JP3541128B2 - Colored light retroreflective material - Google Patents

Colored light retroreflective material Download PDF

Info

Publication number
JP3541128B2
JP3541128B2 JP27169398A JP27169398A JP3541128B2 JP 3541128 B2 JP3541128 B2 JP 3541128B2 JP 27169398 A JP27169398 A JP 27169398A JP 27169398 A JP27169398 A JP 27169398A JP 3541128 B2 JP3541128 B2 JP 3541128B2
Authority
JP
Japan
Prior art keywords
light
interference
color
retroreflective material
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27169398A
Other languages
Japanese (ja)
Other versions
JPH11167010A (en
Inventor
朝 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP27169398A priority Critical patent/JP3541128B2/en
Publication of JPH11167010A publication Critical patent/JPH11167010A/en
Application granted granted Critical
Publication of JP3541128B2 publication Critical patent/JP3541128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Road Signs Or Road Markings (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は着色光再帰反射材、特に帰還光を着色する着色光再帰反射材に関する。
【0002】
【従来の技術】
例えば夜間識別用の交通標識、あるいは衣服などには再帰反射材が用いられ、自動車のヘッドライトなどのビーム状の光が照射されると、再帰反射材に対して多少の角度を持ってビーム光が入射しても、ほぼその入射方向に帰還光を送出することができる。
すなわち、いわゆる鏡面反射では、入射角と反射角が略同一になるように反射光を生じるため、鏡面に対し直角に光が入射する場合以外には、反射光は入射方向に帰還することはない。
【0003】
そこで、特開昭63−38902あるいは特開平8−60627などに示されるように、粒子径が約30〜80μmの比較的高屈折率の微小球を、金属膜などの光反射層上に設け、多少の角度を有して入射した光に対しても、略その入射方向へ光を帰還させることができる、いわゆる再帰反射材が汎用されている。
【0004】
前記再帰反射材は、多少の入射角を持って入光した光であっても、その入射方向に帰還する率が高いという点で優れたものであるが、一方で入射光と同様の色調の光が帰還することは鏡面反射体と変わらない。
そこで、従来この再帰反射材を着色するために、光の通る部分を透明性の高い顔料あるいは染料で着色する方法が採られてきた。
【0005】
例えばガラス微小球の下部にあるアルミニウム蒸着膜を着色する方法や、ガラス微小球そのものを着色する方法が用いられ、着色剤としてはイソインドリロン、塩化銅フタロシアニン、フタロシアニン、アンスラキノン、チオインジゴ等が用いられてきた。また、実公昭58−55024号にあるように反射層に反射率の高い雲母を用い、これに透明性着色剤を混合する方法もある。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の着色剤の発色機構は、入射光のうち特定波長光を吸収して、その余色で発色しているため、光の利用効率が低く、明度や彩度が低下することは避けられなかった。また、着色後も光の利用効率を高く保つためには透明性が高い着色剤を用いることが必要であるため、極めて限られた着色剤しか使用できず、あるいはこれらの着色剤の光ないし熱安定性が悪いといった問題もあり、使用法が制限され、さらには限られた着色剤しか使用できないため、再帰反射材に高い意匠性を付与することも極めて難しいのが現状であった。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は光の利用効率が高く、しかも反射光に各種の色調を付与することのできる再帰反射材を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために本発明にかかる着色光再帰反射材は、入射光の一部に位相差を付与して再合成し、特定波長領域の光成分を干渉により強調し入射光とは異なる色調の着色光を入射光進入方向へ帰還させるものである。
【0008】
そして、前記着色光再帰反射材は、
基板と、
前記基板上に整列配置された透明微小球と、
を含み、
前記基板上、もしくは前記透明微小球の基板への対向面に、有色の干渉色を生起する干渉物質層が設けられていることを特徴とする。
【0010】
さらに、前記反射材において、干渉物質層には酸化金属被覆鱗片状粉体が用いられることを特徴とする。
また、前記反射材において、酸化金属被覆鱗片状粉体は酸化チタン層厚40nm以上の二酸化チタン被覆雲母及び/又は低次酸化チタン被覆雲母であることが好適である。
【0011】
また、前記反射材において、前記基板は酸化チタン被覆雲母の干渉色とは異なる色調の有色であることが好適である。
また、前記反射材において、酸化金属被覆鱗片状粉体はその干渉色とは異なる色調の外観色を有するチタン系複合酸化物被覆雲母であることが好適である。
また、前記反射材において、干渉物質の配置する位置を操作することによって入射光に対して示す干渉色の違いで文字や図形を描くことが好適である。
【0012】
【発明の実施形態】
本発明者らは再帰反射材の反射光に着色するために、光の干渉を利用することとした。すなわち、再帰反射材の場合、一般的な鏡面反射とは異なり、再帰反射材中で複数回の光屈折を生じる。この光路中に有色の干渉光を生じる物質を介在させることにより、帰還光に干渉色を付与させることができるのである。
【0013】
第一実施形態
図1には本発明の一実施形態にかかる再帰反射材の概略構成が示されている。
同図において、再帰反射材10は、反射基板12上に樹脂層14を設け、更にその表層側にガラス等よりなる粒子径が30〜80μmの透明微小球16を多数整列配置している。
【0014】
そして、外方より入射した入射光18は、微小球16内に進行する。そして少なくともその一部は透明微小球16より樹脂層14を介して反射基板12に反射され、再度微小球16に帰還し、外方へ進行する。微小球16の外方へ突出している面は球面であるので、入射角の多少の変動があっても同様な作用を生じ、入射方向へ反射光20を帰還させることができる。
【0015】
本発明において特徴的なことは、前記反射光20を着色させるため、光の干渉を利用したことであり、このために本実施形態では、反射基板12上に干渉物質層22を設けている。
この結果、入射光18は干渉物質層22で光の干渉を生じることとなり、反射光18は干渉作用により強調される波長の色調を呈する。
【0016】
すなわち、図2に示すように、干渉物質層22は、本実施形態において二酸化チタン被覆雲母より構成され、該二酸化チタン被覆雲母22は、鱗片状雲母24と、該雲母24上に被覆された二酸化チタン層26より構成される。そして、前記入射光18の一部20aは二酸化チタン層26表面で反射され、また更に一部20bは雲母24と二酸化チタン層26の境界面で反射される。前記反射光20aと反射光20bは二酸化チタン層26の約2倍の光路差を有し、反射光20aと反射光20bの波長成分のうち、光路差が半波長の奇数倍となる成分が増幅され、波長の整数倍になる成分が減衰される。この結果、前記二酸化チタン層26の層厚を調整することにより、所望の色調の反射干渉光28を得ることができるのである。なお、この有色反射干渉光28は前記図1に示したとおり、透明微小球16により入射光光路と略同一方向に帰還することになる。
【0017】
そして、本実施形態においては、二酸化チタン被覆雲母22による反射率を高めれば、帰還方向からは有色反射干渉光28が強く観察される。
以上のように本実施形態にかかる着色光再帰反射材10によれば、帰還光への色調の付与に光の干渉作用を利用するので、光の利用効率が極めて高く、しかも二酸化チタンの層厚を調整することにより任意の色調を得ることができる。更に、干渉色を生じさせる物質は化学的、光学的に安定な無機物質である二酸化チタン被覆雲母であるため、耐熱性、耐候性に優れた着色光再帰反射材とすることができる。
なお、二酸化チタン被覆雲母の場合、二酸化チタンの層厚と干渉色には以下のような関係が認められる。
【0018】
【表1】
干渉色 二酸化チタンの幾何学的厚さ(n m
銀 20〜40
金 40〜90
赤 90〜110
薫 110〜120
青 120〜135
緑 135〜155
第二オーダーの金 155〜175
第二オーダーの薫 175〜200
従って、本実施態様で用いる二酸化チタン被覆雲母の幾何学的層厚は、40nm以上であることが好適である。
【0019】
第二実施形態
前記図2において、二酸化チタン被覆雲母22の光透過率を調整し、反射基板12による反射割合を増加させると、該反射基板12による反射光30が観察可能となる。従って、反射基板12を有色とすることで、帰還光20の色調は有色反射干渉光28と、基板色を反映した反射光30が合成されたものとなる。この場合、入射方向に帰還する以外の方向からは、有色反射干渉光28がほとんど観察されず、反射基板22の色調が観察され、例えば自動車のヘッドライトなどのビーム光が入射されると、光源方向から観察される光と、他の方向から観察される光は異なった色調で観察することができる。
【0020】
第三実施形態
図3には本発明の第三実施形態にかかる着色光再帰反射材が開示されており、前記第一実施形態と対応する部分には符号100を加えて示し、説明を省略する。
本実施形態において特徴的なことは、干渉物質122として有色のチタン系複合酸化物被覆雲母を用いたことである。
【0021】
この場合にも、前記第二実施態様と同様、帰還光128は複合酸化物126の色調と該複合酸化物層による光学的光路差に基づく干渉色とが合成されて観察され、一方、光源方向以外から観察される色調は本来の複合酸化物被覆雲母126の色調となる。
【0022】
第四実施形態
図4には本発明の第四実施形態にかかる着色光再帰反射材の要部が示されており、前記図2と対応する部分には符号200を加えて示し説明を省略する。
同図に示す着色光再帰反射材210は、干渉物質222を透明微小球216の樹脂層214埋没面に付着させている。なお、付着させる干渉物質としては、前述したように通常の干渉性二酸化チタン被覆雲母など、あるいは有色の複合酸化物被覆雲母などを用いることができる。
【0023】
この場合には、透明微小球216と干渉物質222との屈折率差等により微小球216及び干渉物質層222の中で反射を繰り返し帰還するか、あるいは反射基板212に反射されて帰還するかが決定される。光が干渉物質層222を通り抜け、反射基板212により反射される場合にも、光が干渉物質222を通過する際にいわゆる透過干渉光を生成するため、有色の帰還光を得ることができる。
【0024】
第五実施形態
図5には本発明の第五実施形態にかかる着色光再帰反射材の要部が示されており、前記図2と対応する部分には符号300を加えて示し説明を省略する。
同図に示す再帰反射材310は、干渉物質層322を直接反射基板312上に設けている。そして、干渉物質層322の表面で反射された反射光320aと、反射基板312上で反射された反射光320bとの干渉により、特定の色調を得ることができる。
【0025】
第六実施形態
図6には本発明の第六実施形態にかかる着色光再帰反射材の要部が示されており、前記図2と対応する部分には符号400を加えて示し説明を省略する。
同図に示す再帰反射材410は、干渉物質層422を透明微小球416の樹脂層414埋没面に形成している。この場合には、干渉物質層422の更に外周に反射層440を設けており、透明微小球416と干渉物質層422の境界面での反射光420aと、反射層440での反射光420bとの干渉により特定の色調を得ることができる。
【0026】
なお、前記第一ないし第四実施態様において用いられる干渉物質としては、前記二酸化チタン被覆雲母に代表される干渉性鱗片状粉体を用いることが好適である。
この干渉性鱗片状粉体の母核となる鱗片状粉体としては、例えば金属アルミニウム、金属チタン、ステンレスなどの粉体、あるいは板状酸化鉄、板状シリカ、板状酸化チタン、板状アルミナなどの無機板状酸化物、あるいは白雲母、黒雲母、セリサイト、カオリナイト、タルク等の層状化合物、PET樹脂膜、アクリル樹脂膜などの有機高分子箔などが挙げられるが、本発明に用いられる鱗片状粉体はこれらに特に限定されるものではない。なお、光の利用率を向上させるためには、鱗片状粉体にも光透過性のあるものを用いることが好ましい。また、本発明に使用される鱗片状粉体の粒径は特に限定されないが、1〜200μm、特に好ましくは10〜120μmで扁平なものが美しい光沢と干渉色を発揮しやすい。
【0027】
これらの鱗片状粉体に干渉色を付与するには、鱗片状粉体の表面を金属酸化物で被覆することが一般的であり、金属酸化物としては二酸化チタン、酸化鉄、低次酸化チタン、酸化ジルコニウム、酸化珪素、酸化アルミニウム、酸化コバルト、酸化ニッケル、チタン酸コバルトなど、及びLiCoTiあるいはKNiTiOなどの複合酸化物、あるいはこれらの金属酸化物の混合物などが挙げられるが、干渉色を発現できる金属酸化物であれば、特にこれらに限定されるものではない。これらの金属酸化物の鱗片状粉体への被覆は、これらの金属酸化物の有機塩や無機塩を、加熱あるいは中和加水分解する方法あるいはCVDやPVDのような蒸着操作によって行うことができる。
【0028】
これらの干渉性鱗片状粉体表面は、必要に応じて有機あるいは無機化合物によって表面処理を施してもよい。更に本発明に用いられる干渉性鱗片状粉体の使用法は特に制限されず、干渉色が発現すれば従来の着色剤との組み合わせや添加順序を任意に採ることができる。
【0029】
また、第五ないし第六実施態様で用いられる干渉物質層としては、金属膜の表面を酸化することによって得られる干渉色を持った金属膜を用いることができる。これらの金属膜は、金属アルミニウム、金属チタン、ステンレス膜などを陽極酸化する方法や、上記干渉色を発現できる金属酸化物をゾル−ゲル法によって調製し、これをコートする方法、あるいは上記干渉色を発現できる金属のアルコキシドを金属膜に塗布してこれを加熱分解する方法、及びCVDやPVDのような蒸着操作法などが挙げられる。
【0030】
本発明にかかる、干渉色によって着色された光の利用効率に優れた着色光再帰反射材は、マーキングフィルム、靴、鞄、帽子、衣料などの日常品、家具、電化製品、建築物、自動車、自転車、印刷物、あるいは紙、プラスチック、金属などの成形体に高意匠性を付与することができ、本発明にかかる着色光再帰反射材をこのような製品に用いた場合は、偽造防止に対しても有用である。
【0031】
【実施例】
以下、本発明の実施例を説明する。
まず、本発明において好適に用いられる干渉性鱗片状粉体の製造方法を示す。
【0032】
[製造例1]
雲母50重量部をイオン交換水500部に添加して十分に攪拌し均一に分散させる。得られた分散液に、濃度40重量%の硫酸チタニル水溶液208.5部を加えて攪拌しながら6時間沸騰させた。放冷後、濾過水洗し900℃で焼成して緑色干渉色を持った二酸化チタン被覆雲母90部を得た。この製造例1で得られた二酸化チタン被覆雲母は、前記第1、2、4実施形態で用い得る。
【0033】
[製造例2]
雲母50部をイオン交換水500部に添加して十分に攪拌して均一に分散させた。得られた分散液に濃度40重量%の硫酸チタニル水溶液312.5部を加えて攪拌しながら加熱し6時間沸騰させた。放冷後、濾過・水洗し900℃で焼成して緑色干渉をもった二酸化チタンで被覆された雲母100部を得た。次に得られた雲母チタン100部に金属チタン1.2部を混合し、該混合物をオイル拡散ポンプを用いて10−3Torr以下の真空度にて800℃で4時間加熱還元した。冷却後外観色、干渉色ともに真珠光沢のある鮮やかな青緑色の低次酸化チタン・二酸化チタン被覆雲母101.2部を得た。この製造例2で得られた低次酸化チタン被覆雲母も、前記第1、2、4実施形態で用いることができ、特に明瞭な色調の帰還光を得ることができる。
【0034】
[製造例3]
ドイツMerck社製造の雲母チタン(イリオジン235)100部を流速3l/minのアンモニアガス気流下で800℃で4時間の還元処理を行った。冷却後外観色、干渉色ともに真珠光沢のある鮮やかな青緑色の酸化窒化チタン・二酸化チタン被覆雲母98.5部を得た。この製造例3で得られた酸化窒化チタン・二酸化チタン被覆雲母も、前記第1、2、4実施形態で用いることができ、特に明瞭な色調の帰還光を得ることができる。
【0035】
[製造例4]
製造例2で得られた緑色干渉雲母チタン100部をイオン交換水200部に添加して攪拌し均一に分散させた。得られた分散液に濃度10%の塩化コバルト水溶液110部を1M苛性ソーダ水溶液でpH4〜5に保ちながら80℃で3時間かけて添加し、濾過、水洗後105℃で乾燥させ、含水酸化コバルト被覆雲母チタン102部を得た。次に得られた含水酸化コバルト被覆雲母チタン100部と炭酸リチウム11.5gを小型攪拌機によって均一に混合し、得られた混合粉末を磁性坩堝に入れて900℃で4時間焼成し、緑色の鮮やかな外観色を持ったLiCoTi被覆雲母チタン105部を得た。
この製造例4で得たチタン系複合酸化物被覆雲母は、第3、4実施形態で用いることができる。
【0036】
[製造例5]
雲母50部をイオン交換水500部に添加して十分に攪拌し、均一に分散させた。得られた分散液に2M硫酸チタニル350部を加えて攪拌しながら加熱して3時間沸騰させた。放冷後、濾過、水洗し200℃で乾燥して二酸化チタン被覆雲母90部を得た。次に得られた二酸化チタン被覆雲母50部をイオン交換水500部に添加して攪拌し、均一に分散させた。得られた分散液に0.42Mの塩化ニッケル水溶液295部を1M苛性ソーダ水溶液でpHを4〜5に保ちながら、80℃で3時間かけて添加し、濾過、水洗後105℃で乾燥させ、含水酸化ニッケル雲母チタン54.8部を得た。
【0037】
次に得られた含水溶性ニッケル雲母チタンと塩化カリウム2.75部を小型混合機にて均一に混合し、これを磁性坩堝に入れて、900℃で3時間焼成し、鮮やかな黄色の外観色と赤色の干渉色とをもつ光沢粉体51.0部を得た。
この製造例5で得たチタン系複合酸化物被覆雲母は、前記第3、4、実施形態で用いることができる。
次に実施例を挙げて本発明を説明する。
【0038】
[実施例1]
厚みが50μmのポリエステルフィルム全体にシリコーン樹脂溶液を塗布し、その樹脂が流れない程度に乾燥した時に、屈折率が1.9で200〜250メッシュの透明性ガラス微粒子球を散布してその半球以上が埋没しないように一重に付着乾燥させた後、120℃で3分間加熱処理をしてガラス微粒子球を仮付着させた。次いで、表2の配合比による製造例1の緑色干渉雲母チタンを含む透明着色スクリーン印刷用インキにて前記の透明ガラス微粒子球を仮付着したフィルムのガラス微粒子仮付着面上に模様をスクリーン印刷し、その模様が乾燥しないうちに80〜250メッシュのナイロン樹脂微粒子を散布付着乾燥させて、140℃で5分間以上熱処理をして、緑色干渉雲母チタンの干渉色と同色の緑色の反射光を呈する再帰反射模様フィルム(転写用フィルム)を得た。
【0039】
【表2】

Figure 0003541128
【0040】
[実施例2]
厚みが50μmのポリエステルフィルム全面にシリコーン樹脂溶液を塗布し、その樹脂が流れない程度に乾燥した時に、屈折率が1.9で200〜250メッシュの透明性ガラス微粒子を散布してその半球以上が埋没しないように一重に付着乾燥させた後、120℃で3分間加熱処理をしてガラス微粒子球を仮付着させた。次いで表3の配合比による透明着色スクリーン印刷用インキにて該ガラス微粒子球を仮付着させたポリエステルフィルムに模様をスクリーン印刷した。次にこのフィルムに厚さ80nmになるようにアルミニウムを真空蒸着した。さらに、該表面にアクリル樹脂溶液を塗布し、これが乾燥しないうちに80〜250メッシュのナイロン樹脂微粒子を散布付着乾燥させて、140℃で5分間以上熱処理をして、低次酸化チタン・二酸化チタン被覆雲母の外観色(干渉色)と同色に近い青緑色反射光を呈する再帰反射模様フィルム(転写用フィルム)を得た。
【0041】
【表3】
Figure 0003541128
【0042】
[実施例3]
厚みが50μmのポリエステルフィルム全面にシリコーン樹脂溶液を塗布し、その樹脂が流れない程度に乾燥した時に、屈折率が1.9で200〜250メッシュの透明性ガラス微粒子球を散布してその半球以上が埋没しないように一重に付着乾燥させた後、120℃で3分間加熱処理をしてガラス微粒子球を仮付着させた。次に表4の配合比による鮮やかな黄色の外観色と赤色干渉色とをもつ光沢粉体を含む透明着色スクリーン印刷用インキにて該ガラス微粒子球を仮付着させたポリエステルフィルムに模様を印刷した。
【0043】
次に、該印刷表面を平均粒子径20μmのアルミニウム粉末をアクリル塗料でクリアランス0.101mmのアプリケータを用いて塗装した。ついで、該表面にアクリル樹脂溶液を塗布し、これが乾燥しないうちに80〜250メッシュのナイロン樹脂微粒子を散布付着乾燥させて、140℃で5分間以上熱処理をして外観色が黄色で再帰反射光が赤色の再帰反射模様フィルム(転写用フィルム)を得た。
【0044】
【表4】
Figure 0003541128
【0045】
[実施例4]
屈折率が1.9で200〜250メッシュの透明性ガラス微粒子球100gを1000mlのイソプロピルアルコール中に分散させながらチタニウムテトライソプロポキシド溶液150gを添加し、次いで30℃に分散溶液を保ちながら、水/イソプロピルアルコールの1:1混合溶液100mlを5ml/minの速度で滴下した。滴下後攪拌を4時間続けて濾別、水洗、200℃で3時間乾燥して黄色の干渉色をもった透明性ガラス微粒子球を得た。次に厚みが50μmのポリエステルフィルム全面にシリコーン樹脂溶液を塗布し、その樹脂が流れない程度に乾燥した時に、先に作成した黄色の干渉色をもった透明性ガラス微粒子球を散布してその半球以上が埋没しないように一重に付着乾燥させた後、120℃で3分間加熱処理をしてガラス微粒子球を仮付着させた。別に製造例4の雲母チタンを含む透明着色スクリーン印刷用インキにて前記の透明ガラス微粒子球を仮付着したフィルムのガラス微粒子仮付着面上に模様をスクリーン印刷し、その模様が乾燥しないうちに80〜250メッシュのナイロン樹脂微粒子を散布付着乾燥させて、140℃で5分間以上熱処理をして、黄色の反射光を呈する再帰反射模様フィルム(転写用フィルム)を得た。
【0046】
本発明における再帰反射材において、一定の方向性を持った直線光を照射した際に、干渉物質の干渉色によって描かれた図柄や文字が明瞭に観察できるように、用いられるガラス球の屈折率が1.7〜2.2、特に好ましくは1.8〜2.1、平均粒子径が20〜60μm、特に好ましくは30〜50μmであることが好適である。
【0047】
ガラス球の屈折率がこの値より大きいものや、小さいものであると、焦点がぼやけてしまい明瞭な反射光が得られなくなってしまう。またガラス球の粒子径がこの値より小さいとガラス粒子が樹脂層に埋没してしまったり、再帰反射し得る光の有効入射部分が狭くなったりしてしまう。逆にガラス球の粒子径がこの値より大きいと実施例に記したようなガラス粒子上に干渉物質をスクリーン印刷する場合、印刷が困難になってしまう。また焦点距離を合わせることも困難となり、さらにはガラス球間の隙間にインクが入り込んだりするなどの問題を生じることとなる。
【0048】
また実施例にあるような本発明の最外層部分にPETフィルムを用いた場合、最外層となるPETフィルムの厚さは23〜150μm、特に好ましくは38〜50μmであることが好適である。この値よりPETフィルムの厚さが厚いと焦点距離の調整が困難となり、薄いと柔らかいために製造に困難を来してしまう。
【0049】
本発明にかかる再帰反射材は、前述したように製品に使用した場合、極めて高い偽造防止性を発揮することができる。本発明における再帰反射材中の干渉物質は、一定の方向性を持つ直線光を周囲の光よりも強い強度で照射すると干渉色を生じる。このため本発明にかかる再帰反射材は、直線光を周囲の光よりも強い強度で照射したときにその照射方向からは干渉物質による干渉色が観察することができる。
【0050】
しかし、太陽光や照明など通常の光の元では光が様々な方向性を有しているため、本発明における再帰反射材中にも様々な方向から入射する。すると入射した光が様々に干渉し合い、干渉色を観察しづらくなる。このため、直線光入射方向以外からは、干渉色を観察することが困難である。よって、製品に本発明における再帰反射材を使用することで、直線光を照射したときに、干渉物質の干渉色によって図柄や文字が浮かび上がるようにしておくことにより、真性品であるか、偽造品であるかを判別することが可能となる。
【0051】
また、干渉物質の直線光と通常光の下で示す色彩の違いを利用して、干渉物質を配置する位置を操作することにより、直線光を照射したときに生じる干渉色によって図柄や文字などを描いておくことによって、外観色及び、基板色と干渉物質の外観色による合成された色彩が通常光の下で単色に見えても、直線光の下では図柄や文字が観察できるようになる。また、通常光の下で示す色彩と、直線光の下で示す色彩で別々の図柄や文字を描いておくことによって、通常光の下で観察される図柄や文字と、直線光の下で観察される図柄や文字が異なるものとしたりすることができ、意匠性と共に高い偽造防止性を付与することが可能である。
【0052】
このように本発明にかかる再帰反射材を製品に用いた際には、再帰反射性を有するためにコピー機などによる複写が困難であり、かつ、照射される光が通常光か、直線光かによって異なる色調を示すことができるため、製品に用いられた再帰反射材部分に直線光を発する直線光照射装置を使用して直線光を照射することによって、現れる色調や、図柄あるいは文字などを調べることによって偽造品か真性品かを直ちに見分けることが可能である。
【0053】
【発明の効果】
以上説明したように本発明にかかる着色光再帰反射材によれば、入射光同士による干渉作用により色調を付与することとしたので、色調の選択性が広く、しかも光の利用効率に優れる。
また、本発明において、干渉物質として光透過性の高い二酸化チタン被覆雲母あるいは低次酸化チタン被覆雲母を用い、且つ基板色を有色とすることにより、入射光帰還方向からは基板色と干渉色の合成された色調が観察され、他の方向からは基板色が観察され、意匠性を向上させることができる。
また、本発明において、干渉物質としてチタン系複合酸化物被覆雲母を用いることにより、入射光帰還方向からは複合酸化物色と干渉色の合成された色調が観察され、他の方向からは複合酸化物色が観察され、意匠性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる着色光再帰反射材の概略構成の説明図である。
【図2】本発明の第一及び第二実施形態にかかる着色光再帰反射材の要部構成の説明図である。
【図3】本発明の第三実施形態にかかる着色光再帰反射材の要部構成の説明図である。
【図4】本発明の第四実施形態にかかる着色光再帰反射材の要部構成の説明図である。
【図5】本発明の第五実施形態にかかる着色光再帰反射材の要部構成の説明図である。
【図6】本発明の第六実施形態にかかる着色光再帰反射材の要部構成の説明図である。
【符号の説明】
10 着色光再帰反射材
12 反射基板
16 透明微小球
22 干渉物質
24 鱗片状雲母
26 二酸化チタン層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a colored light retroreflective material, and particularly to a colored light retroreflective material for coloring return light.
[0002]
[Prior art]
For example, retroreflective materials are used for traffic signs for night identification, clothing, etc., and when a beam of light such as a headlight of a car is irradiated, the light beam is reflected at a slight angle to the retroreflective material. , The return light can be sent out almost in the incident direction.
In other words, in so-called specular reflection, reflected light is generated so that the incident angle and the reflection angle are substantially the same, so that the reflected light does not return in the incident direction except when light is incident at right angles to the mirror surface. .
[0003]
Therefore, as shown in JP-A-63-38002 or JP-A-8-60627, microspheres having a relatively high refractive index having a particle diameter of about 30 to 80 μm are provided on a light reflection layer such as a metal film, A so-called retroreflective material that is capable of returning light substantially in the incident direction even for light incident at a certain angle has been widely used.
[0004]
The retroreflective material is excellent in that even if light is incident at a certain angle of incidence, the rate of return to the incident direction is high, but on the other hand, it has a color tone similar to that of the incident light. The return of light is no different from a specular reflector.
Therefore, conventionally, in order to color the retroreflective material, a method of coloring a portion through which light passes with a highly transparent pigment or dye has been adopted.
[0005]
For example, a method of coloring an aluminum vapor-deposited film below the glass microspheres or a method of coloring the glass microspheres themselves is used, and as a coloring agent, isoindolinone, copper chloride phthalocyanine, phthalocyanine, anthraquinone, thioindigo, or the like is used. I have been. Further, as disclosed in Japanese Utility Model Publication No. 58-55024, there is a method in which mica having a high reflectance is used for the reflective layer and a transparent colorant is mixed with the mica.
[0006]
[Problems to be solved by the invention]
However, the coloring mechanism of the conventional colorant absorbs light of a specific wavelength out of the incident light and develops the color with the extra color, so that the light use efficiency is low and the brightness and the saturation are not reduced. I couldn't. Also, in order to maintain high light use efficiency even after coloring, it is necessary to use a coloring agent having high transparency, so that only a very limited number of coloring agents can be used, or light or heat of these coloring agents can be used. There is also a problem of poor stability, the method of use is limited, and only a limited number of colorants can be used, so that it is currently extremely difficult to provide a retroreflective material with high designability.
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the related art, and an object of the present invention is to provide a retroreflective material having high light use efficiency and capable of imparting various colors to reflected light.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the colored light retroreflective material according to the present invention is different from the incident light in that a part of the incident light is recombined by giving a phase difference, and a light component in a specific wavelength region is emphasized by interference. Return colored light of color tone in the direction of incident lightThings.
[0008]
And the colored light retroreflective material is:
Board and
Transparent microspheres aligned on the substrate,
Including
An interference substance layer which produces a colored interference color is provided on the substrate or on a surface of the transparent microsphere facing the substrate.
[0010]
further,In the reflection material, metal oxide-coated flaky powder is used for the interference substance layerIt is characterized by.
In the reflector, the metal oxide-coated flaky powder is preferably a titanium dioxide-coated mica having a titanium oxide layer thickness of 40 nm or more and / or a low-order titanium oxide-coated mica.
[0011]
Further, in the reflecting material,The substrateIs preferably a color having a color tone different from the interference color of the titanium oxide-coated mica.
In the reflector, the metal oxide-coated flaky powder is preferably a titanium-based composite oxide-coated mica having an appearance color different from the interference color.
In addition, it is preferable that a character or a figure is drawn with a difference in interference color with respect to incident light by manipulating a position where the interfering substance is arranged in the reflective material.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have utilized light interference to color the reflected light of the retroreflective material. That is, in the case of a retroreflective material, unlike ordinary specular reflection, light refraction occurs a plurality of times in the retroreflective material. By interposing a substance that produces colored interference light in the optical path, the return light can be given an interference color.
[0013]
First embodiment
FIG. 1 shows a schematic configuration of a retroreflective material according to one embodiment of the present invention.
In the figure, a retroreflective material 10 has a resin layer 14 provided on a reflective substrate 12, and a number of transparent microspheres 16 made of glass or the like and having a particle diameter of 30 to 80 µm are arranged on the surface layer side.
[0014]
Then, the incident light 18 incident from the outside proceeds into the microsphere 16. Then, at least a part thereof is reflected by the reflective substrate 12 from the transparent microspheres 16 via the resin layer 14, returns to the microspheres 16 again, and proceeds outward. Since the surface protruding outward of the microsphere 16 is a spherical surface, even if there is a slight change in the incident angle, the same effect is produced, and the reflected light 20 can be returned in the incident direction.
[0015]
The feature of the present invention is that the interference of light is used to color the reflected light 20. For this reason, in the present embodiment, the interference substance layer 22 is provided on the reflective substrate 12.
As a result, the incident light 18 causes light interference in the interference substance layer 22, and the reflected light 18 exhibits a color tone of a wavelength emphasized by the interference action.
[0016]
That is, as shown in FIG. 2, the interference substance layer 22 is composed of titanium dioxide-coated mica in the present embodiment, and the titanium dioxide-coated mica 22 has a flaky mica 24 and a carbon dioxide coated on the mica 24. It is composed of a titanium layer 26. A part 20a of the incident light 18 is reflected on the surface of the titanium dioxide layer 26, and a part 20b is reflected on the boundary surface between the mica 24 and the titanium dioxide layer 26. The reflected light 20a and the reflected light 20b have an optical path difference about twice as large as that of the titanium dioxide layer 26. Of the wavelength components of the reflected light 20a and the reflected light 20b, a component whose optical path difference is an odd multiple of a half wavelength is amplified. And the component that is an integral multiple of the wavelength is attenuated. As a result, by adjusting the thickness of the titanium dioxide layer 26, the reflected interference light 28 having a desired color tone can be obtained. The colored reflected interference light 28 is returned by the transparent microsphere 16 in substantially the same direction as the incident light optical path, as shown in FIG.
[0017]
In the present embodiment, if the reflectance by the titanium dioxide-coated mica 22 is increased, the colored reflected interference light 28 is strongly observed from the return direction.
As described above, according to the colored light retroreflective material 10 according to the present embodiment, since the interference effect of light is used to impart a color tone to the return light, the light use efficiency is extremely high, and the layer thickness of titanium dioxide is further increased. An arbitrary color tone can be obtained by adjusting. Further, since the substance that causes the interference color is a chemically and optically stable inorganic substance, titanium dioxide-coated mica, it can be a colored light retroreflective material having excellent heat resistance and weather resistance.
In the case of mica coated with titanium dioxide, the following relationship is recognized between the layer thickness of titanium dioxide and the interference color.
[0018]
[Table 1]
Interference color Geometric thickness of titanium dioxide (n m )
Silver 20-40
Fri 40-90
Red 90-110
Kaoru 110-120
Blue 120-135
Green 135-155
Second Order Gold 155-175
Second Order Kaoru 175-200
Therefore, the geometric layer thickness of the titanium dioxide-coated mica used in this embodiment is preferably 40 nm or more.
[0019]
Second embodiment
In FIG. 2, when the light transmittance of the titanium dioxide-coated mica 22 is adjusted to increase the reflection ratio of the reflective substrate 12, the reflected light 30 by the reflective substrate 12 can be observed. Therefore, by making the reflective substrate 12 colored, the color tone of the return light 20 is a combination of the colored reflected interference light 28 and the reflected light 30 reflecting the substrate color. In this case, from the direction other than returning to the incident direction, the colored reflected interference light 28 is hardly observed, and the color tone of the reflective substrate 22 is observed. Light viewed from one direction and light viewed from another direction can be viewed in different tones.
[0020]
Third embodiment
FIG. 3 discloses a colored light retroreflective material according to a third embodiment of the present invention. The portions corresponding to those of the first embodiment are denoted by reference numerals 100, and description thereof is omitted.
A characteristic of the present embodiment is that a colored titanium-based composite oxide-coated mica is used as the interference substance 122.
[0021]
In this case as well, as in the second embodiment, the feedback light 128 is observed by combining the color tone of the composite oxide 126 and the interference color based on the optical path difference due to the composite oxide layer. The color tone observed from other than the original color tone of the composite oxide-coated mica 126.
[0022]
Fourth embodiment
FIG. 4 shows a main part of a colored light retroreflective material according to a fourth embodiment of the present invention, and a portion corresponding to FIG.
The colored light retroreflective member 210 shown in FIG. 11 has an interference substance 222 attached to the surface of the transparent microsphere 216 buried in the resin layer 214. As described above, as the interfering substance to be attached, mica coated with ordinary coherent titanium dioxide or mica coated with colored composite oxide can be used.
[0023]
In this case, it is determined whether the reflection is repeatedly returned in the microspheres 216 and the interference substance layer 222 due to the refractive index difference between the transparent microspheres 216 and the interference substance 222, or is reflected and returned to the reflection substrate 212. It is determined. Even when light passes through the interference substance layer 222 and is reflected by the reflection substrate 212, so-called transmitted interference light is generated when the light passes through the interference substance 222, so that colored return light can be obtained.
[0024]
Fifth embodiment
FIG. 5 shows a main part of a colored light retroreflective material according to the fifth embodiment of the present invention, and the portions corresponding to those in FIG.
The retroreflective member 310 shown in FIG. 11 has an interference substance layer 322 provided directly on a reflective substrate 312. Then, a specific color tone can be obtained by interference between the reflected light 320a reflected on the surface of the interference substance layer 322 and the reflected light 320b reflected on the reflective substrate 312.
[0025]
Sixth embodiment
FIG. 6 shows a main part of a colored light retroreflective material according to the sixth embodiment of the present invention, and a portion corresponding to that of FIG.
The retroreflective material 410 shown in FIG. 11 has the interference substance layer 422 formed on the surface of the transparent microsphere 416 embedded in the resin layer 414. In this case, a reflection layer 440 is provided further on the outer periphery of the interference substance layer 422, and the reflection light 420 a at the boundary between the transparent microsphere 416 and the interference substance layer 422 and the reflection light 420 b at the reflection layer 440 are formed. A specific color tone can be obtained by interference.
[0026]
In addition, as the interference substance used in the first to fourth embodiments, it is preferable to use an interfering flaky powder represented by the titanium dioxide-coated mica.
Examples of the scaly powder serving as a core of the coherent scaly powder include powders of metal aluminum, metal titanium, stainless steel, etc., or plate iron oxide, plate silica, plate titanium oxide, plate alumina. Examples thereof include inorganic plate-like oxides, or layered compounds such as muscovite, biotite, sericite, kaolinite, and talc, PET resin films, and organic polymer foils such as acrylic resin films. The scaly powder to be obtained is not particularly limited to these. In addition, in order to improve the light utilization rate, it is preferable to use a flake-like powder having a light-transmitting property. Further, the particle size of the flaky powder used in the present invention is not particularly limited, but a flat one of 1 to 200 μm, particularly preferably 10 to 120 μm tends to exhibit beautiful gloss and interference color.
[0027]
In order to impart an interference color to these flaky powders, it is common to coat the surface of the flaky powders with a metal oxide, such as titanium dioxide, iron oxide, and lower titanium oxide. , Zirconium oxide, silicon oxide, aluminum oxide, cobalt oxide, nickel oxide, cobalt titanate, etc., and Li2CoTi3O8Or KNiTiOXAnd the like, or a mixture of these metal oxides. However, the metal oxide is not particularly limited as long as it is a metal oxide capable of exhibiting interference colors. The coating of these metal oxides on the flaky powder can be performed by a method of heating or neutralizing and hydrolyzing the organic or inorganic salts of these metal oxides or by a vapor deposition operation such as CVD or PVD. .
[0028]
The surface of these coherent flaky powders may be subjected to a surface treatment with an organic or inorganic compound as required. Further, the method of using the coherent flaky powder used in the present invention is not particularly limited, and any combination with a conventional coloring agent and the order of addition can be arbitrarily selected as long as an interference color appears.
[0029]
Further, as the interference substance layer used in the fifth or sixth embodiment, a metal film having an interference color obtained by oxidizing the surface of the metal film can be used. These metal films are prepared by a method of anodizing metal aluminum, metal titanium, stainless steel film, or the like, a method of preparing a metal oxide capable of expressing the interference color by a sol-gel method, and coating the metal oxide, or a method of coating the interference color. Is applied to a metal film by applying an alkoxide of a metal capable of exhibiting the above, and this is thermally decomposed, and a vapor deposition operation method such as CVD or PVD.
[0030]
According to the present invention, a colored light retroreflective material having excellent use efficiency of light colored by an interference color is a marking film, shoes, bags, hats, everyday items such as clothing, furniture, appliances, buildings, automobiles, Bicycles, printed matter, or paper, plastics, molded products such as metal can be given a high designability, when the colored light retroreflective material according to the present invention is used in such products, to prevent forgery Is also useful.
[0031]
【Example】
Hereinafter, examples of the present invention will be described.
First, a method for producing the coherent flaky powder suitably used in the present invention will be described.
[0032]
[Production Example 1]
50 parts by weight of mica is added to 500 parts of ion-exchanged water, sufficiently stirred, and uniformly dispersed. To the obtained dispersion, 208.5 parts of an aqueous solution of titanyl sulfate having a concentration of 40% by weight was added, and the mixture was boiled for 6 hours while stirring. After allowing to cool, the mixture was filtered, washed with water, and fired at 900 ° C. to obtain 90 parts of titanium dioxide-coated mica having a green interference color. The titanium dioxide-coated mica obtained in Production Example 1 can be used in the first, second, and fourth embodiments.
[0033]
[Production Example 2]
50 parts of mica were added to 500 parts of ion-exchanged water, and the mixture was sufficiently stirred and uniformly dispersed. To the obtained dispersion, 312.5 parts of an aqueous solution of titanyl sulfate having a concentration of 40% by weight was added, and the mixture was heated with stirring and boiled for 6 hours. After allowing to cool, the mixture was filtered, washed with water, and calcined at 900 ° C. to obtain 100 parts of mica coated with titanium dioxide having green interference. Next, 1.2 parts of metallic titanium was mixed with 100 parts of the obtained mica titanium, and the mixture was added to an oil diffusion pump to obtain 10 parts.-3Heat reduction was performed at 800 ° C. for 4 hours under a vacuum of Torr or less. After cooling, 101.2 parts of a vivid blue-green low-order titanium oxide / titanium dioxide-coated mica having a pearly luster in both appearance color and interference color were obtained. The low-order titanium oxide-coated mica obtained in Production Example 2 can also be used in the first, second, and fourth embodiments, and it is possible to obtain feedback light having a particularly clear color tone.
[0034]
[Production Example 3]
100 parts of mica titanium (Iriodin 235) manufactured by Merck Germany were subjected to a reduction treatment at 800 ° C. for 4 hours under an ammonia gas flow at a flow rate of 3 l / min. After cooling, 98.5 parts of vivid blue-green titanium oxynitride / titanium dioxide-coated mica having a pearly luster in both appearance color and interference color were obtained. The titanium oxynitride / titanium dioxide-coated mica obtained in Production Example 3 can also be used in the first, second, and fourth embodiments, and it is possible to obtain feedback light having a particularly clear color tone.
[0035]
[Production Example 4]
100 parts of the green interference mica titanium obtained in Production Example 2 was added to 200 parts of ion-exchanged water, stirred and uniformly dispersed. To the resulting dispersion, 110 parts of a 10% aqueous solution of cobalt chloride was added over 3 hours at 80 ° C. while maintaining the pH at 4 to 5 with a 1 M aqueous sodium hydroxide solution, followed by filtration, washing with water and drying at 105 ° C., and coating with hydrous cobalt hydroxide. 102 parts of mica titanium were obtained. Next, 100 parts of the obtained hydrated cobalt oxide-coated mica titanium and 11.5 g of lithium carbonate are uniformly mixed with a small stirrer, and the obtained mixed powder is put in a magnetic crucible and calcined at 900 ° C. for 4 hours to give a green vivid color. Li with various appearance colors2CoTi3O8105 parts of coated mica titanium were obtained.
The titanium-based composite oxide-coated mica obtained in Production Example 4 can be used in the third and fourth embodiments.
[0036]
[Production Example 5]
50 parts of mica was added to 500 parts of ion-exchanged water, sufficiently stirred, and uniformly dispersed. 350 parts of 2M titanyl sulfate was added to the obtained dispersion, and the mixture was heated with stirring and boiled for 3 hours. After cooling, the mixture was filtered, washed with water, and dried at 200 ° C. to obtain 90 parts of mica coated with titanium dioxide. Next, 50 parts of the obtained titanium dioxide-coated mica was added to 500 parts of ion-exchanged water, stirred, and uniformly dispersed. To the resulting dispersion, 295 parts of a 0.42 M nickel chloride aqueous solution was added over 3 hours at 80 ° C. while maintaining the pH at 4 to 5 with a 1 M aqueous sodium hydroxide solution, followed by filtration, washing with water and drying at 105 ° C. 54.8 parts of nickel mica titanium oxide were obtained.
[0037]
Next, the obtained water-soluble nickel mica titanium and 2.75 parts of potassium chloride are uniformly mixed with a small mixer, put in a magnetic crucible, and baked at 900 ° C. for 3 hours to obtain a bright yellow appearance color. And 51.0 parts of a glossy powder having a red interference color.
The titanium-based composite oxide-coated mica obtained in Production Example 5 can be used in the third and fourth embodiments.
Next, the present invention will be described with reference to examples.
[0038]
[Example 1]
When a silicone resin solution is applied to the entire polyester film having a thickness of 50 μm, and dried to such an extent that the resin does not flow, 200-250 mesh transparent glass microspheres having a refractive index of 1.9 are scattered to form a hemisphere or more. Was singly adhered and dried so as not to be buried, and then heat-treated at 120 ° C. for 3 minutes to temporarily adhere the glass particle spheres. Then, a pattern was screen-printed on the glass fine particle temporarily adhered surface of the film on which the transparent glass fine particle spheres were temporarily adhered with the transparent colored screen printing ink containing the green interference mica titanium of Production Example 1 according to the blending ratio in Table 2. While the pattern is not dried, 80-250 mesh nylon resin fine particles are sprayed and dried, and heat-treated at 140 ° C. for 5 minutes or more to exhibit green reflected light of the same color as the interference color of the green interference mica titanium. A retroreflective pattern film (transfer film) was obtained.
[0039]
[Table 2]
Figure 0003541128
[0040]
[Example 2]
When a silicone resin solution is applied to the entire surface of the polyester film having a thickness of 50 μm and dried to such an extent that the resin does not flow, transparent glass fine particles having a refractive index of 1.9 and a mesh of 200 to 250 mesh are scattered to form a hemisphere or more. After being adhered and dried in a single layer so as not to be buried, heat treatment was performed at 120 ° C. for 3 minutes to temporarily adhere the glass particle spheres. Next, a pattern was screen-printed on a polyester film on which the glass microspheres were temporarily adhered using a transparent coloring screen printing ink having a compounding ratio shown in Table 3. Next, aluminum was vacuum-deposited on this film so as to have a thickness of 80 nm. Further, an acrylic resin solution is applied to the surface, and before it is dried, 80 to 250 mesh nylon resin fine particles are sprayed and dried, and a heat treatment is performed at 140 ° C. for 5 minutes or more to obtain low titanium oxide / titanium dioxide. A retroreflective pattern film (transfer film) exhibiting bluish green reflected light close to the same color as the appearance color (interference color) of the coated mica was obtained.
[0041]
[Table 3]
Figure 0003541128
[0042]
[Example 3]
When a silicone resin solution is applied to the entire surface of a polyester film having a thickness of 50 μm and dried to such an extent that the resin does not flow, transparent glass microspheres having a refractive index of 1.9 and a mesh of 200 to 250 mesh are scattered to form a hemisphere or more. Was singly adhered and dried so as not to be buried, and then heat-treated at 120 ° C. for 3 minutes to temporarily adhere the glass particle spheres. Next, a pattern was printed on a polyester film on which the glass microspheres were temporarily adhered using a transparent coloring screen printing ink containing a glossy powder having a bright yellow appearance color and a red interference color according to the compounding ratios in Table 4. .
[0043]
Next, the printed surface was coated with aluminum powder having an average particle diameter of 20 μm using an acrylic paint using an applicator having a clearance of 0.101 mm. Then, an acrylic resin solution is applied to the surface, and before the acrylic resin solution is dried, a nylon resin fine particle of 80 to 250 mesh is scattered and dried, and a heat treatment is performed at 140 ° C. for 5 minutes or more. A red retroreflective pattern film (transfer film) was obtained.
[0044]
[Table 4]
Figure 0003541128
[0045]
[Example 4]
While dispersing 100 g of transparent glass microspheres having a refractive index of 1.9 and 200 to 250 mesh in 1000 ml of isopropyl alcohol, 150 g of a titanium tetraisopropoxide solution was added. 100 ml of a 1: 1 mixed solution of 1 / isopropyl alcohol was added dropwise at a rate of 5 ml / min. After the dropwise addition, stirring was continued for 4 hours, followed by filtration, washing with water, and drying at 200 ° C. for 3 hours to obtain transparent glass microspheres having a yellow interference color. Next, a silicone resin solution is applied to the entire surface of the polyester film having a thickness of 50 μm, and when the resin is dried to such an extent that the resin does not flow, the transparent glass fine particles having the yellow interference color prepared above are sprayed and the hemisphere is formed. The above was adhered and dried in a single layer so as not to be buried, and then heat-treated at 120 ° C. for 3 minutes to temporarily adhere the glass particle spheres. Separately, a pattern is screen-printed on the glass fine particle temporarily adhered surface of the film on which the transparent glass fine particle spheres are temporarily adhered with the transparent coloring screen printing ink containing titanium mica of Production Example 4, and the pattern is dried before the pattern is dried. Fine particles of nylon resin having a size of ~ 250 mesh were sprayed, dried, and heat-treated at 140 ° C for 5 minutes or more to obtain a retroreflective pattern film (transfer film) exhibiting yellow reflected light.
[0046]
In the retroreflective material of the present invention, the refractive index of the glass sphere used is such that when irradiating linear light having a certain directionality, the pattern or character drawn by the interference color of the interfering substance can be clearly observed. Is preferably 1.7 to 2.2, particularly preferably 1.8 to 2.1, and the average particle diameter is 20 to 60 µm, particularly preferably 30 to 50 µm.
[0047]
If the refractive index of the glass sphere is larger or smaller than this value, the focus is blurred and clear reflected light cannot be obtained. If the particle diameter of the glass sphere is smaller than this value, the glass particles will be buried in the resin layer, or the effective incident portion of light that can be retroreflected will be narrowed. Conversely, when the particle diameter of the glass sphere is larger than this value, when the interference substance is screen-printed on the glass particles as described in Examples, the printing becomes difficult. Further, it becomes difficult to adjust the focal length, and further, there arises a problem that ink enters the gap between the glass balls.
[0048]
When a PET film is used for the outermost layer of the present invention as in the examples, the thickness of the PET film as the outermost layer is preferably from 23 to 150 μm, particularly preferably from 38 to 50 μm. If the thickness of the PET film is thicker than this value, it becomes difficult to adjust the focal length, and if the thickness is thin, the manufacturing is difficult because the film is soft.
[0049]
The retroreflective material according to the present invention can exhibit extremely high anti-counterfeiting properties when used in products as described above. The interference substance in the retroreflective material according to the present invention produces an interference color when linear light having a certain directionality is irradiated at a higher intensity than surrounding light. Therefore, when the retroreflective material according to the present invention irradiates linear light with an intensity higher than that of surrounding light, an interference color due to an interference substance can be observed from the irradiation direction.
[0050]
However, under normal light such as sunlight and lighting, light has various directions, and therefore enters the retroreflective material of the present invention from various directions. Then, the incident lights interfere with each other in various ways, making it difficult to observe the interference color. For this reason, it is difficult to observe the interference color from directions other than the direction in which the linear light is incident. Therefore, by using the retroreflective material of the present invention in the product, when irradiating linear light, the pattern or character is raised by the interference color of the interfering substance, so that the product is genuine or forged. It is possible to determine whether the product is a product.
[0051]
In addition, by using the difference in color between the linear light of the interfering substance and the color shown under normal light, the position where the interfering substance is arranged is manipulated, so that patterns and characters etc. can be formed by the interference color generated when the linear light is irradiated. By drawing, even if the appearance color and the color synthesized by the substrate color and the appearance color of the interfering substance appear to be a single color under normal light, a pattern or a character can be observed under linear light. In addition, by drawing different designs and characters with the color shown under normal light and the color shown under linear light, it is possible to observe patterns and characters that are observed under normal light, and It is possible to use different designs or characters to be provided, and it is possible to impart a high anti-counterfeiting property together with the design.
[0052]
As described above, when the retroreflective material according to the present invention is used in a product, it is difficult to copy with a copy machine or the like because of the retroreflective property, and the irradiated light is normal light or linear light. Different color tones can be shown depending on the product, so illuminating the retroreflective material used in the product with linear light using a linear light irradiator that emits linear light, and examining the color tone, design, or characters that appear This makes it possible to immediately discriminate between a counterfeit product and an authentic product.
[0053]
【The invention's effect】
As described above, according to the colored light retroreflective material of the present invention, since the color tone is given by the interference action between the incident lights, the color tone selectivity is wide and the light use efficiency is excellent.
Further, in the present invention, a titanium dioxide-coated mica or a low-order titanium oxide-coated mica having high light transmittance is used as an interference substance, and the substrate color is colored. The synthesized color tone is observed, and the color of the substrate is observed from other directions, so that the design can be improved.
Further, in the present invention, by using a titanium-based composite oxide-coated mica as an interference substance, a composite color tone of the composite oxide color and the interference color is observed from the incident light return direction, and the composite oxide color is observed from other directions. Are observed, and the design can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a schematic configuration of a colored light retroreflective material according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a main configuration of a colored light retroreflective material according to first and second embodiments of the present invention.
FIG. 3 is an explanatory diagram of a main configuration of a colored light retroreflective material according to a third embodiment of the present invention.
FIG. 4 is an explanatory diagram of a main configuration of a colored light retroreflective material according to a fourth embodiment of the present invention.
FIG. 5 is an explanatory diagram of a main configuration of a colored light retroreflective material according to a fifth embodiment of the present invention.
FIG. 6 is an explanatory diagram of a main configuration of a colored light retroreflective material according to a sixth embodiment of the present invention.
[Explanation of symbols]
10 Colored retroreflective material
12 Reflective substrate
16 transparent microspheres
22 Interfering substances
24 scaly mica
26 Titanium dioxide layer

Claims (5)

入射光の一部に位相差を付与して再合成し、特定波長領域の光成分を干渉により強調し入射光とは異なる色調の着色光を入射光進入方向へ帰還させる着色光再帰反射材であって、
基板と、
前記基板上に整列配置された透明微小球と、
を含み、
前記基板上、もしくは前記透明微小球の基板への対向面に、有色の干渉色を生起する干渉物質層が設けられ、該干渉物質層には酸化金属被覆鱗片状粉体が用いられることを特徴とする着色光再帰反射材。
Grant phase difference to a portion of the incident light and re-synthesized, colored light retroreflective material for feeding back the colored light of different shades to incident light entering direction is emphasized the incident light by interference of light components in a specific wavelength region So,
Board and
Transparent microspheres aligned on the substrate,
Including
On the substrate, or on the surface of the transparent microspheres facing the substrate, there is provided an interference substance layer that produces a colored interference color, and the interference substance layer is made of metal oxide-coated flaky powder. Colored light retroreflective material.
請求項記載の反射材において、酸化金属被覆鱗片状粉体は酸化チタン層厚40nm以上の二酸化チタン被覆雲母及び/又は低次酸化チタン被覆雲母であることを特徴とする着色光再帰反射材。The colored light retroreflective material according to claim 1 , wherein the metal oxide-coated flaky powder is a titanium dioxide-coated mica having a titanium oxide layer thickness of 40 nm or more and / or a low-order titanium oxide-coated mica. 請求項記載の反射材において、前記基板は酸化チタン被覆雲母の干渉色とは異なる色調の有色であることを特徴とする着色光再帰反射材。The colored light retroreflective material according to claim 2 , wherein the substrate has a color tone different from the interference color of the titanium oxide-coated mica. 請求項記載の反射材において、酸化金属被覆鱗片状粉体はその干渉色とは異なる色調の外観色を有するチタン系複合酸化物被覆雲母であることを特徴とする着色光再帰反射材。2. The colored light retroreflective material according to claim 1 , wherein the metal oxide-coated flaky powder is a mica coated with a titanium-based composite oxide having an appearance color different from the interference color. 請求項1〜4に記載の反射材において、干渉物質の配置する位置を操作することによって入射光に対して示す干渉色の違いで文字や図形を描くことを特徴とする着色光再帰反射材。The colored light retroreflective material according to claim 1, wherein a character or a figure is drawn with a difference in interference color with respect to incident light by manipulating a position at which the interference substance is arranged.
JP27169398A 1997-09-30 1998-09-25 Colored light retroreflective material Expired - Fee Related JP3541128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27169398A JP3541128B2 (en) 1997-09-30 1998-09-25 Colored light retroreflective material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-282836 1997-09-30
JP28283697 1997-09-30
JP27169398A JP3541128B2 (en) 1997-09-30 1998-09-25 Colored light retroreflective material

Publications (2)

Publication Number Publication Date
JPH11167010A JPH11167010A (en) 1999-06-22
JP3541128B2 true JP3541128B2 (en) 2004-07-07

Family

ID=26549839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27169398A Expired - Fee Related JP3541128B2 (en) 1997-09-30 1998-09-25 Colored light retroreflective material

Country Status (1)

Country Link
JP (1) JP3541128B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083619A1 (en) 2006-01-17 2007-07-26 Shiseido Co., Ltd. Laminated material with information recorded thereon, article comprising said laminated material applied thereto, information reading method, and information reading apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160569A1 (en) * 2001-12-10 2003-06-26 Bayer Ag Laminate used as foil, panel e.g. partition or roofing, pipe for liquid or gas transport or building profile, has transparent thermoplastic or lacquer layer with UV absorber, thermoplastic layer with colorant and thermoplastic layer
CN100426012C (en) 2004-04-28 2008-10-15 纪和化学工业株式会社 Hue variable retroreflection sheet
JP5084281B2 (en) * 2007-02-02 2012-11-28 ユニチカスパークライト株式会社 Method for producing antiglare glitter film
JP5248496B2 (en) 2007-06-19 2013-07-31 株式会社丸仁 Retroreflective material with iridescent reflected light
JP5203681B2 (en) * 2007-11-15 2013-06-05 株式会社 資生堂 Angle-dependent retroreflective material
KR102170421B1 (en) * 2019-03-08 2020-10-27 주식회사 지비라이트 Transparent retroreflectors
JP7283942B2 (en) * 2019-03-29 2023-05-30 ブリヂストンサイクル株式会社 Method for forming retroreflective multi-layer coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083619A1 (en) 2006-01-17 2007-07-26 Shiseido Co., Ltd. Laminated material with information recorded thereon, article comprising said laminated material applied thereto, information reading method, and information reading apparatus

Also Published As

Publication number Publication date
JPH11167010A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
KR100373612B1 (en) Colored light retroreflection material and retroreflective hologram reproducing body using the same
KR102044398B1 (en) Pearlescent pigments based on monolithically constructed substrates, methods for producing same, and use of such pearlescent pigments
US6841238B2 (en) Chromatic diffractive pigments and foils
US6114018A (en) Paired optically variable article with paired optical structures and ink, paint and foil incorporating the same and method
JP4334204B2 (en) High-luminance and high-saturation iris pigment and method for producing the same
US20030129404A1 (en) Achromatic multilayer diffractive pigments and foils
AU733181B2 (en) Multilayer-coated powder
JP2000517374A (en) Multilayer interference pigment
WO2002024818A1 (en) Optically variable pigments and foils with enhanced color shifting properties
JP3541128B2 (en) Colored light retroreflective material
JPH07759B2 (en) Chromatic glitter powder
US6190445B1 (en) High-chroma orange pearl pigment
JP2629854B2 (en) Facial material
WO1999038036A1 (en) Diffuser, illuminating device and liquid crystal display
CN101475757A (en) Versicolor interference color pearlescent pigment and preparation thereof
KR910006720B1 (en) Metallic paint film
JP3672453B2 (en) Retroreflective hologram reproduction body
JPH10259318A (en) High-chroma orange-colored pearl pigment
JPS5930868A (en) Coating film with reflective ability
JPH09328630A (en) Powdery coloring material
JP2002029930A (en) Cosmetic
JP4241004B2 (en) Multilayer interference pigment
KR100328280B1 (en) Two colored mica, method of making the same and use thereof
JP4125882B2 (en) Metallic luster thermochromic laminate
JP2004230580A (en) Metal gloss like thermally color-changeable laminate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees