JP3541552B2 - Operating method of coke oven - Google Patents

Operating method of coke oven Download PDF

Info

Publication number
JP3541552B2
JP3541552B2 JP06802596A JP6802596A JP3541552B2 JP 3541552 B2 JP3541552 B2 JP 3541552B2 JP 06802596 A JP06802596 A JP 06802596A JP 6802596 A JP6802596 A JP 6802596A JP 3541552 B2 JP3541552 B2 JP 3541552B2
Authority
JP
Japan
Prior art keywords
coke
index
coke oven
furnace wall
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06802596A
Other languages
Japanese (ja)
Other versions
JPH09143473A (en
Inventor
史朗 渡壁
義明 原
幹治 武田
宏 板谷
英孝 杉辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP06802596A priority Critical patent/JP3541552B2/en
Publication of JPH09143473A publication Critical patent/JPH09143473A/en
Application granted granted Critical
Publication of JP3541552B2 publication Critical patent/JP3541552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、コークスケーキの押出し性を改善するコークス炉の操業方法を提案するものである。
【0002】
高炉用コークスは、還元材として、熱源として、また通気性を保つための支持材として機能しており、高炉に良質なコークスを安定して供給することが必要不可欠である。しかし、21世紀初頭に日本国内のコークス炉の大半が、現在コークス炉の寿命とされている築炉35年を迎えるため、現状コークス炉の代替炉の検討が鉄鋼会社を始めとして行われている。例えば、連続式成形コークス炉(例えば、奥原ら:鉄と鋼、S584 〜587 、1979)等である。しかるに、いずれの技術においても設備の投資額は莫大なものとなるうえ、現状では従来の室炉式のコークスと100 %代替使用できる次世代高炉用コークス製造技術は開発されていない。
【0003】
そこで、現状のコークス炉の寿命を延長することが、現在の高炉製鉄法にとって最も重要であることは議論を待たない。コークス炉の寿命を決定する要因としては、炭化室側壁(以下、炉壁という)れんがの損傷、バックステー等の炉体変形、ドア部のシール不良等の設備上の問題が挙げられているが、特に操業中の抜本的な補修が不可能な、炉壁れんがの損傷が致命的となると考えられる。このれんがの損傷は、経年劣化による以外に、コークス押出し時に炉壁への負荷が発生して、コークスが炭化室内で閉塞して押出しが困難あるいは不能となる状況(以下、それぞれ押止り、押詰り、まとめて言う場合には押出し不良という)時に著しく進展するとされている。さらに、この炉壁損傷はさらなる押出し不良を誘発しやすいため炉寿命にとって悪循環となるばかりでなく、調湿炭や弱粘結炭の増配合などにより炉壁への負荷は一層増大する。
【0004】
【従来の技術】
これまで、コークスの押出し特性に関する基礎的な研究はいくつかなされているが(例えば、V.I.Ades et.al : AIME 45th Ironmaking Conference、1986. p.459)、原料特性や操業条件から根本的に押止り、押詰りを防止する技術は得られていない。
さらに、特開平5−339580号公報(コークス炉の操業方法)および特開平6−271865号公報(コークス炉の操業方法)には、炭芯温度が再固化温度に達したのち、あるいは膨張圧が0となったのちの垂直あるいは水平方向の焼き減り量と、装入高さあるいは炉幅との比率を制御することにより押詰りを防止する技術が開示されている。しかしながらこれらの技術は各々の配合炭についてコークス化過程における焼き減り量を測定することが必須であり、日々の操業における配合炭の配合設計に反映させることは困難である。
【0005】
またこれまでに、上記のような損傷の激しい炉壁状態や劣質原料炭使用の観点からコークスの押出し性について検討された例はない。このため、操業中に得られる情報から炉壁、炉底の損傷を事前に察知して補修を行い、押止り、押詰りを未然に防止し、またそれによって炉壁、炉底のさらなる損傷を防ぐ技術が指向されている。例えば、特開平3−146589号公報(コークス炉炭化室炉壁の異常診断方法)には、押出し時のモーターにかかる負荷情報から炉壁異常を診断する技術が開示されている。
【0006】
炭化室炉壁の補修はSi, SiO2等のレンガ原料を溶射することによって可能であり、実際に実操業で実施されて押出し不良の低減に大きな効果をあげている。そのため、上記に開示されているような診断方法を用いて炉壁状態を診断して損傷部の溶射補修を行う技術は有意義なものであるが、窯がある程度損傷してからの対策であり、押出し不良の根本的な解決方法とはいえない。さらに、炉団当りの窯数が数10から100 と多いため、この溶射補修は効率的にも経済的にも多大な負荷を伴う。
【0007】
【発明が解決しようとする課題】
通常のコークスの製造においては、高炉使用時に要求されるコークス性能を満たすように石炭配合やフリュー温度などのコークス炉の操業条件を決定するのが一般的である。ここで言うコークス性能とは、例えば粒度、タンブラー強度 (TI) 、ドラム強度(DI)、反応後強度(CSR)、反応性(JIS−反応性)などである。しかし、これらの操業方法はコークス押出し性を考慮に入れたものではないため、炉の老朽化や損傷により押出し不良が多発した場合の抜本的な解決方法を与えるものではない。また、現状では操業条件とコークスの押出し性との関係が明らかにされていないため、コークスの押出し性を改善するコークス炉の操業技術は得られていない。
【0008】
この発明は、これらの背景に鑑み、実操業に適用可能な技術の開発を目的として、種々の操業条件で決定されるコークスケーキの構造とコークスケーキの押出し性との関係に注目し、原料炭の選別または配合比の調整による原料炭特性や操業条件を適正化してコークスケーキの押出し不良の発生を防止するコークス炉の操業方法を提案することを目的とする。
【0009】
【課題を解決するための手段】
この発明の要旨とするところは以下の通りである。
▲1▼ コークス炉炭化室内へ単味または2種以上の石炭を配合した原料炭を装入したのち、乾留して炭化させたコークスケーキを、押出しラムにより炭化室から押出して排出するコークス炉の操業方法において、
原料炭特性および操業条件から実験的あるいは計算により、炉壁負荷指数としてコークスケーキ圧縮中の一定押力に対する側壁荷重の比を求め、該炉壁負荷指数を指標として操業し、コークスケーキの押出し性を確保することを特徴とするコークス炉の操業方法(第1発明)。
【0010】
▲2▼ 炉壁負荷指数を原料炭特性の粘結性と石炭化度とを用いて求め、得られた指数値が所定の範囲を満足するように、原料炭の選別または配合比の調整を行うことを特徴とする第1発明に記載のコークス炉の操業方法(第2発明)。
【0011】
▲3▼ 粘結性として、最大流動度、全膨張率または粘着度指数を用い、石炭化度として、揮発分量、発熱量またはビトリニット平均反射率を用いる第2発明に記載のコークス炉の操業方法(第3発明)。
【0012】
▲4▼ 炉壁負荷指数を下記式(1)であらわし、該指数を一定値以下に制御することを特徴とする第1,2または第3発明に記載のコークス炉の操業方法(第4発明)。
【数2】

Figure 0003541552
【0013】
【発明の実施の形態】
この発明の作用を以下に詳細に述べる。
通常のコークス炉操業においては、押出しラムによってコークスケーキを片側(マシンサイド)から押して排出する。その際、押出し機の能力や炉壁保護のために決められた押力の最大許容値を超える場合に、電気的に押出しを中断、あるいは中止するのが押出し不良である。実機でのコークスケーキの押出しを原料炭装入孔から観察した結果、押出しラムによって押力が与えられると、コークスケーキは横方向(炉壁方向)に拡がりながら押出され、この横方向の拡がりが著しくなると押出し不良に到ることが判明した。これは、コークスケーキの押出し中に横方向への拡がりによって炉壁に荷重が作用すると、壁面との摩擦によってコークスケーキを排出する推力が減少するためである。すなわち、押力に対する炉壁荷重の比(以下、βという)が一定値を超えると押力がその最大許容値になってもコークスケーキの押出しに必要な推力が得られず、押出し不良に至ると考えられる。
【0014】
この発明は、これらの知見にもとづいて達成したもので、以下にその内容を述べる。
片側の炉壁と炉体との拘束をなくし、コークスケーキを押出しラムで圧縮したときの炉壁への荷重を測定できるようにした石炭乾留試験炉において、押出しラムの押力とコークスケーキ圧縮中の炉壁への荷重との関係を測定する実験を行った。
【0015】
そこで、上記実験結果の1例として、コークスケーキの圧縮ひずみ(圧縮前コークスケーキ長さに対する圧縮変形量)とβ(炉壁負荷指数)および圧縮応力(圧縮中の押力を応力値に換算した値)との関係のグラフを図1に示す。
【0016】
図1から明らかなように、コークスケーキの変形は、圧縮方向の変形量(圧縮ひずみ)の増加に従って、図1の点線で示すように4つの領域、すなわち、コークスケーキの変形抵抗(圧縮応力)が小さく安定している第1の領域、変形抵抗が上昇し始める第2の領域、βが発生し、その値が安定している第3の領域および変形抵抗と特にβが急増する第4の領域に分けることができ、コークスケーキの変形量(圧縮ひずみ)が一定値を超えると変形抵抗(圧縮応力)とβとが急激に増加することがわかる。
このコークスケーキの変形量がβの急増領域に入ると、押出し不良が発生する確率が高くなる。
【0017】
そこで、種々の条件で実験を行った結果、β急増領域の境界の圧縮応力は、原料炭の配合(原料炭特性)や操業条件によらずほぼ一定であることがわかった。このことから、コークスケーキの変形がβの急増する領域、この場合押力6t時の押力に対する炉壁荷重の比(以下、β6tという)が、コークスケーキの押出し性をあらわす指標となることが判明した。
【0018】
さらに、実験を重ねた結果、β6tは原料炭の特性(粘結性、石炭化度、水分等)、乾留時間およびフリュー温度などの原料炭特性や操業条件と強い関係のあることがわかった。
【0019】
一般にβ6tは次式(2)で与えることができる。
β6t=f( P1, P2, P3---) ---(2)
ここで、Pi は原料炭の特性(粘結性、石炭化度、水分)、乾留時間、フリュー温度、嵩密度および粒度などの原料炭特性および操業条件である。
【0020】
たとえば、β6tは、原料炭の最大流動度(以下、MFという)、石炭化度(以下、ビトリニット平均反射率:
【外1】
Figure 0003541552
という)の増加に伴って減少し、MFおよび
【外2】
Figure 0003541552
の関数として一般に次式(3)で与えることができる。
【数3】
Figure 0003541552
ここで、ac ,bc ,cc ,dc およびec は他の操業条件から決定される定数である。
【0021】
なお、上記において、最大流動度、石炭化度の異なる石炭を複数配合して原料炭として使用する場合は、それらの配合比に基づいて荷重平均したMF,
【外3】
Figure 0003541552
を代表値として用いることでよい。
【0022】
ついで、実験結果にもとづく、フリュー温度:1000℃、乾留時間:18時間、原料炭水分:6%の場合における
【外4】
Figure 0003541552
をパラメーターとするβ6tとMFとの関係のグラフを図2に示す。
【0023】
図2から明らかなように、コークスケーキ圧縮中の炉壁荷重は、原料炭のMF,
【外5】
Figure 0003541552
の増加に伴い減少し、この場合β6tはMFおよび
【外6】
Figure 0003541552
の関数として次式(1)を得ることができる。
【数4】
Figure 0003541552
【0024】
さらに、乾留時間:tとβ6tとの関係は一般に次式(4)で与えられる。
β6t=at (t−bt )2+ct ---(4)
ここで、at ,bt およびct は他の原料炭特性や操業条件から決定される定数である。
【0025】
他の原料炭特性や操業条件の、原料炭の水分、嵩密度、粒度およびフリュー温度などについても、上記と同様なβ6tとの一般的な関係式が得られる。これらの関係式を互いに組合せて上記(2)式を用いることによって、種々の条件におけるβ6tが得られ、このβ6tによってコークスケーキの押出し性を予測することができ、このβ6tを指標とすることにより、コークスケーキの押出し不良が防止できることになる。
【0026】
つぎに実機のコークス炉操業における、原料炭特性および操業条件とコークスケーキの押出し性との関係を調査した。対象としたコークス炉は、炉高:6.4m、炉幅:430mm 、奥行き:14.8m で、66門の炉団である。この炉団は炉令が約17年と若いため炉壁損傷はほとんど見られない。調査期間は1年間で、調査期間中の原料炭特性および操業条件は、
【外7】
Figure 0003541552
=0.87〜1.14、MF=1.82〜2.98、原料炭水分:5.5 〜7.5 %、炉温:1150〜1250℃および稼働率(1日1窯当りの押出し本数×100 ):130 〜150 %である。押出し性の評価は全窯における1日当りの押出し不良件数の合計とした。この押出し不良の発生頻度とコークスのタンブラー強度:TIとの関係のグラフを図3に、押出し不良の発生頻度とそれぞれの原料炭特性および操業条件から前記(1)式で得られるβ6tとの関係のグラフを図4に示す。
【0027】
これらの図から明らかなように、コークスのTI(タンブラー強度)と押出し不良の発生頻度との間には相関が見られず、これまで考えられていたようにコークス強度が増加するほど押出し不良が減少するとは一概には言えないことがわかる。それに対して、β6tに関しては押出し不良の発生頻度との間に明確な相関が見られ、押出し不良が発生しないしきい値が存在することがわかる。この場合におけるしきい値はβ6t=0.05であるが、コークス炉の窯寸法や損傷程度等条件によってこのしきい値は変化する。
【0028】
また、上記と異なる実機コークス炉(91門、炉高:5.9m、炉幅:460mm 、奥行き:14.9m)において、原料炭配合がコークス押出し性に及ぼす影響を調査する実験を行った。各実験は50窯について原料炭の配合以外の操業条件を同一にして行い、β6tの算出には前記の(1) 式を用いた。原料炭の配合はβ6tで0.01〜0.1 の10水準とし、β6tが0.05と0.06の配合ではMF、
【外8】
Figure 0003541552
をそれぞれ5水準変えて行った。これらの実験結果を表1に示す。
【0029】
【表1】
Figure 0003541552
【0030】
この場合においても、β6t≦0.05となる原料炭特性および操業条件によってコークスの押出し不良を防止できることが判明した。
これらの結果から、(1) 式から計算されるβ6tが同一となる原料炭特性および操業条件から得られるコークスケーキについては同一の押出し性を有し、異なる場合にはβ6tが小さいほど押出しに有効な推力が増すため押出し性が向上することがわかった。
【0031】
一方、コークスケーキの押出し中に発生する炉壁負荷とコークスケーキ内構造との関係を調査した結果、押出し中の炉壁負荷にはケーキ内の亀裂構造が大きく影響していることがわかった。さらに、石炭配合とケーキ内亀裂構造との関係を調査したところ、原料炭特性および操業条件が炉壁負荷の発生に関係する亀裂構造を支配していることが判明した。たとえば、原料炭の粘結性と石炭化度が増加することによってコークスケーキ内の構造が変化し、炉壁負荷を発生するケーキ内の運動が抑制される。
前記(1) 式の場合には原料炭の粘結性をあらわす指標としてMFを、石炭化度をあらわす指標として
【外9】
Figure 0003541552
を用いたが、この発明では、粘結性をあらわす指標として例えば全膨張率、粘着度指数などを石炭化度をあらす指標として例えば揮発分量、発熱量などを用いてもよく、これらのいずれを用いても管理指標を構成する計算式が異なるだけで、本質的な相違はない。
【0032】
また、一般にコークスケーキの押出し不良の発生原因には、炉の老巧化、炉壁や天井へのカーボン付着、炉壁損傷などが挙げられている。しかし、この発明を用いて原料炭特性や操業条件を適切に設計し、押出し中に発生する炉壁荷重を抑制するコークスケーキ構造とすることで、上記の諸因子下においても押出し不良の発生を防止することができる。すなわち、原料炭特性や操業条件からコークス押出し中の炉壁負荷をあらわす炉壁負荷指数を算出して、このしきい値を超えないように原料炭や操業の設計を行うことによって、コークスケーキ排出時の押出し性を確保し、押出し不良の発生、さらに押出し不良に伴うコークス炉の損傷を未然に防止することが可能になる。
【0033】
【実施例】
実機コークス炉、(91門、炉高:5.9m、炉幅:460 mm、奥行き:14.9m)において、この発明に従う設計による操業試験を3月間実施し、従来の操業との比較を行った。
【0034】
従来の操業期間とこの発明の設計条件(β6t<0.05)による操業期間における、前記(1) 式により算出されるβ6tおよびコークスケーキの押出し不良の経時変化のグラフを図5に示す。
【0035】
図5から明らかなように、従来の操業では、計算されるβ6tの平均値が0.089 で、押出し1000回当りの押出し不良発生頻度の平均が25.4回/日であったのに対し、この発明の設計条件による操業では、計算されるβ6tの平均値が0.029 で、押出し1000回当りの押出し不良発生頻度の平均値が0.6 回/日と大幅に低減している。
【0036】
これらの結果より、コークスケーキ圧縮中の一定押力に対する側壁荷重の比の炉壁負荷指数(β6t) を指標としてコークス炉の操業を行うことにより、コークスケーキの押出し性を大幅に改善できることがわかる。
【0037】
【発明の効果】
この発明は、コークス炉の操業に当り、コークスケーキ圧縮中の一定押力に対する炉壁荷重の比を炉壁負荷指数とし、この炉壁負荷指数を指標として操業するものであり、
この発明によれば、コークスケーキの押止りや押詰りなどの押出し不良、さらには押出不良発生によるコークス炉の損傷を未然に防止でき、炉の寿命延長に大きく貢献できる。
【図面の簡単な説明】
【図1】コークスケーキの圧縮ひずみとβおよび圧縮応力との関係を示すグラフである。
【図2】
【外10】をパラメーターとするβ6tとMFとの関係のグラフである。
【図3】実機における押出し不良の発生頻度とコークスのタンブラー強度(TI)との関係のグラフである。
【図4】実機における押出し不良の発生頻度とβ6tとの関係のグラフである。
【図5】実機における従来の操業期間とこの発明の設計条件による操業期間における、β6tおよび押出し不良の径時変化のグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention proposes a method of operating a coke oven that improves the extrudability of coke cake.
[0002]
Blast furnace coke functions as a reducing agent, a heat source, and a support material for maintaining air permeability, and it is essential to supply high-quality coke to the blast furnace stably. However, in the early 21st century, most coke ovens in Japan reach the age of 35 years, which is now considered to be the life of coke ovens.Therefore, alternative furnaces for coke ovens are currently being studied by steel companies and others. . For example, a continuous forming coke oven (for example, Okuhara et al .: Iron and Steel, S584-587, 1979) and the like. However, the investment amount of the equipment is enormous in any of the technologies, and at present, the next generation blast furnace coke production technology that can be used 100% as a substitute for the conventional room furnace type coke has not been developed.
[0003]
Therefore, it is debatable that extending the life of the current coke oven is the most important for the current blast furnace ironmaking method. Factors that determine the life of the coke oven include equipment problems such as damage to the brick of the carbonization chamber side wall (hereinafter, furnace wall), deformation of the furnace body such as a backstay, and poor sealing of the door. In particular, it is considered that damage to the furnace wall brick, which cannot be drastically repaired during operation, is fatal. The damage to the brick is not only caused by aging, but also when a load is applied to the furnace wall during coke extrusion and the coke is blocked in the carbonization chamber, making extrusion difficult or impossible (hereinafter referred to as “stopping”, “tightening”, respectively). , In other words, poor extrusion). Further, the damage to the furnace wall easily induces further extrusion failure, so that not only does the cycle of the furnace become vicious, but also the load on the furnace wall is further increased by increasing the proportion of humidified coal or weakly caking coal.
[0004]
[Prior art]
So far, there have been some basic studies on coke extrusion properties (for example, VIAdes et.al: AIME 45th Ironmaking Conference, 1986. p.459). However, no technology for preventing clogging has been obtained.
Further, JP-A-5-339580 (coke oven operating method) and JP-A-6-271865 (coke oven operating method) describe that after the core temperature reaches the re-solidification temperature, or when the expansion pressure is increased. There is disclosed a technique for preventing clogging by controlling the ratio between the amount of burnout in the vertical or horizontal direction after the value becomes 0 and the charging height or the furnace width. However, in these techniques, it is essential to measure the amount of burnout during the coking process for each blended coal, and it is difficult to reflect this in the blending design of the blended coal in daily operation.
[0005]
In addition, there has been no example of examining the extrudability of coke from the viewpoint of the severely damaged furnace wall state and the use of poor coking coal as described above. For this reason, damages to the furnace wall and hearth are detected in advance based on information obtained during operation and repairs are performed to prevent them from being stopped and clogged, and further damage to the furnace wall and hearth is prevented. Prevention techniques are oriented. For example, Japanese Unexamined Patent Publication No. 3-146589 (method for diagnosing abnormalities in the furnace wall of a coke oven carbonization chamber) discloses a technique for diagnosing abnormalities in a furnace wall from load information applied to a motor during extrusion.
[0006]
Repair of the furnace wall of the coking chamber is possible by spraying brick materials such as Si and SiO 2 , which is actually carried out in actual operation and has a great effect on reducing extrusion defects. Therefore, the technique of performing a thermal spray repair of the damaged part by diagnosing the furnace wall state using the diagnostic method as disclosed above is a significant one, but is a measure after the kiln is damaged to some extent, This is not a fundamental solution to poor extrusion. Furthermore, due to the large number of kilns per furnace group, from several tens to hundreds, this thermal spray repair has a large burden both efficiently and economically.
[0007]
[Problems to be solved by the invention]
In ordinary coke production, it is general to determine the operating conditions of the coke oven, such as coal blending and flue temperature, so as to satisfy the coke performance required when using a blast furnace. The coke performance referred to here includes, for example, particle size, tumbler strength (TI), drum strength (DI), post-reaction strength (CSR), reactivity (JIS-reactivity), and the like. However, since these operating methods do not take coke extrudability into consideration, they do not provide a drastic solution in the case of frequent extrusion failure due to aging or damage of the furnace. In addition, at present, the relationship between the operating conditions and the extrudability of coke has not been clarified, and no operating technology of a coke oven for improving the extrudability of coke has been obtained.
[0008]
In view of these backgrounds, the present invention focuses on the relationship between the structure of coke cake determined under various operating conditions and the extrudability of coke cake for the purpose of developing technology applicable to actual operation. It is an object of the present invention to propose a method of operating a coke oven in which coking cake characteristics and operating conditions are optimized by selecting or adjusting the mixing ratio of the coke oven to prevent the occurrence of coke cake extrusion failure.
[0009]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) A coke oven in which coke cake obtained by mixing raw coal or a mixture of two or more kinds of coal into a coke oven carbonization chamber is extruded from a carbonization chamber by an extrusion ram and then carbonized by carbonization by extruding. In the operation method,
The ratio of the side wall load to the constant pressing force during coke cake compression was determined as an oven wall load index by experiment or calculation from the coking coal characteristics and operating conditions, and the coke cake was extruded using the oven wall load index as an index. (A first invention).
[0010]
{Circle around (2)} The furnace wall load index is determined using the coking property of the coking coal and the degree of coalification, and the coking coal is sorted or the mixing ratio is adjusted so that the obtained index value satisfies a predetermined range. The method of operating a coke oven according to the first invention, wherein the method is performed (second invention).
[0011]
(3) The method of operating a coke oven according to the second invention, wherein the maximum fluidity, the total expansion rate or the tackiness index is used as the caking property, and the volatile content, the calorific value or the vitrinite average reflectance is used as the degree of coalification. (Third invention).
[0012]
{Circle around (4)} The method of operating a coke oven according to the first, second or third invention (the fourth invention), wherein the furnace wall load index is represented by the following equation (1) and the index is controlled to a certain value or less. ).
(Equation 2)
Figure 0003541552
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The operation of the present invention will be described in detail below.
In normal coke oven operation, coke cake is pushed from one side (machine side) by an extrusion ram and discharged. At this time, if the pushing force exceeds the maximum permissible value determined for the capability of the extruder and the furnace wall protection, it is a poor extrusion that the extrusion is electrically interrupted or stopped. As a result of observing the extrusion of the coke cake in the actual machine from the coking coal charging hole, when a pushing force was given by the extrusion ram, the coke cake was extruded while expanding in the horizontal direction (furnace wall direction). It became clear that when it became remarkable, it resulted in poor extrusion. This is because, when a load is applied to the furnace wall due to the lateral spread during the extrusion of the coke cake, the thrust for discharging the coke cake is reduced by friction with the wall surface. That is, if the ratio of the furnace wall load to the pressing force (hereinafter referred to as β) exceeds a certain value, the thrust required for extruding the coke cake cannot be obtained even if the pressing force reaches its maximum allowable value, leading to poor extrusion. it is conceivable that.
[0014]
The present invention has been achieved based on these findings, and the details thereof will be described below.
In a coal carbonization test furnace that eliminates the constraint between the furnace wall on one side and the furnace body and allows the load on the furnace wall to be measured when the coke cake is compressed by the extrusion ram, the pushing force of the extrusion ram and the coke cake compression An experiment was conducted to measure the relationship between the load on the furnace wall and the load.
[0015]
Therefore, as one example of the above experimental results, the compressive strain of the coke cake (the amount of compressive deformation with respect to the length of the coke cake before compression), β (furnace wall load index), and the compressive stress (the pressing force during compression) were converted into stress values. Is shown in FIG.
[0016]
As can be seen from FIG. 1, the deformation of the coke cake increases in accordance with the increase in the amount of deformation (compression strain) in the compression direction, as indicated by the dotted lines in FIG. The first region where the resistance is small and stable, the second region where the deformation resistance starts to rise, β occurs, the third region where the value is stable, and the fourth region where the deformation resistance and particularly β rapidly increase. It can be seen that when the deformation amount (compression strain) of the coke cake exceeds a certain value, the deformation resistance (compression stress) and β rapidly increase.
When the amount of deformation of the coke cake enters the region where β is rapidly increased, the probability of occurrence of extrusion failure increases.
[0017]
Therefore, as a result of conducting experiments under various conditions, it was found that the compressive stress at the boundary of the β rapid increase region was almost constant irrespective of the blending of the coking coal (coking coal characteristics) and the operating conditions. From this, the region where the deformation of the coke cake rapidly increases β, in this case, the ratio of the furnace wall load to the pressing force at the pressing force of 6 t (hereinafter referred to as β 6t ) is an index indicating the extrudability of the coke cake. There was found.
[0018]
Furthermore, as a result of repeated experiments, it was found that β 6t has a strong relationship with the properties of coking coal (caking properties, degree of coalification, moisture, etc.), coking coal properties such as carbonization time and flue temperature, and operating conditions. .
[0019]
Generally, β 6t can be given by the following equation (2).
β 6t = f (P 1, P 2 , P 3 ---) --- (2)
Here, P i is the coking coal characteristics (caking property, coal degree, water), dry distillation time, flues temperature, coking coal properties and operating conditions, such as bulk density and particle size.
[0020]
For example, β 6t is the maximum fluidity (hereinafter, referred to as MF) of the coking coal, the degree of coalification (hereinafter, vitrinite average reflectance:
[Outside 1]
Figure 0003541552
) And decreases with the increase in MF and
Figure 0003541552
Is generally given by the following equation (3).
[Equation 3]
Figure 0003541552
Here, a c , b c , c c , d c and e c are constants determined from other operating conditions.
[0021]
In the above, when a plurality of coals having different maximum fluidity and coalification degree are blended and used as raw coal, MF, which is load averaged based on the blending ratio thereof,
[Outside 3]
Figure 0003541552
May be used as a representative value.
[0022]
Then, based on the experimental results, in the case of flue temperature: 1000 ° C., dry distillation time: 18 hours, and raw coal water content: 6%.
Figure 0003541552
FIG. 2 shows a graph of the relationship between β 6t and MF, with as a parameter.
[0023]
As apparent from FIG. 2, the furnace wall load during the coke cake compression was determined by the coking coal MF,
[Outside 5]
Figure 0003541552
Decreases in this case, where β 6t is MF and
Figure 0003541552
The following equation (1) can be obtained as a function of
(Equation 4)
Figure 0003541552
[0024]
Further, the relationship between the carbonization time: t and β 6t is generally given by the following equation (4).
β 6t = a t (t- b t) 2 + c t --- (4)
Here, a t, b t and c t are constants determined from other coking coal characteristics and operating conditions.
[0025]
For other coking coal characteristics and operating conditions, such as the water content, bulk density, particle size, and flue temperature of the coking coal, a general relational expression with β 6t similar to the above can be obtained. A combination of these relations to each other by using the above equation (2), beta 6t is obtained in various conditions, it is possible to predict the extrudability of the coke cake by the beta 6t, and the index of this beta 6t By doing so, poor extrusion of the coke cake can be prevented.
[0026]
Next, in the operation of the actual coke oven, the relationship between the coking coal characteristics and the operating conditions and the extrudability of the coke cake was investigated. The target coke oven has a furnace height of 6.4 m, a furnace width of 430 mm, and a depth of 14.8 m, and is a 66 furnace group. Since the furnace order of this furnace group is as young as about 17 years, there is almost no damage to the furnace wall. The survey period is one year, and the coking coal characteristics and operating conditions during the survey period are as follows:
[Outside 7]
Figure 0003541552
= 0.87 to 1.14, MF = 1.82 to 2.98, raw coal moisture: 5.5 to 7.5%, furnace temperature: 1150 to 1250 ° C, and operation rate (number of extrusions per kiln per day x 100): 130 to 150%. The extrudability was evaluated as the total number of defective extrusions per day in all kilns. FIG. 3 is a graph showing the relationship between the frequency of occurrence of the extrusion failure and the tumbler strength of coke: TI. FIG. 3 shows the relationship between the frequency of the occurrence of the extrusion failure, the characteristics of the raw coal and the operating conditions, and β 6t obtained by the above equation (1). A graph of the relationship is shown in FIG.
[0027]
As is clear from these figures, there is no correlation between the TI (tumbler strength) of coke and the frequency of occurrence of poor extrusion, and as the coke strength increases, the poor extrusion results as previously thought. It turns out that it cannot be said that it decreases. On the other hand, for β 6t , a clear correlation is seen between the occurrence frequency of the extrusion failure and the threshold value at which the extrusion failure does not occur. The threshold value in this case is β 6t = 0.05, but this threshold value changes depending on conditions such as the size of the coke oven and the degree of damage.
[0028]
In addition, an experiment was conducted to investigate the effect of blending of raw coal on coke extrudability in an actual coke oven different from the above (91 gates, oven height: 5.9 m, oven width: 460 mm, depth: 14.9 m). Each experiment was carried out under the same operating conditions except for the blending of the raw coal for 50 kilns, and the above equation (1) was used to calculate β6t . Formulation of raw material coal is 10 levels of 0.01 to 0.1 in beta 6t, beta 6t is MF in formulation 0.05 0.06,
[Outside 8]
Figure 0003541552
Was changed by five levels. Table 1 shows the results of these experiments.
[0029]
[Table 1]
Figure 0003541552
[0030]
In this case as well, it was found that coke extrusion failure could be prevented by the coking coal characteristics and operating conditions satisfying β 6t ≦ 0.05.
These results, as have the same extrudability, if other than beta 6t is small for coke cake obtained from raw coal characteristics and operating conditions comprising beta 6t is the same as calculated from equation (1) Extrusion It was found that the extrudability improved because the effective thrust increased.
[0031]
On the other hand, as a result of investigating the relationship between the furnace wall load generated during the extrusion of the coke cake and the internal structure of the coke cake, it was found that the crack structure in the cake greatly affected the furnace wall load during the extrusion. Furthermore, the relationship between the coal blend and the crack structure in the cake was investigated, and it was found that the properties of the raw coal and the operating conditions dominated the crack structure related to the occurrence of furnace wall load. For example, the structure in the coke cake changes due to the increase in the coking property and the degree of coalification of the raw coal, and the movement in the cake that generates a furnace wall load is suppressed.
In the case of the above equation (1), MF is used as an index representing the cohesiveness of the raw coal, and an index representing the degree of coalification is expressed as follows.
Figure 0003541552
However, in the present invention, for example, the total expansion coefficient, an index of adhesiveness, etc., as an index indicating the caking property, an index indicating the degree of coalification, such as a volatile content, a calorific value, etc., may be used. Even if it is used, there is no essential difference, only the calculation formula constituting the management index is different.
[0032]
In general, causes of poor extrusion of coke cake include aging of the furnace, adhesion of carbon to the furnace wall and ceiling, damage to the furnace wall, and the like. However, by using the present invention to properly design coking coal characteristics and operating conditions and adopting a coke cake structure that suppresses the furnace wall load generated during extrusion, the occurrence of poor extrusion can be achieved even under the above factors. Can be prevented. That is, by calculating the furnace wall load index, which indicates the furnace wall load during coke extrusion, from the coking coal characteristics and the operating conditions, and designing the coking coal and the operation so as not to exceed this threshold, the coke cake discharge is performed. In this case, it is possible to ensure the extrudability at the time, and prevent the occurrence of defective extrusion and further prevent the coke oven from being damaged due to the defective extrusion.
[0033]
【Example】
In an actual coke oven (91 gates, furnace height: 5.9 m, furnace width: 460 mm, depth: 14.9 m), an operation test using a design according to the present invention was conducted for three months, and a comparison with a conventional operation was performed.
[0034]
FIG. 5 is a graph showing the change over time of β 6 t calculated according to the above equation (1) and poor coke cake extrusion during the conventional operation period and the operation period according to the design conditions (β 6t <0.05) of the present invention.
[0035]
As is clear from FIG. 5, in the conventional operation, the average value of β 6t calculated was 0.089, and the average frequency of occurrence of poor extrusion per 1000 extrusion operations was 25.4 operations / day. In the operation under the design conditions, the average value of the calculated β 6t is 0.029, and the average value of the frequency of defective extrusion per 1,000 extrusions is significantly reduced to 0.6 times / day.
[0036]
From these results, it is found that the extrudability of coke cake can be significantly improved by operating the coke oven using the furnace wall load index (β 6t ), which is the ratio of side wall load to constant pressing force during coke cake compression, as an index. Understand.
[0037]
【The invention's effect】
The present invention relates to the operation of a coke oven, in which the ratio of the oven wall load to the constant pressing force during coke cake compression is used as the oven wall load index, and the operation is performed using the oven wall load index as an index.
ADVANTAGE OF THE INVENTION According to this invention, the coke oven can be prevented from being pushed out of the coke cake, such as improper pushing or clogging, and furthermore, the coke oven can be prevented from being damaged due to improper extruding, and can greatly contribute to extending the life of the coke oven.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between compressive strain, β and compressive stress of a coke cake.
FIG. 2
10 is a graph showing the relationship between β 6t and MF using 【as a parameter.
FIG. 3 is a graph showing the relationship between the frequency of occurrence of extrusion failure and the tumbler strength (TI) of coke in an actual machine.
FIG. 4 is a graph showing the relationship between the frequency of occurrence of extrusion failure and β 6t in an actual machine.
FIG. 5 is a graph showing changes in β 6t and extrusion failure over time during a conventional operation period in an actual machine and an operation period according to the design conditions of the present invention.

Claims (4)

コークス炉炭化室内へ単味または2種以上の石炭を配合した原料炭を装入したのち、乾留して炭化させたコークスケーキを、押出しラムにより炭化室から押出して排出するコークス炉の操業方法において、
原料炭特性および操業条件から実験的あるいは計算により、炉壁負荷指数としてコークスケーキ圧縮中の一定押力に対する側壁荷重の比を求め、該炉壁負荷指数を指標として操業し、コークスケーキの押出し性を確保することを特徴とするコークス炉の操業方法。
A method of operating a coke oven in which coke cake mixed with plain or two or more types of coal is charged into a coke oven carbonization chamber, and then the coke cake carbonized by dry distillation is extruded from the carbonization chamber by an extrusion ram and discharged. ,
The ratio of the side wall load to the constant pressing force during coke cake compression is determined as the furnace wall load index by experiment or calculation from the coking coal characteristics and operating conditions, and the coke cake is extruded using the furnace wall load index as an index. A method of operating a coke oven characterized by ensuring the following.
炉壁負荷指数を原料炭特性の粘結性と石炭化度とを用いて求め、得られた指数値が所定の範囲を満足するように、原料炭の選別または配合比の調整を行うことを特徴とする請求項1に記載のコークス炉の操業方法。The furnace wall load index is determined by using the coking property of the coking coal characteristic and the degree of coalification, and the coking coal is selected or the mixing ratio is adjusted so that the obtained index value satisfies a predetermined range. The method for operating a coke oven according to claim 1, wherein: 粘結性として、最大流動度、全膨張率または粘着度指数を用い、石炭化度として、揮発分量、発熱量またはビトリニット平均反射率を用いる請求項2に記載のコークス炉の操業方法。The method for operating a coke oven according to claim 2, wherein the maximum fluidity, the total expansion rate or the tackiness index is used as the caking property, and the volatile content, the calorific value, or the vitrinite average reflectance is used as the coalification degree. 炉壁負荷指数を下記式(1)であらわし、該指数を一定値以下に制御することを特徴とする請求項1,2または3に記載のコークス炉の操業方法。
Figure 0003541552
The method of operating a coke oven according to claim 1, 2, or 3, wherein the furnace wall load index is represented by the following equation (1), and the index is controlled to a certain value or less.
Figure 0003541552
JP06802596A 1995-09-19 1996-03-25 Operating method of coke oven Expired - Fee Related JP3541552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06802596A JP3541552B2 (en) 1995-09-19 1996-03-25 Operating method of coke oven

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-239839 1995-09-19
JP23983995 1995-09-19
JP06802596A JP3541552B2 (en) 1995-09-19 1996-03-25 Operating method of coke oven

Publications (2)

Publication Number Publication Date
JPH09143473A JPH09143473A (en) 1997-06-03
JP3541552B2 true JP3541552B2 (en) 2004-07-14

Family

ID=26409261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06802596A Expired - Fee Related JP3541552B2 (en) 1995-09-19 1996-03-25 Operating method of coke oven

Country Status (1)

Country Link
JP (1) JP3541552B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734350B2 (en) * 2008-01-04 2011-07-27 新日本製鐵株式会社 Evaluation method of raw coal blend for blast furnace coke production
KR102467182B1 (en) * 2015-12-17 2022-11-17 주식회사 포스코 Method for manufacturing coke

Also Published As

Publication number Publication date
JPH09143473A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
EP1026223B1 (en) Method for producing metallurgical coke
JPH11131074A (en) Operation of coke oven
JP3541552B2 (en) Operating method of coke oven
JP2005036021A (en) Method for charging coal into coke oven and coal-charging apparatus
KR101100537B1 (en) Method for predicting of drum index of cokes
JP3742526B2 (en) Coke oven operation method
JP2008255299A (en) Operation method of coke oven
KR101466475B1 (en) Method for ash predicting of cokes
JP2000303070A (en) Method for operating coke oven
JP2006249174A (en) Method of estimation of percent coke contraction of blended coal and cokemaking process
JP3254004B2 (en) Operating method of coke oven
JP4005741B2 (en) Coke production method
JP5920579B2 (en) Coke oven furnace body management method
JP2561211B2 (en) Mixing method of coking coal
JP4279973B2 (en) Coke oven operation method
JP2000073067A (en) Operation of coke oven
JP2014019708A (en) Method for extruding a coke cake
JP4774779B2 (en) Coke oven operation management device and operation management method
JP2002121558A (en) Process for operating coke oven
JP2008050516A (en) Method for manufacturing coke for use in metallurgy
JP2003064378A (en) Method for coke oven operation
JPH07278562A (en) Operation of coke oven
JP2001294867A (en) Method for managing furnace wall of coke oven
JPH08120278A (en) Method for operating coke oven, and coke oven
JP2884979B2 (en) Prevention method of black smoke generation in coke oven chimney

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees