several Tesla, there is a superconducting coil in which a superconducting wire is wound. FIG. 5 shows an example of an actual system using a superconducting coil. This system is composed of four coils 1,2,3,4. Then, for example, the coil 1 generates a magnetic field B1 = 9T, the coil 2 generates a magnetic field B2 = 4T, the coil 3 generates a magnetic field B3 = 8T, and the coil 4 generates a magnetic field B4 = 3T. = B1 + B2 + B3 + B4 = A mechanism for generating a magnetic field of 24T. The innermost layer is a coil 4 made of an oxide superconducting wire, and the others are coils 1, 2, and 3 made of a metal-based superconducting wire.
[0003]
These coils 1, 2, 3, 4 are placed in a heat insulating container 5. Then, the heat insulating container 5 is cooled by the superfluid liquid helium 6, liquid helium 7, and liquid nitrogen 8. Assuming that the current density of the coil wire is J, the generated magnetic field is B, and the coil radius is r, an electromagnetic force F = J · B · r is applied to such a coil. The superconducting coil needs to be reinforced and fixed so that the coil is not distorted by this electromagnetic force. Usually, in coil winding, a method is employed in which a material having a high proof stress is co-wound with a superconducting wire as a reinforcing material, and the coil is completely impregnated with epoxy resin after winding is completed. Such measures for fixing and reinforcing the coil are one of the important issues of the superconducting coil. Specifically, improvement of the impregnation method of the epoxy resin, improvement of the winding method, development of a high-strength reinforcing material, and enhancement of the strength of the superconducting wire have been studied as countermeasures.
[0004]
The completed superconducting coil is usually subjected to an energization test under the same cooling environment and external magnetic field environment as the actual operation environment. When the innermost layer coil in FIG. 5 is the coil to be inspected, the energization test is performed by placing the coil to be inspected in an environment of a large device as shown in FIG.
[0005]
[Problems to be solved by the invention]
After completion of the production of the superconducting coil, it is not known unless the power is supplied to judge whether the fixing and reinforcement of the coil are sufficient or insufficient for the electromagnetic force during operation. However, it is necessary to cool the coil to the operating temperature in order to perform the energization test. In the case of a large-sized apparatus as shown in FIG. 5, it is practically impossible to conduct a rated current conduction test as a preliminary inspection before assembling the coil in the heat insulating container. When the superconducting coil is quenched, a current larger than the rated current may flow through the coil wire for a moment, and at that time, an electromagnetic force larger than the rated current is applied to the coil. From a design point of view, it is necessary to use a reinforcing structure that can guarantee the maximum electromagnetic force even in the event of such abnormalities. However, tests for imposing such an abnormal current on the coil in a simulated manner are not usually performed. The reason is that the coil must be cooled for the inspection, and the cost and labor for liquid helium and the like are required.
[0006]
In the case of the system as shown in FIG. 5, different wires are used for the four coils, and different fixing and reinforcing measures are required for each method. However, to apply the same electromagnetic force to the coils as in actual operation, it is only possible to energize the four coils simultaneously. If the coil 4 is energized alone, a magnetic field of only B4 = 3T is generated. However, during actual operation, the coil 4 is placed in the maximum magnetic field 21T. In the case of energizing the coil 4 alone, even if the same rated energizing test is performed, the electromagnetic force applied at that time is about 3 ÷ (21 + 3) = 1/8 of the electromagnetic force actually applied.
[0007]
In addition, the electromagnetic force caused by the energization causes the coil to be damaged. The damage may be apparent in the appearance, but there is a case where no abnormality is apparently observed and only minute cracks are generated. When no change in appearance is observed, deterioration may progress by repeating actual operation several times. Such inadequacy of the electromagnetic resistance is a problem of the coil itself, but no reasonable diagnostic means for the coil alone has been proposed so far.
[0008]
Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a method for inspecting a superconducting coil capable of diagnosing sufficient electromagnetic resistance fixing reinforcement of a coil before assembling the coil in a heat insulating container of an actual system.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for inspecting a superconducting coil using a silver or silver alloy-coated oxide superconducting wire that is actually operated at a rated current I 0 in a low temperature range of 50 K or less,
First, as an initial test,
Test 1: The coil to be inspected was cooled with liquid nitrogen, and the voltage-current characteristics were evaluated by a DC current test.
Then, as a withstand test,
Test 2: The pulse current of the conduction current c · I 0 is supplied to the cooled coil under test based on the load coefficient c obtained from the relationship between the generated magnetic field of the coil under test and the external magnetic field applied to the coil under test during actual operation. To energize and
Thereafter, Test 1 is performed again to check whether or not the voltage-current characteristics of the coil to be inspected have changed due to the withstand test.
[0010]
In the above test 2, a pulse current generated by a capacitor bank type power supply was applied to the coil to be inspected cooled by liquid nitrogen, and the energy released from the capacitor bank power supply was changed from 77K in the adiabatic superconducting wire to the allowable temperature. The Q value may be set to be equal to or less than the Q value equal to the heat energy required for increasing the temperature.
[0011]
The DC conduction test may be performed by sweeping a current value in a current range in which the voltage generated by the coil to be inspected is within a predetermined range.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, it is assumed that the inspection target coil (diagnosis target coil) is inspected before being incorporated into the actual system. FIG. 1 shows an outline of an apparatus for inspecting a coil to be inspected. This inspection apparatus mainly includes a heat insulating container 5 that stores the coil 9 to be inspected and also contains the liquid nitrogen 18, a DC constant current power supply 14 that supplies a DC current to the coil to be inspected, and a pulse current that supplies a pulse to the coil to be inspected. It comprises a pulse current generating power supply 15 to be performed and an evaluation means 20 for evaluating the voltage-current characteristics between the coil terminals to be inspected.
[0013]
This inspection apparatus energizes the coil under test 9 with a pulse current that gives the same maximum electromagnetic force as the coil 9 under test receives during actual operation, and performs voltage-current characteristics at liquid nitrogen temperature before and after the pulse current test. (VI characteristic) is measured to check whether there is a change in the VI characteristic with respect to the pulse current test. The coil 9 to be inspected is not cooled to the actual operating temperature and is incorporated in the actual system. In addition, it is possible to diagnose whether or not the coil to be inspected 9 is sufficiently fixed and electromagnetically resistant.
[0014]
The inspection procedure is to repeat the next test 1 and test 2 several times, to examine the change in VI characteristics due to passing test 2, and to know the deterioration of the coil per pulse current load. Can be.
Test 1: The coil under test 9 was cooled by impregnation with liquid nitrogen, and the VI characteristics between the terminals of the test coil were evaluated until the voltage between the terminals of the test coil generated from 1 mV to 10 mV in the DC current test of the four-terminal method. (Measure.
[0015]
Test 2: A pulse current having a maximum current of c · I 0 is applied several times to the coil 9 to be inspected cooled by the liquid nitrogen 18. c is a load coefficient.
[0016]
Next, a method of determining the maximum energizing current of the pulse current (a method of determining the load coefficient c) will be described. The magnetic field generated by the test coil 9 alone is B S (T), the external magnetic field applied to the test coil 9 during actual operation is Ba (T), and the rated current of the test coil 9 during actual operation is I 0 (A). The abnormal current assumed as the load of the coil 9 to be inspected during actual operation is I 1 (A), where I 0 <I 1 .
[0017]
(1) Case 1: c <{1.0+ (Ba / B S )} · I 1 / I 0 when Ba <B S (1)
And
[0018]
(2) Case 2: When Ba> B S When the inner diameter of the coil 9 to be inspected is Ra and the outer diameter is Rb,
c = {(Ba + B S ) / B S × (Rb / Ra) (2)
And
[0019]
Note that the load coefficient c takes a value of 1.0 or more.
[0020]
As described above, the load coefficient c is determined by the relationship between the generated magnetic field B S of the inspected coil 9 and the external magnetic field Ba applied to the inspected coil 9 during actual operation. Once the load coefficient c is determined, the maximum current c · I 0 of the pulse current is determined.
[0021]
Next, a method of supplying a pulse current to the inspection target coil 9 will be described. A pulse bank current is generated by a capacitor bank type power supply. The allowable temperature of the wire of the coil to be inspected is set to 100K, and the thermal energy (J) required for the wire to reach the allowable temperature from 77K is calculated in advance. This heat energy is calculated by integrating the product of the heat capacity per wire length and the wire length from 77 K to the allowable temperature of 100 K. The value of this heat energy is defined as the Q value. The electric energy emitted from the capacitor bank power supply is set to a value that is equal to or less than the Q value calculated in this way and does not exceed the Q value.
[0022]
FIG. 2 shows an actual system composed of superconducting coils. In this actual machine system, a coil 9 is stored in a heat insulating container 5 and cooled by liquid helium 10. In the present embodiment, the coil 9 in the actual machine system is considered as the coil to be inspected, and the coil 9 in the actual machine system is inspected by the inspection device of FIG. Table 1 shows the usage environment of the coil 9 to be inspected, that is, the actual operation of the coil 9. Table 2 shows the specifications of the coil wire of the coil 9 to be inspected. Table 3 shows the specifications of the coil 9 to be inspected.
[0023]
[Table 1]
Figure 0003541612
[0024]
[Table 2]
Figure 0003541612
[0025]
[Table 3]
Figure 0003541612
[0026]
As shown in FIG. 1, a voltage between a current lead 11 (a cross-sectional area of a copper lead is about 2 mm 2 ) for energizing and a terminal of the coil is measured at a terminal of the coil 9 to be inspected stored in the heat insulating container 5. And a voltage lead 12 for mounting the same. Since the voltage between the coil terminals and the current lead 11 is set to a high voltage when a pulse is applied, the insulated container 5 grounded to ground and these leads are electrically insulated through an insulator 13 having a withstand voltage of 5 kV. Have been. A DC constant current power supply 14 and a pulse current generation power supply 15 are connected to the current lead 11 via a shunt resistor 16, and switches 21 and 22 are inserted in the respective power supply lines. As the evaluation means 20, a voltage evaluation device 17 for measuring a voltage between both ends of the shunt resistor 16 and a voltage between the voltage leads 12 is provided. At the time of inspection, liquid nitrogen 18 is stored in the heat insulating container 5, and the coil 9 to be inspected is cooled by immersion in liquid nitrogen.
[0027]
First, test 1 is performed as an initial test. The DC constant current power supply 14 is connected to the coil 9 to be inspected by the switch 21 and the current value is swept to evaluate the VI characteristics. At this time, the energizing current is used in a current range where the voltage generated by the coil to be inspected is 10 μV or more and 10 mV or less. In the actual measurement, the current sweep speed was set to 1 A / min, and the VI characteristics from 0 A to 10 A were examined.
[0028]
In the present embodiment, the current sweep is repeated in the order of 0A → 10A → 0A → 10A → 0A → 10A, and the VI characteristic at the time of the third current sweep of the current increase is set as the initial characteristic value of the coil 9 to be inspected. FIG. 3 shows the VI characteristic measurement results at the time of the third current increase. The reason why the current sweep is repeated several times is that the influence of the magnetic field history effect of the superconducting wire is considered. The VI characteristics of the superconducting wire may be slightly different between the first current sweep and the second and subsequent current sweeps. However, the VI characteristics after the second current sweep are almost reproduced. This is interpreted as being due to the magnetic field history effect of the superconducting wire, and is due to a mechanism different from the mechanical deterioration of the wire.
[0029]
Further, the present embodiment includes a normal conducting connection portion and a copper lead portion which are connected by solder between the voltage taps. The linear resistance voltage observed in the low current region of the VI characteristic (initial characteristic) in FIG. 3 is due to the copper lead portion and the solder connection portion.
[0030]
After completion of the initial test, the DC constant current power supply 14 is disconnected by the switch 21, and the pulse current generating power supply 15 is connected to the coil 9 to be inspected by the switch 22. The pulse current generating power supply 15 is of a capacitor bank type and has a stored energy of 10 kJ. Since the external magnetic field Ba in actual operation is zero (Table 3), the maximum value of the pulse current is equal to the abnormal current I 1 in the actual operation from the equation (1) 700A (Table 1).
[0031]
Test 2 is performed as an endurance test. The pulse energization is performed a plurality of times while gradually increasing the energy stored in the capacitor bank until the maximum instantaneous energization current reaches 700A. Incidentally, the voltage generated between the terminals when the current was supplied at 700 A was about 2 kV, and the current supply time was several milliseconds . The current value was measured by evaluating the voltage across the shunt resistor 16 with an oscilloscope (voltage evaluation device 17). When the discharge energy of the capacitor of the pulse current generating power supply 15 was set to 4 kJ, the maximum energizing current was evaluated to be 700 A.
The coil to be inspected has a cooling temperature T 0 Allowable temperature T m of a time of energization from Thermal energy Q required to rise until, c (100) the volume specific heat of the wire length per X at the permissive temperature, when the volume specific heat of the wire length per X in the cooling temperature was c (77), Q = X × {c (100) + c (77) } / 2 × (T m −T 0 ). In the case of the present coil, the thermal energy Q required to raise the temperature from 77K to the allowable temperature 100K is obtained by substituting the temperature and the specification values in Tables 2 and 3 into the above equations, and Q = 19900 (J), and the set value 4 kJ is smaller than the Q value. Therefore, setting to 4 kJ is considered to be a condition under which the burnout of the wire due to the Joule heat generated by the pulse current does not occur.
[0032]
After the endurance test by the pulse current is completed, the test 1 is performed again. DC current of current to the inter-terminal voltage generated at 10A with a reference value V S. Table 4 shows the number of pulse currents (the number of pulse current loads) and the reference value V S as the measurement results.
[0033]
[Table 4]
Figure 0003541612
[0034]
The initial value of the reference value V S was 0.2mV, but generates a voltage value by passing through the pulse current count began to settle to a constant value.
[0035]
When a pulse current of 700 A is supplied, an electromagnetic force of 100 MPa is momentarily applied to the coil 9 to be inspected. Since there is no change in the VI characteristics even after a plurality of pulse currents, it was confirmed that the coil 9 to be inspected was not affected at all by the instantaneous electromagnetic force.
[0036]
After the above inspection is completed, the coil 9 to be inspected is assembled into the actual system shown in FIG. 2, cooled with liquid helium 10 and an energization test with a rated current of 500 A is performed. confirmed.
[0037]
Next, another embodiment will be described.
[0038]
FIG. 4 shows an actual system composed of superconducting coils. When the coil 9 to be inspected is used under an external magnetic field generated by the outer layer coil 19 as in this system, the maximum value of the pulse current is determined using Expression (2) in the inspection apparatus of FIG. Here, the external magnetic field Ba = 15T, and a B S = 7.4T. In this case, the load coefficient c = 5. Therefore, the maximum value of the pulse current is 2500A. The voltage generated between the terminals is about 8 kV, and the energy stored in the capacitor bank is 16 kJ.
[0039]
The cooling environment of the actual system is various, and other than cooling with liquid helium, refrigerator cooling, superfluid helium, supercritical helium, liquid neon, liquid hydrogen, and the like can be considered. Of course, these cooling substances may be used in the cooling environment of the inspection device.
[0040]
In the above embodiment, the inspection was performed before the coil to be inspected was incorporated into the heat insulating container of the actual system. However, the present invention is not limited to this. is there.
[0041]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0042]
(1) Before installing the coil to be inspected in the actual machine system, an inspection can be performed in which an electromagnetic force equivalent to that of the actual machine system is applied.
[0043]
(2) It is possible to perform an inspection in which an abnormal current, which is difficult in an actual system, is passed.
[0044]
(3) Since liquid nitrogen cooling is used, the cooling can be performed more easily than in the actual system.
[0045]
(4) Abnormality of the coil to be inspected can be found before assembling into the actual machine system.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an inspection apparatus showing one embodiment of the present invention.
FIG. 2 is a configuration diagram of a real machine system including superconducting coils.
FIG. 3 is a VI characteristic diagram of a coil to be inspected obtained by the present invention.
FIG. 4 is a configuration diagram of an actual system configured by superconducting coils.
FIG. 5 is a configuration diagram of an actual system configured by superconducting coils.
[Explanation of symbols]
9 coil (coil to be inspected)
14 DC constant current power supply 15 Pulse current generation power supply 18 Liquid nitrogen 20 Evaluation means

Claims (3)

50K以下の低温域で定格電流I0で実運転される銀又は銀合金被覆酸化物超電導線材を用いた超電導コイルを検査する方法において、
まず、初期試験として、
試験1:被検査コイルを液体窒素で冷却し、直流通電試験で電圧対電流特性を評価 する
を行い、次いで、耐試験として、
試験2:冷却された被検査コイルに、この被検査コイルの発生磁場Bsと実運転時 に被検査コイルに加わる外部磁場Baとの関係から次の条件で定まる負荷 係数cに基づき、通電電流c・I0のパルス電流を通電する
Ba<Bsのとき、c={1.0+(Ba/Bs)}×(I1+I0
Ba>Bsのとき、c={(Ba+Bs)/Bs}×(Rb/Ra)
但し、I0<I1 1 は実運転時に被検査コイルの負荷として想定される異常電 流、Raは被検査コイルの内径、Rbは同外径
を行い、その後、再度、試験1を行い、耐試験による被検査コイルの電圧対電流特性の変化の有無を調べることを特徴とする超電導コイルの検査方法。
In a method of inspecting a superconducting coil using a silver or silver alloy-coated oxide superconducting wire actually operated at a rated current I 0 in a low temperature region of 50 K or less,
First, as an initial test,
Test 1: The coil under test was cooled with liquid nitrogen, and the voltage-current characteristics were evaluated by a DC current test.
Test 2: Based on the load coefficient c determined by the following condition from the relationship between the magnetic field Bs generated by the coil to be inspected and the external magnetic field Ba applied to the coil to be inspected during actual operation, when · I 0 of Ba <Bs passing a pulse current, c = {1.0+ (Ba / Bs)} × (I 1 + I 0)
When Ba> Bs, c = {(Ba + Bs) / Bs} × (Rb / Ra)
However, I 0 <I 1, I 1 is abnormal current which is assumed as the load of the inspection coils during actual operation, Ra is the inner diameter of the test coil, Rb performs Dosoto径, then again, the test 1 A method for inspecting a superconducting coil, comprising: performing a withstand test to determine whether a voltage-current characteristic of the coil to be inspected has changed.
上記試験2は、液体窒素で冷却された被検査コイルにコンデンサーバンク型の電源で発生したパルス電流を通電し、このコンデンサーバンク電源から放出するエネルギが、断熱状態の超電導線材が77Kから許容温度に温度上昇するのに要する熱エネルギに等しいQ値以下となるように定めることを特徴とする請求項1記載の超電導コイルの検査方法。In the above test 2, a pulse current generated by a capacitor bank type power supply was applied to the coil to be inspected cooled by liquid nitrogen, and the energy released from the capacitor bank power supply was changed from 77K in the adiabatic state of the superconducting wire to an allowable temperature. 2. The method for inspecting a superconducting coil according to claim 1, wherein the Q value is determined so as to be equal to or less than a Q value equal to the heat energy required for increasing the temperature. 上記直流通電試験は、被検査コイルの発生電圧が所定の範囲となる電流域で電流値を掃引して行うことを特徴とする請求項1又は2記載の超電導コイルの検査方法。3. The inspection method for a superconducting coil according to claim 1, wherein the DC conduction test is performed by sweeping a current value in a current range in which a voltage generated in the coil to be inspected is within a predetermined range.
JP10454197A 1997-04-22 1997-04-22 Superconducting coil inspection method Expired - Fee Related JP3541612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10454197A JP3541612B2 (en) 1997-04-22 1997-04-22 Superconducting coil inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10454197A JP3541612B2 (en) 1997-04-22 1997-04-22 Superconducting coil inspection method

Publications (2)

Publication Number Publication Date
JPH10294231A JPH10294231A (en) 1998-11-04
JP3541612B2 true JP3541612B2 (en) 2004-07-14

Family

ID=14383361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10454197A Expired - Fee Related JP3541612B2 (en) 1997-04-22 1997-04-22 Superconducting coil inspection method

Country Status (1)

Country Link
JP (1) JP3541612B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323525B (en) * 2011-06-16 2015-04-29 中国电力科学研究院 Test method for insulating property experiment on lead with withstand voltage level of more than 35kV
KR101850042B1 (en) * 2017-11-24 2018-04-18 제주대학교 산학협력단 Performance evaluation device

Also Published As

Publication number Publication date
JPH10294231A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
US8219335B2 (en) Electric winding displacement detection method and apparatus
Mancinelli et al. Qualification of hairpin motors insulation for automotive applications
Kadechkar et al. Low-cost online contact resistance measurement of power connectors to ease predictive maintenance
Stone et al. A thermal cycling type test for generator stator winding insulation
US8633728B2 (en) Surge testing method and system for a bar-wound stator
Hauschild Critical review of voltages applied for quality-acceptance and diagnostic field tests on high-voltage and extra-high-voltage cable systems
JP3541612B2 (en) Superconducting coil inspection method
Risse et al. Wendelstein 7-X–commissioning of the superconducting magnet system
Timperley et al. Estimating the remaining service life of asphalt-mica stator insulation
Williamson et al. Investigation of equivalent stator-winding thermal resistance during insulation system ageing
JP3584673B2 (en) Superconducting coil pulse conduction inspection method
Hanisch et al. Analysis of partial discharges and failure mechanism in electrical machines with hairpin winding
US5907102A (en) System and method for performing tensile stress-strain and fatigue tests
David et al. The use of time domain spectroscopy as a diagnostic tool for rotating machine windings
Kadechkar et al. On-line resistance measurement of substation connectors focused on predictive maintenance
Riße et al. Design, tests, and repair procedures for the electrical insulation of the superconducting W7-X magnets
JP3847556B2 (en) Soundness evaluation method and test method for electromagnetic induction equipment
Rux et al. Evaluation of delaminated high-voltage rotating machine stator winding groundwall insulation
Ehmler et al. Comparative analysis of impulse and impedance tests to detect short circuits within the W7-X magnets
Eberg et al. Multi-stress cyclic testing of Roebel Stator Bars for Hydropower
Schermer et al. Conductor qualification tests for the 30-MJ Bonneville power administration SMES coil
Farahani et al. Investigations on characteristic parameters to evaluate the condition of the insulation system for high voltage rotating machines
Michna et al. Practical aspects of testing superconducting electromagnets by the capacitor discharge method taking into account the non-linearity of circuit parameters
Train et al. A combined voltage-endurance and thermal cycling test for stator coils and bars
Baccaglioni et al. Measurements of quench velocity in adiabatic NbTi and NbSn coils. Comparison between theory and experiments in small model coils and large magnets

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees