JP3541107B2 - Connection structure of fluid transport pipe - Google Patents

Connection structure of fluid transport pipe Download PDF

Info

Publication number
JP3541107B2
JP3541107B2 JP28380196A JP28380196A JP3541107B2 JP 3541107 B2 JP3541107 B2 JP 3541107B2 JP 28380196 A JP28380196 A JP 28380196A JP 28380196 A JP28380196 A JP 28380196A JP 3541107 B2 JP3541107 B2 JP 3541107B2
Authority
JP
Japan
Prior art keywords
pipe
fluid transport
transport pipe
peripheral surface
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28380196A
Other languages
Japanese (ja)
Other versions
JPH10132172A (en
Inventor
正敏 矢野
太一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waterworks Technology Development Organization Co Ltd
Original Assignee
Waterworks Technology Development Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waterworks Technology Development Organization Co Ltd filed Critical Waterworks Technology Development Organization Co Ltd
Priority to JP28380196A priority Critical patent/JP3541107B2/en
Publication of JPH10132172A publication Critical patent/JPH10132172A/en
Application granted granted Critical
Publication of JP3541107B2 publication Critical patent/JP3541107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、地中に埋設された合成樹脂製の水道管やガス管等の流体輸送管を、接続用フランジや仕切り弁或いは分岐管等の被接続体側の管接続口部に連通接続するための接続構造に関し、詳しくは、前記流体輸送管の外周面に、被接続体側の管接続口部の内周面に形成した雌ネジ部に螺合する雄ネジ部を形成してある流体輸送管の接続構造に関する。
【0002】
【従来の技術】
この種の流体輸送管の接続構造において、例えば、図7に示すように、合成樹脂製の流体輸送管Pの端部外周面に、被接続体側の一例で、円筒状の管接続口部01の筒軸芯方向一端部外周面に連結フランジ02を一体形成してあるフランジ継手Fを接続する場合、従来では、管周壁の肉厚が管軸芯方向及び円周方向で一定に構成されている前記流体輸送管Pの端部外周面の各々に、前記フランジ継手Fの管接続口部01の内周面に形成した雌ネジ部03に螺合する雄ネジ部07を、該雄ネジ部07の外径が流体輸送管Pの外径と同一又はそれよりも少し小なる状態で形成して、流体輸送管Pの雄ネジ部07と管接続口部01の雌ネジ部03との螺合により、流体輸送管Pの端部外周面の各々に管接続口部01を接続していた。そして、2本の合成樹脂製の流体輸送管Pの管軸芯方向で相対向する端部外周面の各々に螺合接続されたフランジ継手Fの連結フランジ02同士をボルト014・ナット015にて締結して、これら両流体輸送管P,Pを連通接続していた(例えば、実開昭59ー54282号公報参照)。
このように構成された流体輸送管の接続構造は、合成樹脂製の流体輸送管Pと管接続口部01とが螺合という簡易な接続構造をもって接続されているから、これら流体輸送管Pとフランジ継手Fとの接続部分の保守・点検作業、並びに、流体輸送管P又はフランジ継手Fの交換作業に伴う流体輸送管Pとフランジ継手Fとの脱着作業を迅速、容易に行うことができる。
しかも、前記流体輸送管Pとして合成樹脂製のものを用いるが故に、地震や不同沈下等に起因する管軸芯方向の引張力、或いは、管軸芯に対して交差する方向の剪断力や曲げモーメント等の外力が作用しても、流体輸送管Pが合成樹脂製であるため、この外力を前記流体輸送管P自体の伸びや撓み変形を利用して吸収することができるから、流体輸送管Pの前記外力による破損を抑制することができる点で有用である。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の流体輸送管の接続構造では、前記雄ネジ部07の外径が流体輸送管Pの外径と同一又はそれよりも少し小なる状態で形成されている関係上、この雄ネジ部07の谷径に相当する管周壁の最小肉厚t3が、流体輸送管Pの管接続領域以外の管周壁の肉厚t4よりもネジ山高さ分だけ小となるため、流体輸送管Pの雄ネジ部形成箇所08の強度が管接続領域以外の管周壁の強度よりも低下し、その結果、流体輸送管Pと管接続口部01との間に、地震や不同沈下等に起因する管軸芯方向の引張力、或いは、管軸芯に対して交差する方向の剪断力や曲げモーメント等の外力が作用したとき、流体輸送管Pの雄ネジ部形成箇所08が管接続領域以外の管周壁よりも早期に破断して、合成樹脂製の流体輸送管Pの特性、特に、管接続領域以外の長尺な管周壁での伸びや撓み変形を外力吸収用として充分活用できなくなる問題がある。
【0004】
本発明は、上記の実情に鑑みて為されたものであって、その主たる課題は、従来の流体輸送管の接続構造と同様な螺合という簡易な接続構造をもって、流体輸送管と被接続体側の管接続口部との脱着作業の迅速化、容易化を図りながらも、流体輸送管おける雄ネジ部形成箇所での強度を向上して、地震や不同沈下等に起因する管軸芯方向の引張力や圧縮力、或いは、管軸芯に対して交差する方向の剪断力や曲げモーメント等の外力を、流体輸送管の管接続領域以外の管周壁の伸びや撓み変形を利用して効果的に吸収でき、もって、従来の流体輸送管の接続構造に比して前記外力に対する破断強度の高い流体輸送管の接続構造を提供する点にある。
【0005】
【課題を解決するための手段】
本発明の請求項1による流体輸送管の接続構造の特徴構成は、合成樹脂製の流体輸送管の外周面に、被接続体側の管接続口部の内周面に形成した雌ネジ部に螺合する雄ネジ部を突出形成し、この雄ネジ部形成箇所の管周壁の最小肉厚を、前記流体輸送管の管接続領域以外の管周壁の肉厚と同一又はそれよりも大に構成するとともに、前記流体輸送管の内周面のうち、前記雄ネジ部形成箇所に相当する部位の少なくとも一部には、補強筒体を密着状態で挿入してある点にある。
上記特徴構成によれば、管接続口部の内周面に形成した雌ネジ部に流体輸送管の雄ネジ部を螺合するだけで、管接続口部と流体輸送管とを接続することができ、しかも、雄ネジ部形成箇所の管周壁の最小肉厚が流体輸送管の管接続領域以外の管周壁の肉厚と同一又はそれよりも大であるから、雄ネジ部の山部形成箇所の管周壁の肉厚は流体輸送管の管接続領域以外の管周壁の肉厚よりも大となり、その結果、雄ネジ部形成箇所における強度を流体輸送管の管接続領域以外の管周壁と同等又はそれ以上に高めることができる。
しかも、前記雄ネジ部形成箇所に相当する管内周面の少なくとも一部には密着状態で補強筒体が挿入されているから、該部位での剪断強度も同時に高めることができるから、地震や不同沈下等に起因する管軸芯方向の引張力や圧縮力、或いは、管軸芯に対して交差する方向の剪断力や曲げモーメント等の外力により、流体輸送管の管接続領域、特に雄ネジ部形成箇所が管接続領域以外の管周壁よりも先行して破断することを回避することができる。
それ故に、従来の流体輸送管の接続構造と同様な螺合という簡易な接続構造をもって、流体輸送管と被接続体側の管接続口部との脱着作業の迅速化、容易化を図ることができるとともに、地震や不同沈下等に起因する管軸芯方向の引張力や圧縮力、或いは、管軸芯に対して交差する方向の剪断力や曲げモーメント等の外力を、合成樹脂製の流体輸送管の特性、特に、管接続領域以外の長尺な管周壁での伸びや撓み変形を利用して効果的に吸収することができ、従来の流体輸送管の接続構造に比して前記外力に対する破断強度を高めることができる。
【0006】
本発明の請求項2による流体輸送管の接続構造の特徴構成は、前記管接続口部の内周面の雌ネジ部よりも奥側に位置する部位に、該管接続口部に対する流体輸送管の接続側への螺進に連れて径方向外方に圧縮される密封用の弾性シール材が装着されているとともに、前記補強筒体が、前記流体輸送管の内周面の前記弾性シール材に対応する部位にまで延出されている点にある。
上記特徴構成によれば、前記管接続口部と流体輸送管とを接続するための該管接続口部に対する流体輸送管の接続側への螺進操作を利用して、密封用の弾性シール材を管接続口部の内周面と流体輸送管の外周面とに圧縮状態で密着させることができるから、例えば、管接続口部に対する流体輸送管の接続側への押込み操作で前記弾性シール材を圧縮させる場合に比して、少ない操作力で弾性シール材を確実に圧縮することができる。
しかも、前記流体輸送管の管周壁は弾性シール材の圧縮力に対する反力により応力集中を受けているが、この応力は、流体輸送管の管周壁のみならず、前記補強筒体でも受止められるから、流体輸送管の管周壁が前記応力により経年的にクリープ破断することを抑制することができる。
【0007】
本発明の請求項3による流体輸送管の接続構造の特徴構成は、前記補強筒体が、円周方向の一箇所で切断されていて、拡径側への弾性復元力に抗して縮径した状態で流体輸送管の内周面に挿入されている点にある。
上記特徴構成によれば、前記補強筒体を縮径側に強制的に弾性変形させた状態で流体輸送管の内周面に挿入することができるから、補強筒体を流体輸送管の内周面に圧入する場合に比して、流体輸送管の内周面に対する補強筒体の装着作業を迅速、容易に行うことができ、しかも、流体輸送管の内周面に装着したのちは、補強筒体の縮径側への弾性変形操作力を解除するだけで、補強筒体が拡径側へ弾性復帰する途中で、拡径側への弾性復元力に抗して縮径した状態で流体輸送管の内周面に密着するから、補強筒体を流体輸送管の内周面に固定するための特別な固定手段を設ける必要もない。
【0008】
本発明の請求項4による流体輸送管の接続構造の特徴構成は、前記流体輸送管の雄ネジ部を管接続口部の雌ネジ部の所定位置にまで螺合したとき、前記管接続口部の端面に対して管軸芯方向から接当する板状ストッパー部が、前記流体輸送管から径方向外方に突出する状態で一体成形されている点にある。
上記特徴構成によれば、前記流体輸送管の雄ネジ部と管接続口部の雌ネジ部との螺合長さを常に設定長さに維持することができるばかりでなく、このためのストパー部が、合成樹脂製の流体輸送管に一体成形された板状に構成されているため、管接続口部との接当に伴うストッパー部の管軸芯方向での弾性変形を利用して、螺合接続された流体輸送管と管接続口部との緩み側への相対回転を抑制することができる。
【0009】
【発明の実施の形態】
〔第1実施形態〕
図1〜図3は、合成樹脂の一例であるポリエチレン製の流体輸送管(例えば、水道管)Pの管軸芯方向の一端部を、被接続体側の一例で、ほぼ円筒状の管接続口部1の筒軸芯方向一端部に連結フランジ2を一体形成してある金属の一例である鋳鉄製のフランジ継手Fの該管接続口部1に連通接続するための本発明の流体輸送管の接続構造を示し、前記フランジ継手Fの管接続口部1の内周面のうち、筒軸芯方向他端側には雌ネジ部3が形成されているとともに、この管接続口部1の内周面のうち、雌ネジ部3よりも奥側(筒軸芯方向一端部側)に位置する部位には、筒軸芯方向に所定間隔を隔てて2本の環状溝4a,4bが形成され、これら両環状溝4a,4bの各々に合成ゴム製(例えば、スチレンブタジエンゴム)の密封用の環状の弾性シール材5a,5bを内嵌装着してある。
前記連結フランジ2には、円周方向に沿って複数のボルト挿通孔6を貫通形成してある。
【0010】
前記流体輸送管Pの内径は、その管軸芯方向に沿ってほぼ一定の内径に構成されているとともに、この流体輸送管Pの外周面には、前記フランジ継手Fの管接続口部1の内周面に形成した雌ネジ部3に螺合する雄ネジ部7を一体的に突出形成してある。
また、前記流体輸送管Pの雄ネジ部形成箇所8よりも開口端部側には、前記管接続口部1に対する該管接続口部1の筒軸芯方向他端側の開口から挿入された流体輸送管Pの接続側への螺進に連れて、前記両弾性シール材5a,5bの各々の内周面側に順次嵌まり込んで、これら各弾性シール材5a,5bを、対応する前記各環状溝4a,4bの内底面との間で流体輸送管Pの径方向外方に圧縮する円筒部分9を一体的に延設してあるとともに、前記円筒部分9の先端側外周面には、該円筒部分9の弾性シール材5a,5bの内周面側への嵌まり込みを案内するテーパー面9aを形成してあり、前記管接続口部1に対する流体輸送管Pの接続側への螺進操作が完了した状態では、前記両弾性シール材5a,5bが、管接続口部1の内周面と流体輸送管Pの前記円筒部分9の外周面とに圧縮状態で密着し、管接続口部1の内周面と流体輸送管Pの外周面との間の隙間を密封することができる。
【0011】
前記流体輸送管Pの外周面には、該流体輸送管Pの雄ネジ部7を管接続口部1の雌ネジ部3の所定位置にまで螺合したとき、管接続口部1の筒軸芯方向他端側の端面に対して管軸芯方向から接当して、更なる流体輸送管Pの螺進操作を規制するほぼ三角形状の板状ストッパー部10を、流体輸送管Pの径方向外方に突出する状態で一体成形してあるとともに、各隣接するストッパー部10間には、流体輸送管Pを螺進操作する際に、流体輸送管Pを回転させるための工具等を引っ掛けるための突起11を一体的に突出形成してある。
また、前記ストッパー部10は、管接続口部1の筒軸芯方向他端側の端面との接当により、僅かに、管軸芯方向の管接続口部1側とは反対側に弾性的に撓み変形可能に構成してある。
尚、前記フランジ継手Fの管接続口部1に対する管接続領域は、前記雄ネジ部形成箇所8と円筒部分9、並びに、前記ストッパー部10と突起11との形成箇所をもって構成してある。
【0012】
図1に示すように、前記雄ネジ部形成箇所8の雄ネジ部7の谷部相当部分は、該雄ネジ部形成箇所8の管周壁のうち、管径方向での肉厚が最も薄い部分であり、この雄ネジ部7の谷部相当部分の管周壁の管径方向での肉厚(雄ネジ部形成箇所8の管周壁の管径方向での最小肉厚)t1は、流体輸送管Pの管接続領域以外の管周壁、換言すれば、管接続口部1から外部に突出する長尺な管部分の管周壁の肉厚t2よりも大に構成してある。
【0013】
図1、図2に示すように、前記流体輸送管Pの内周面のうち、前記雄ネジ部形成箇所8に相当する部位には、金属の一例であるステンレス製の補強筒体12を密着状態で挿入してあり、更に、前記補強筒体12を、前記流体輸送管Pの内周面の両弾性シール材5a,5bに対応する部位から円筒部分9の開口端部にまで延出してある。
前記補強筒体12の外径は、自然状態で流体輸送管Pの内径よりも大に構成されていて、補強筒体12が、それの円周方向の一箇所で、該補強筒体12の筒軸芯に対して傾斜する姿勢の隙間12aを有する状態、つまり、補強筒体12の筒軸芯と直交する方向での断面がほぼCの字状となり、筒軸芯方向に沿ってその隙間形成位置が円周方向にずれる状態に切断してある。
前記補強筒体12は、前記隙間12aの存在により弾性復元力に抗して縮径変形することができ、最も縮径変形した状態における補強筒体12の外径が流体輸送管Pの内径よりも小となるように構成してある。
【0014】
図1〜図3に示すように、前記補強筒体12は、流体輸送管Pの内周面に対して、該補強筒体12を、それの外径が流体輸送管Pの内径よりも小となるまで弾性復元力に抗して強制的に縮径変形させた状態で挿入することができ、この挿入した状態で強制的な縮径を解除することにより、流体輸送管Pの内周面に補強筒体12の外周面が密着するまで拡径し、その後は、残留する拡径側への弾性復元力に抗して縮径した状態で、この弾性復元力により流体輸送管Pの内周面に密着固定される。
また、前記フランジ継手Fの管接続口部1の筒軸芯方向他端側から該管接続口部1内に流体輸送管Pの前記円筒部分9を挿入し、前記ストッパー部10が管接続口部1の筒軸芯方向他端側の端面と接当するまで流体輸送管Pを螺進操作することにより、流体輸送管Pの一端部とフランジ継手Fの管接続口部1とが連通状態で螺合接続される。
【0015】
上述のように、前記流体輸送管Pの端部に被接続体側の一例であるフランジ継手Fを螺合接続することにより、図4に示すように、2本の流体輸送管P,Pの端部の各々に螺合接続してある各フランジ継手F,Fの連結フランジ2,2同士を管軸芯方向で相対向させ、両管接続口部1の相対向する端面間に密封用の弾性シール材(パッキン)13を介在させた状態で、両連結フランジ2,2の相対向するボルト挿通孔6,6の各々に亘ってボルト14を挿通し、これらボルト14にナット15を螺合して締め付け、両フランジ継手F,Fを締結することにより、これら両流体輸送管P,Pを密封状態で連通接続することができる。
尚、図4では、内径の異なる2本の流体輸送管P,Pを連通接続した状態を示してあり、小径の流体輸送管Pに螺合接合された被接続体側の一例であるフランジ継手Fの管接続口部1の筒軸芯方向一端側開口端部には、該管接続口部1の筒軸芯方向に向かって突出する環状の突出部16が一体形成されていて、該突出部16の内周面が開口側ほど大径となるテーパー面16aに形成されている。詳しくは、前記突出部16のテーパー面16aの小径の流体輸送管P側の最小内径を、該小径の流体輸送管Pの内周面に装着された状態の補強筒体12の内径とほぼ同形に構成してあるとともに、大径の流体輸送管P側の最大内径を、該大径の流体輸送管Pの内周面に装着された状態の補強筒体12の内径とほぼ同形に構成してある。
【0016】
尚、図4に示すように、前記流体輸送管Pの他端部(前記フランジ継手Fの螺合接続箇所とは反対側の端部)には、外径及び内径が同じポリエチレン製の流体輸送管P1が配管してあり、これら両流体輸送管P,P1同士は、その接続部分に亘って、ポリエチレン製の筒体17を外嵌装着し、該両流体輸送管P,P1の外周面と筒体17の内周面とを熱融着することにより連通接続してある。
【0017】
〔第2実施形態〕
前記第1実施形態では、本発明の流体輸送管の接続構造を、流体輸送管Pと被接合体側の一例であるフランジ継手Fとの接続に採用したが、本発明の流体輸送管の接続構造を、図5に示すように、流体輸送管Pと被接続体側の一例である鋳鉄製のT型管Tの管接続口部1との接続に採用してもよい。この場合、T型管Tの管接続口部1は、前記第1実施形態のフランジ継手Fの管接続口部1と同様に構成されていて、前記第1実施形態で説明した構成部分と同一構造又は同一機能を有する構成部分には、前記第1実施形態で付記した番号を付記してそれの説明を省略する。
〔その他の実施形態〕
▲1▼ 上述の第1実施形態では、本発明の流体輸送管の接続構造をもって流体輸送管Pに接続された被接続体側の一例であるフランジ継手Fを介して、2本の流体輸送管P,Pを連通接続する場合を例示して説明したが、図6に示すように、前記被接続体側の一例であるフランジ継手Fの連結フランジ2と、仕切り弁Vの管接続部18に形成された連結フランジ19とをボルト14・ナット15にて締結して、流体輸送管Pに仕切り弁Vを連通接続してもよく、また、図示しないが、前記フランジ継手Fの連結フランジ2と、鋳鉄製の流体輸送管の管軸芯方向開口側端部に一体形成された連結フランジとをボルト・ナットにて締結して、合成樹脂製の流体輸送管と鋳鉄製の流体輸送管とを連通接続してもよい。
▲2▼ 前記被接続体側としては、フランジ継手FやT型管Tに限定されるものではなく、前記管接続口部1を備えたものであるならば、それ以外にも、鋳鉄製やポリ塩化ビニル製等の屈曲管、仕切り弁、又は、分岐弁等であってもよい。
▲3▼ 上述の各実施形態では、流体輸送管Pとして水道管を例示したが、これに限定されるものではなく、流体輸送管Pとしてはガス管や石油輸送管等であってもよい。
▲4▼ 上述の各実施形態では、合成樹脂製の流体輸送管Pとしてポリエチレン製の流体輸送管を例示したが、これに限定されるものではなく、ポリ塩化ビニル製の流体輸送管であってもよい。
▲5▼ 上述の各実施形態では、管接続口部1が鋳鉄製であるが、該管接続口部1の材質としては、流体輸送管Pよりも強度の高い材質であるならば鋳鉄に限定されるものではない。
▲6▼ 上述の各実施形態において、前記雄ネジ部形成箇所8の雄ネジ部7の谷部相当部分の管周壁の管径方向での肉厚(雄ネジ部形成箇所8の管周壁の管径方向での最小肉厚)t1を、流体輸送管Pの管接続領域以外の管周壁の肉厚t2よりと同一に構成してもよい。
▲7▼ 上述の各実施形態では、管接続口部1の内周面の雌ネジ部3よりも奥側に位置する部位に、該管接続口部1に対する流体輸送管Pの接続側への螺進に連れて径方向外方に圧縮される2本の密封用の弾性シール材5a,5bを装着したが、弾性シール材の本数は2本に限定されるものではなく、必要に応じて適宜変更してもよい。
▲8▼ 上述の各実施形態では、補強筒体12がステンレス製であるが、該補強筒体12の材質としては、流体輸送管Pよりも剪断応力の高い、つまり、流体輸送管Pの材質よりも強度の高い合成樹脂であってもよく、例えば、流体輸送管Pがポリエチレン製である場合、補強筒体12はポリエチレンよりも強度の高いポリ塩化ビニル製又はポリアセタール製であってもよい。
【図面の簡単な説明】
【図1】本発明の流体輸送管の接続構造の第1実施形態を示す縦断面図
【図2】図1のII−II線断面図
【図3】分解断面斜視図
【図4】継手フランジを介して2本の流体輸送管を連通接続した状態の断面図
【図5】本発明の流体輸送管の接続構造の第2実施形態を示す部分断面図
【図6】本発明の流体輸送管の接続構造の第1実施形態において、継手フランジを介して流体輸送管に仕切り弁を連通接続した状態の部分断面図
【図7】従来の流体輸送管の接続構造を示す縦断面図
【符号の説明】
P 流体輸送管
t1 肉厚(最小肉厚)
t2 肉厚
1 管接続口部
3 雌ネジ部
5a 弾性シール材
5b 弾性シール材
7 雄ネジ部
8 雄ネジ部形成箇所
10 ストッパー部
12 補強筒体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is to connect and connect a fluid transport pipe such as a synthetic resin water pipe or gas pipe buried underground to a pipe connection port side on a connected body such as a connection flange, a gate valve or a branch pipe. More specifically, a fluid transport pipe having an external thread portion formed on the outer peripheral surface of the fluid transport tube to be screwed into a female thread portion formed on the inner peripheral surface of the pipe connection port portion on the connected body side. Connection structure.
[0002]
[Prior art]
In this type of fluid transport pipe connection structure, for example, as shown in FIG. 7, a cylindrical pipe connection port 01 is formed on an outer peripheral surface of an end portion of a synthetic resin fluid transport pipe P as an example of a connected body side. When connecting a flange joint F integrally formed with a connecting flange 02 on one end outer peripheral surface in the cylinder axis direction, conventionally, the wall thickness of the tube peripheral wall is configured to be constant in the tube axis direction and the circumferential direction. Each of the outer peripheral surfaces of the end portions of the fluid transport pipe P is provided with a male thread portion 07 which is screwed into a female thread portion 03 formed on the inner peripheral surface of the pipe connection port portion 01 of the flange joint F. 07 is formed in a state in which the outer diameter of the fluid transport pipe P is the same as or slightly smaller than the outer diameter of the fluid transport pipe P, and the external thread 07 of the fluid transport pipe P and the female thread 03 of the pipe connection port 01 are screwed. In some cases, the pipe connection port 01 was connected to each of the outer peripheral surfaces of the end portions of the fluid transport pipe P. Then, the connecting flanges 02 of the flange joint F screwed to each of the outer peripheral surfaces of the two fluid transfer pipes P made of synthetic resin which are opposed to each other in the pipe axis direction with bolts 014 and nuts 015. The two fluid transport pipes P, P were communicated and connected to each other (see, for example, Japanese Utility Model Laid-Open No. 59-54282).
In the connection structure of the fluid transport pipes configured as described above, since the fluid transport pipe P made of synthetic resin and the pipe connection port portion 01 are connected with a simple connection structure in which the fluid transport pipe P is screwed, the fluid transport pipe P and the fluid transport pipe P are connected to each other. It is possible to quickly and easily perform maintenance / inspection work of a connection portion with the flange joint F, and detachment work between the fluid transport pipe P and the flange joint F accompanying replacement work of the fluid transport pipe P or the flange joint F.
In addition, since the fluid transport pipe P is made of a synthetic resin, a tensile force in a pipe axis direction caused by an earthquake or uneven settlement, or a shearing force or bending in a direction intersecting with the pipe axis. Even if an external force such as a moment acts, the fluid transport pipe P is made of a synthetic resin, so that the external force can be absorbed by utilizing the elongation and bending deformation of the fluid transport pipe P itself. This is useful in that P can be prevented from being damaged by the external force.
[0003]
[Problems to be solved by the invention]
However, in the conventional connection structure of the fluid transport pipe, since the external diameter of the external thread portion 07 is formed to be the same as or slightly smaller than the external diameter of the fluid transport pipe P, Since the minimum wall thickness t3 of the pipe peripheral wall corresponding to the trough diameter of 07 is smaller by the thread height than the wall thickness t4 of the pipe peripheral wall other than the pipe connection region of the fluid transport pipe P, the male of the fluid transport pipe P The strength of the threaded portion 08 is lower than the strength of the peripheral wall of the pipe other than the pipe connection area. As a result, the pipe shaft between the fluid transport pipe P and the pipe connection port 01 caused by an earthquake, uneven settlement, or the like. When an external force such as a tensile force in a core direction or a shearing force or a bending moment in a direction intersecting with the pipe axis acts, the location 08 where the external thread portion of the fluid transport pipe P is formed becomes a pipe peripheral wall other than the pipe connection area. The fluid transport pipe P made of synthetic resin, There is not made a problem be sufficiently utilize the elongation and flexural deformation as a force absorption at long tube wall other than the region.
[0004]
The present invention has been made in view of the above circumstances, and its main problem is to provide a simple connection structure such as a screw connection similar to a conventional connection structure of a fluid transport pipe, and a fluid transport pipe and a connected body side. While improving the speed and ease of attaching and detaching work to and from the pipe connection port, the strength at the place where the male thread is formed in the fluid transport pipe has been improved, External force such as tensile force or compressive force, or shear force or bending moment in the direction intersecting with the pipe axis is effectively applied by using the elongation or bending deformation of the pipe peripheral wall other than the pipe connection area of the fluid transport pipe. Accordingly, the present invention provides a connection structure for a fluid transport pipe having a higher breaking strength against the external force than a conventional connection structure for a fluid transport pipe.
[0005]
[Means for Solving the Problems]
The characteristic structure of the connection structure of the fluid transport pipe according to the first aspect of the present invention is that a female screw portion formed on the outer peripheral surface of the synthetic resin fluid transport pipe on the inner peripheral surface of the pipe connection port on the connected body side. The external thread portion is formed so as to protrude, and the minimum wall thickness of the pipe peripheral wall at the location where the external thread portion is formed is equal to or larger than the wall thickness of the pipe peripheral wall other than the pipe connection region of the fluid transport pipe. In addition, a reinforcing cylindrical body is inserted into at least a part of the inner peripheral surface of the fluid transport pipe corresponding to the male screw portion forming portion in a closely contacted state.
According to the characteristic configuration, the pipe connection port and the fluid transport pipe can be connected only by screwing the male thread of the fluid transport pipe into the female thread formed on the inner peripheral surface of the pipe connection port. Since the minimum wall thickness of the pipe peripheral wall at the place where the male screw portion is formed is the same as or larger than the wall thickness of the pipe peripheral wall other than the pipe connection region of the fluid transport pipe, the peak portion where the male screw portion is formed The wall thickness of the pipe surrounding wall is larger than the wall thickness of the pipe surrounding area other than the pipe connection area of the fluid transport pipe. Or more.
Moreover, since the reinforcing tubular body is inserted into at least a part of the inner peripheral surface of the tube corresponding to the portion where the male screw portion is formed in a tightly contacted state, the shear strength at the portion can be increased at the same time. Due to tensile force or compressive force in the pipe axis direction due to settlement or external force such as shearing force or bending moment in the direction crossing the pipe axis, the pipe connection area of the fluid transport pipe, especially the male thread It is possible to prevent the formation location from breaking prior to the pipe peripheral wall other than the pipe connection area.
Therefore, with a simple connection structure such as a screw connection similar to the conventional connection structure of the fluid transport pipe, it is possible to speed up and facilitate the attachment / detachment work between the fluid transport pipe and the pipe connection port on the connected body side. At the same time, the external force such as the tensile force or the compressive force in the direction of the tube axis caused by the earthquake or the differential settlement, or the shearing force or the bending moment in the direction crossing the tube axis is transferred to the fluid transfer tube made of synthetic resin. Characteristics, in particular, it can be effectively absorbed by utilizing the elongation and bending deformation of a long pipe peripheral wall other than the pipe connection area, and the breakage against the external force as compared with the conventional fluid transport pipe connection structure. Strength can be increased.
[0006]
The fluid transport pipe connection structure according to claim 2 of the present invention is characterized in that a fluid transport pipe for the pipe connection port is provided at a position located on the inner peripheral surface of the pipe connection port on the inner side of the female screw portion. A sealing elastic seal material that is compressed radially outwardly as the screw is advanced to the connection side of the fluid transport pipe, and the reinforcing cylindrical body is provided with an elastic seal material on an inner peripheral surface of the fluid transport pipe. In that it extends to a site corresponding to.
According to the above-mentioned characteristic configuration, an elastic sealing material for sealing is used by using a screwing operation on the connection side of the fluid transport pipe with respect to the pipe connection port for connecting the pipe connection port and the fluid transport pipe. Can be brought into close contact with the inner peripheral surface of the pipe connection port and the outer peripheral surface of the fluid transport pipe in a compressed state. For example, the elastic sealing material is pressed by pressing the fluid transport pipe into the connection side of the pipe connection port. , The elastic sealing material can be reliably compressed with a smaller operation force.
In addition, the pipe peripheral wall of the fluid transport pipe receives stress concentration due to the reaction force against the compressive force of the elastic sealing material. This stress is received not only by the pipe peripheral wall of the fluid transport pipe but also by the reinforcing cylinder. Accordingly, it is possible to prevent the pipe peripheral wall of the fluid transport pipe from undergoing creep rupture over time due to the stress.
[0007]
According to a third aspect of the present invention, there is provided a fluid transport pipe connecting structure according to the first aspect of the present invention, wherein the reinforcing cylinder is cut at one location in a circumferential direction, and is reduced in diameter against an elastic restoring force toward an enlarged diameter side. In that it is inserted into the inner peripheral surface of the fluid transport pipe in a state where the fluid transport pipe is inserted.
According to the above-described characteristic configuration, the reinforcing cylinder can be inserted into the inner peripheral surface of the fluid transport pipe in a state where the reinforcing cylinder is forcibly elastically deformed to the reduced diameter side. The installation of the reinforcing cylinder on the inner peripheral surface of the fluid transport pipe can be performed quickly and easily compared to the case of press-fitting on the surface. By simply releasing the elastic deformation operation force to the reduced diameter side of the cylinder, the fluid in the state of reduced diameter against the elastic restoring force to the increased diameter side while the reinforcing cylinder elastically returns to the increased diameter side. Since it is in close contact with the inner peripheral surface of the transport pipe, it is not necessary to provide a special fixing means for fixing the reinforcing cylinder to the inner peripheral surface of the fluid transport pipe.
[0008]
The fluid transport pipe connection structure according to claim 4 of the present invention is characterized in that when the male thread of the fluid transport pipe is screwed to a predetermined position of the female thread of the pipe connection port, The plate-shaped stopper portion which comes into contact with the end face of the pipe in the axial direction of the pipe is integrally formed so as to protrude radially outward from the fluid transport pipe.
According to the above-mentioned characteristic configuration, not only can the screwed length of the male screw part of the fluid transport pipe and the female screw part of the pipe connection port part be always maintained at the set length, but also the stopper part for this purpose Is formed in a plate shape integrally formed with a synthetic resin fluid transport pipe, so that the screw is utilized by utilizing the elastic deformation of the stopper portion in the pipe axis direction accompanying the contact with the pipe connection port. It is possible to suppress relative rotation of the fluid connection pipe and the pipe connection port that are connected to each other to the loose side.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
FIGS. 1 to 3 show an example of a synthetic resin such as a fluid transport pipe (for example, a water pipe) P made of polyethylene. The fluid transport pipe of the present invention for communicating and connecting to the pipe connection port 1 of a flanged joint F made of cast iron, which is an example of a metal in which a connecting flange 2 is integrally formed at one end of the portion 1 in the cylinder axis direction. FIG. 4 shows a connection structure, in which a female screw portion 3 is formed on the other end side of the pipe connection port portion 1 of the flange joint F in the cylinder axis direction, and the inside of the pipe connection port portion 1 is formed. Two annular grooves 4a and 4b are formed in the peripheral surface at a position deeper than the female screw portion 3 (one end side in the cylinder axis direction) at predetermined intervals in the cylinder axis direction. Each of these annular grooves 4a and 4b is provided with an annular sealing elastic made of synthetic rubber (for example, styrene-butadiene rubber). Lumpur material 5a, are then fitted into and attached to 5b.
The connection flange 2 has a plurality of bolt insertion holes 6 formed therethrough along the circumferential direction.
[0010]
The inner diameter of the fluid transport pipe P is configured to be substantially constant along the axial direction of the pipe, and the outer peripheral surface of the fluid transport pipe P is provided with the pipe connection port 1 of the flange joint F. A male screw portion 7 screwed into the female screw portion 3 formed on the inner peripheral surface is integrally formed to protrude.
Further, the fluid transport pipe P is inserted into the open end side of the male screw part forming portion 8 from the opening at the other end of the pipe connection port 1 in the cylinder axis direction with respect to the pipe connection port 1. As the fluid transport pipe P is screwed toward the connection side, the two elastic seal members 5a and 5b are sequentially fitted into the inner peripheral surfaces of the elastic seal members 5a and 5b, respectively. A cylindrical portion 9 for compressing radially outward of the fluid transport pipe P is integrally extended between the inner bottom surfaces of the annular grooves 4a and 4b, and an outer peripheral surface on the distal end side of the cylindrical portion 9 is provided on the outer peripheral surface. A tapered surface 9a for guiding the cylindrical portion 9 to be fitted into the inner peripheral surfaces of the elastic sealing members 5a and 5b is formed. When the screwing operation is completed, the two elastic sealing members 5a and 5b are in contact with the inner peripheral surface of the pipe connection port 1 and the fluid. Close contact in a compressed state and an outer peripheral surface of the cylindrical portion 9 of the flue P, it is possible to seal the gap between the inner and outer circumferential surfaces of the fluid transport pipe P of the pipe joint port 1.
[0011]
On the outer peripheral surface of the fluid transport pipe P, when the male thread 7 of the fluid transport pipe P is screwed to a predetermined position of the female thread 3 of the pipe connection port 1, the cylindrical shaft of the pipe connection port 1 The substantially triangular plate-shaped stopper portion 10 which comes into contact with the end face on the other end side in the core direction from the pipe axis core direction and regulates the further screwing operation of the fluid transport pipe P is formed by the diameter of the fluid transport pipe P. A tool or the like for rotating the fluid transport pipe P is hooked between the adjacent stopper portions 10 when the fluid transport pipe P is screwed, while being integrally formed in a state of protruding outward in the direction. Projection 11 is integrally formed so as to protrude.
Further, the stopper portion 10 is slightly elastically moved to the side opposite to the pipe connection port 1 side in the pipe axis core direction by contact with the end face of the pipe connection port 1 on the other end side in the cylinder axis direction. It is configured to be able to bend and deform.
In addition, the pipe connection region of the flange joint F with respect to the pipe connection port portion 1 is configured by the male screw portion forming portion 8 and the cylindrical portion 9, and the stopper portion 10 and the projection 11 forming portion.
[0012]
As shown in FIG. 1, the portion corresponding to the valley portion of the male screw portion 7 at the male screw portion forming portion 8 is a portion of the peripheral wall of the male screw portion forming portion 8 having the thinnest wall thickness in the pipe radial direction. The wall thickness in the pipe diameter direction of the pipe peripheral wall of the portion corresponding to the valley portion of the male screw portion 7 (the minimum thickness in the pipe diameter direction of the pipe peripheral wall at the male screw portion forming portion 8) t1 is the fluid transport pipe. It is configured to be larger than the wall thickness t2 of the pipe peripheral wall other than the pipe connection region of P, in other words, the pipe peripheral wall of a long pipe portion protruding outside from the pipe connection port 1.
[0013]
As shown in FIGS. 1 and 2, a stainless steel reinforcing cylinder 12, which is an example of a metal, is closely attached to a portion corresponding to the male screw portion forming portion 8 on the inner peripheral surface of the fluid transport pipe P. The reinforcing cylindrical body 12 is further extended from a portion corresponding to the two elastic sealing members 5 a and 5 b on the inner peripheral surface of the fluid transport pipe P to an open end of the cylindrical portion 9. is there.
The outer diameter of the reinforcing cylinder 12 is configured to be larger than the inner diameter of the fluid transport pipe P in a natural state, and the reinforcing cylinder 12 is provided at one location in the circumferential direction thereof. A state in which the gap 12a is inclined with respect to the cylinder axis, that is, the cross section of the reinforcing cylinder 12 in a direction perpendicular to the cylinder axis is substantially C-shaped, and the gap is formed along the cylinder axis direction. It is cut so that the forming position is shifted in the circumferential direction.
The reinforcing cylinder 12 can be reduced in diameter against the elastic restoring force due to the existence of the gap 12a, and the outer diameter of the reinforcing cylinder 12 in the state of the most reduced diameter is larger than the inner diameter of the fluid transport pipe P. Is also configured to be small.
[0014]
As shown in FIGS. 1 to 3, the reinforcing cylindrical body 12 is formed such that an outer diameter of the reinforcing cylindrical body 12 is smaller than an inner diameter of the fluid transporting pipe P with respect to an inner peripheral surface of the fluid transporting pipe P. Can be inserted in a state where the diameter is forcibly reduced against the elastic restoring force, and the forced diameter reduction is released in this inserted state, whereby the inner peripheral surface of the fluid transport pipe P is released. The diameter of the fluid transport pipe P is increased by the elastic restoring force while the diameter is reduced until the outer peripheral surface of the reinforcing tubular body 12 comes into close contact with the outer peripheral surface of the reinforcing cylinder 12. Closely fixed to the peripheral surface.
Further, the cylindrical portion 9 of the fluid transport pipe P is inserted into the pipe connection port 1 from the other end side of the pipe connection port 1 of the flange joint F in the cylinder axis direction, and the stopper 10 is connected to the pipe connection port. One end of the fluid transport pipe P and the pipe connection port 1 of the flange joint F are communicated by screwing the fluid transport pipe P until the fluid transport pipe P comes into contact with the end face on the other end side in the cylinder axis direction of the section 1. Are screwed together.
[0015]
As described above, by connecting the flange joint F, which is an example of the connected body side, to the end of the fluid transport pipe P by screwing, as shown in FIG. The connection flanges 2, 2 of the flange joints F, F, which are screwed to the respective portions, are opposed to each other in the pipe axis direction, and a sealing elasticity is provided between the opposed end faces of the two connection ports 1. With the sealing material (packing) 13 interposed, a bolt 14 is inserted through each of the opposed bolt insertion holes 6, 6 of the two connection flanges 2, 2, and a nut 15 is screwed into the bolt 14. By tightening the two flange joints F, F, these fluid transport pipes P, P can be connected and connected in a sealed state.
Note that FIG. 4 shows a state in which two fluid transport pipes P, P having different inner diameters are connected and connected, and a flange joint F which is an example of a connected body side which is screwed and joined to the small diameter fluid transport pipe P. An annular protruding portion 16 that protrudes toward the cylinder axis of the pipe connection port 1 is integrally formed at the open end of the pipe connection port 1 at one end side in the cylinder axis direction. An inner peripheral surface of the tapered surface 16 is formed on a tapered surface 16a having a larger diameter toward the opening. More specifically, the minimum inner diameter of the tapered surface 16a of the protrusion 16 on the small-diameter fluid transport pipe P side is substantially the same as the inner diameter of the reinforcing cylindrical body 12 mounted on the inner peripheral surface of the small-diameter fluid transport pipe P. And the maximum inner diameter of the large-diameter fluid transport pipe P is substantially the same as the inner diameter of the reinforcing tubular body 12 mounted on the inner peripheral surface of the large-diameter fluid transport pipe P. It is.
[0016]
As shown in FIG. 4, the other end of the fluid transport pipe P (the end opposite to the threaded connection portion of the flange joint F) is provided with a fluid transport made of polyethylene having the same outer diameter and inner diameter. A pipe P1 is provided, and the two fluid transport pipes P, P1 are externally fitted with a polyethylene cylinder 17 over a connection portion thereof, and are connected to the outer peripheral surfaces of the two fluid transport pipes P, P1. The inner peripheral surface of the cylindrical body 17 is connected to the inner peripheral surface by heat fusion.
[0017]
[Second embodiment]
In the first embodiment, the connection structure of the fluid transport pipe of the present invention is adopted for connection between the fluid transport pipe P and the flange joint F which is an example of the object side. As shown in FIG. 5, the fluid transport pipe P may be used for connection with the pipe connection port 1 of a T-type pipe T made of cast iron, which is an example of the connected body side. In this case, the pipe connection port 1 of the T-shaped pipe T is configured in the same manner as the pipe connection port 1 of the flange joint F of the first embodiment, and is the same as the component described in the first embodiment. The components having the same structure or the same function are assigned the same reference numerals as in the first embodiment, and the description thereof is omitted.
[Other embodiments]
{Circle around (1)} In the first embodiment described above, the two fluid transport pipes P are connected via the flange joint F, which is an example of the connected object side, connected to the fluid transport pipe P with the fluid transport pipe connection structure of the present invention. , And P are described by way of example, but as shown in FIG. 6, the connecting flange 2 of the flange joint F, which is an example of the connected body side, and the pipe connecting portion 18 of the gate valve V are formed. The connecting flange 19 may be fastened with bolts 14 and nuts 15 to connect and connect the gate valve V to the fluid transport pipe P. Although not shown, the connecting flange 2 of the flange joint F and the cast iron The bolts and nuts are used to fasten the connection flange integrally formed on the pipe shaft core opening side end of the fluid transport pipe made of stainless steel with the fluid transport pipe made of synthetic resin and the fluid transport pipe made of cast iron. May be.
{Circle around (2)} The connected object side is not limited to the flange joint F or the T-shaped pipe T, but may be cast iron or poly steel if the pipe connection port 1 is provided. A bent pipe made of vinyl chloride or the like, a gate valve, a branch valve, or the like may be used.
{Circle around (3)} In each of the above-described embodiments, a water pipe is exemplified as the fluid transport pipe P. However, the present invention is not limited to this, and the fluid transport pipe P may be a gas pipe, an oil transport pipe, or the like.
{Circle around (4)} In each of the embodiments described above, the fluid transport pipe P made of polyethylene is exemplified as the fluid transport pipe P made of synthetic resin. However, the fluid transport pipe P is not limited to this. Is also good.
{Circle around (5)} In each of the above embodiments, the pipe connection port 1 is made of cast iron. However, the material of the pipe connection port 1 is limited to cast iron if the material is higher in strength than the fluid transport pipe P. It is not done.
{Circle around (6)} In each of the above-described embodiments, the wall thickness in the pipe radial direction of the pipe peripheral wall of the portion corresponding to the valley portion of the male screw part 7 of the male screw part forming part 8 (the pipe peripheral wall of the male screw part forming part 8) The minimum wall thickness t1 in the radial direction) may be the same as the wall thickness t2 of the pipe peripheral wall other than the pipe connection region of the fluid transport pipe P.
{Circle around (7)} In each of the above-described embodiments, the portion of the inner peripheral surface of the pipe connection port 1 located on the inner side of the female screw section 3 is connected to the connection side of the fluid transport pipe P with respect to the pipe connection port 1. The two elastic sealing materials 5a and 5b for sealing, which are compressed radially outward with the screwing, are installed, but the number of elastic sealing materials is not limited to two, and if necessary. It may be changed as appropriate.
{Circle around (8)} In each of the above embodiments, the reinforcing cylinder 12 is made of stainless steel, but the material of the reinforcing cylinder 12 is higher in shear stress than the fluid transport pipe P, that is, the material of the fluid transport pipe P. For example, when the fluid transport pipe P is made of polyethylene, the reinforcing cylinder 12 may be made of polyvinyl chloride or polyacetal, which is stronger than polyethylene.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of a connection structure for a fluid transport pipe of the present invention. FIG. 2 is a sectional view taken along the line II-II of FIG. 1. FIG. 3 is an exploded sectional perspective view. FIG. 5 is a cross-sectional view showing a state in which two fluid transport pipes are connected to each other via a pipe. FIG. 5 is a partial cross-sectional view showing a second embodiment of the fluid transport pipe connection structure of the present invention. FIG. 7 is a partial cross-sectional view showing a state in which a gate valve is communicatively connected to a fluid transport pipe via a joint flange in the first embodiment of the connection structure shown in FIG. Description】
P Fluid transport pipe t1 Thickness (minimum thickness)
t2 Thickness 1 Pipe connection port 3 Female thread 5a Elastic sealing material 5b Elastic sealing material 7 Male thread 8 Male thread forming location 10 Stopper 12 Reinforcing cylinder

Claims (3)

合成樹脂製の流体輸送管の外周面に、被接続体側の管接続口部の内周面に形成した雌ネジ部に螺合する雄ネジ部を突出形成し、この雄ネジ部形成箇所の管周壁の最小肉厚を、前記流体輸送管の管接続領域以外の管周壁の肉厚と同一又はそれよりも大に構成するとともに、前記流体輸送管の内周面のうち、前記雄ネジ部形成箇所に相当する部位の少なくとも一部には、補強筒体を密着状態で挿入し、更に、流体輸送管の外周面には、流体輸送管の雄ネジ部を管接続口部の雌ネジ部の所定位置にまで螺合したとき、管接続口部の端面に対して管軸芯方向から接当するストッパー部と、流体輸送管を回転操作するための突起とが、雄ネジ部に連続する状態で形成されている流体輸送管の接続構造。On the outer peripheral surface of the fluid transfer pipe made of synthetic resin, a male screw part to be screwed with a female screw part formed on the inner peripheral surface of the pipe connection port part on the connected body side is formed so as to protrude. The minimum thickness of the peripheral wall is equal to or larger than the thickness of the pipe peripheral wall other than the pipe connection region of the fluid transport pipe, and the external thread portion is formed on the inner peripheral surface of the fluid transport pipe. At least a part of the portion corresponding to the location, a reinforcing cylindrical body is inserted in close contact with the portion, and further, on the outer peripheral surface of the fluid transport tube, a male thread portion of the fluid transport tube is provided with a female thread portion of the pipe connection port portion. When screwed to a predetermined position, a stopper that contacts the end face of the pipe connection port from the pipe axis direction and a projection for rotating the fluid transport pipe are connected to the male screw section. The connection structure of the fluid transport pipe formed of . 前記ストッパー部と回転操作用突起とが周方向で交互に配設されている請求項1記載の流体輸送管の接続構造。The connection structure for a fluid transport pipe according to claim 1, wherein the stopper portions and the rotation operation protrusions are alternately arranged in a circumferential direction . 前記ストッパー部が、管接続口部の外周面よりも径方向外方に突出形成されている請求項1記載の流体輸送管の接続構造。The connection structure for a fluid transport pipe according to claim 1 , wherein the stopper portion is formed so as to project radially outward from an outer peripheral surface of the pipe connection port .
JP28380196A 1996-10-25 1996-10-25 Connection structure of fluid transport pipe Expired - Lifetime JP3541107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28380196A JP3541107B2 (en) 1996-10-25 1996-10-25 Connection structure of fluid transport pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28380196A JP3541107B2 (en) 1996-10-25 1996-10-25 Connection structure of fluid transport pipe

Publications (2)

Publication Number Publication Date
JPH10132172A JPH10132172A (en) 1998-05-22
JP3541107B2 true JP3541107B2 (en) 2004-07-07

Family

ID=17670326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28380196A Expired - Lifetime JP3541107B2 (en) 1996-10-25 1996-10-25 Connection structure of fluid transport pipe

Country Status (1)

Country Link
JP (1) JP3541107B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5684682B2 (en) * 2011-09-21 2015-03-18 日立アプライアンス株式会社 Pipe joint connection structure

Also Published As

Publication number Publication date
JPH10132172A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP3948818B2 (en) Fixing structure for pipe fittings
US4779900A (en) Segmented pipe joint retainer glands
RU2404390C2 (en) Hydraulic coupling
US4896903A (en) Segmented pipe joint retainer glands
AU651537B2 (en) Pipe coupling clamp with bolt pads and linear extending lugs
JP4901393B2 (en) Detachment prevention structure for pipe joints
US5383496A (en) Coupling with offset closure
JP4897268B2 (en) Detachment prevention structure for pipe joints and method for strengthening prevention of detachment of pipe joints
US6086111A (en) Pipe coupling
US5765876A (en) Pipe coupling requiring low closing force
WO2000057093A1 (en) Pipe joint and pipe body connected with the pipe joint
JPH0461237B2 (en)
JP3541107B2 (en) Connection structure of fluid transport pipe
JP3822021B2 (en) Pipe joint connection method and pipe joint structure
JP4638798B2 (en) Detachment prevention structure for pipe joints and method for strengthening prevention of detachment of pipe joints
JP3929187B2 (en) Pipe joint structure
JPH074958U (en) Annular packing
KR100453736B1 (en) Closed pipe connecting device
JPH04145287A (en) Flange structure
JPH0996387A (en) Pipe connecting structure
JP7427322B2 (en) Pipe fitting separation prevention structure
JPS6383488A (en) Pipe joint
JPH11108267A (en) Pipe joint
JPH0514072Y2 (en)
JPH045832Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term