JP3539294B2 - Fuel injection valve for internal combustion engine - Google Patents

Fuel injection valve for internal combustion engine Download PDF

Info

Publication number
JP3539294B2
JP3539294B2 JP23442099A JP23442099A JP3539294B2 JP 3539294 B2 JP3539294 B2 JP 3539294B2 JP 23442099 A JP23442099 A JP 23442099A JP 23442099 A JP23442099 A JP 23442099A JP 3539294 B2 JP3539294 B2 JP 3539294B2
Authority
JP
Japan
Prior art keywords
valve
solenoid
armature
coil
opening drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23442099A
Other languages
Japanese (ja)
Other versions
JP2001059462A (en
Inventor
進 小島
秀人 花田
啓壮 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP23442099A priority Critical patent/JP3539294B2/en
Publication of JP2001059462A publication Critical patent/JP2001059462A/en
Application granted granted Critical
Publication of JP3539294B2 publication Critical patent/JP3539294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関用燃料噴射弁に関する。
【0002】
【従来の技術】
従来、アーマチュアと、アーマチュアを開弁駆動するために開弁駆動用電流が通電される開弁駆動用ソレノイドと、アーマチュアを閉弁駆動するために閉弁駆動用電流が通電される閉弁駆動用ソレノイドとを具備する内燃機関用燃料噴射弁が知られている。この種の内燃機関用燃料噴射弁の例としては、例えば特開平7−239050号公報の図12に記載されたものがある。
【0003】
【発明が解決しようとする課題】
ところが、特開平7−239050号公報には、開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと、閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置される点について開示されていない。従って、特開平7−239050号公報に記載された内燃機関用燃料噴射弁では、開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと、閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置し、閉弁駆動用ソレノイドに対する通電開始後の過渡時に発生する誘導起電力により、開弁駆動用ソレノイドに対する通電終了後に開弁駆動用ソレノイドに引き続き残留している磁気吸引力の消磁を促進せしめることができない。
【0004】
また、特開平7−198053号公報には、開弁駆動用ソレノイドに対する通電終了後に開弁駆動用ソレノイドに引き続き残留している磁気吸引力の消磁を促進せしめるための消磁用ソレノイドを設けた電磁制御弁が開示されている。
【0005】
ところが、特開平7−198053号公報に記載された電磁制御弁では、開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと、消磁用ソレノイドのコイルを流れる消磁用電流のアーマチュア軸線方向に対する向きであって消磁用電流通電時の定常状態におけるものとが逆方向になるように配置されている。従って、特開平7−198053号公報に記載された電磁制御弁では、消磁用ソレノイドに対する通電開始後の過渡時に発生する誘導起電力により、開弁駆動用ソレノイドに対する通電終了後に開弁駆動用ソレノイドに引き続き残留している磁気吸引力の消磁を促進せしめることができない。
【0006】
更に、特開平7−198053号公報に記載された電磁制御弁では、開弁駆動用ソレノイドがアーマチュアの長手方向一端に配置されているものの、消磁用ソレノイドが、アーマチュアの長手方向他端に配置されておらず、開弁駆動用ソレノイドと同様にアーマチュアの長手方向一端に配置されている。従って、特開平7−198053号公報に記載された電磁制御弁では、開弁駆動用ソレノイドによりアーマチュアを開弁駆動することができるものの、消磁用ソレノイドによってはアーマチュアを閉弁駆動することができない。
【0007】
前記問題点に鑑み、本発明は、開弁駆動用ソレノイドによる開弁駆動及び閉弁駆動用ソレノイドによる閉弁駆動を行うと共に、閉弁駆動用ソレノイドに対する通電開始後の過渡時に発生する誘導起電力により、開弁駆動用ソレノイドに対する通電終了後に開弁駆動用ソレノイドに引き続き残留している磁気吸引力の消磁を促進せしめ、閉弁応答性を向上させることができる内燃機関用燃料噴射弁を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明によれば、アーマチュアと、前記アーマチュアを開弁駆動するために開弁駆動用電流が通電される開弁駆動用ソレノイドと、前記アーマチュアを閉弁駆動するために閉弁駆動用電流が通電される閉弁駆動用ソレノイドとを具備する内燃機関用燃料噴射弁において、前記開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと、前記閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものとが同一方向とされ、一方のソレノイドのコイルを流れる電流であって過渡状態におけるものが発生する誘導起電力により、他方のソレノイドが発生している磁気の消磁が促進せしめられる内燃機関用燃料噴射弁が提供される。
【0009】
請求項1に記載の内燃機関用燃料噴射弁では、開弁駆動用ソレノイドに開弁駆動用電流が通電されることによりアーマチュアを開弁駆動することができると共に、閉弁駆動用ソレノイドに閉弁駆動用電流が通電されることによりアーマチュアを閉弁駆動することができる。更に、開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと、閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置され、一方のソレノイドのコイルを流れる電流であって過渡状態におけるものが発生する誘導起電力により、他方のソレノイドが発生している磁気の消磁が促進せしめられる。そのため、一方のソレノイドに対する通電の開始と他方のソレノイドに対する通電の終了とがほぼ同時期に行われる場合、通電を開始されたソレノイドのコイルを流れる電流であって過渡状態におけるものが発生する誘導起電力の向きは、通電を終了されたソレノイドのコイルを流れる電流であって過渡状態におけるものが発生する誘導起電力の向きと逆向きになり、それぞれの誘導起電力は互いに相殺しあうことになる。つまり、通電を開始されたソレノイドのコイルを流れる電流であって過渡状態におけるものが発生する誘導起電力により、他方のソレノイドが発生している磁気の消磁を促進せしめることができる。すなわち、通電が開始されたソレノイドのコイルを流れる電流であって定常状態におけるものが発生する磁束により他方のソレノイドが発生している磁気を消磁させる特開平7−198053号公報に記載されたものと異なり、通電が開始されたソレノイドのコイルを流れる電流の過渡時に他方のソレノイドが発生している磁気を消磁せしめることができる。それゆえ、例えば閉弁駆動用ソレノイドに対する通電の開始と開弁駆動用ソレノイドに対する通電の終了とがほぼ同時期に行われる場合、開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと、閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置されないものに比べ、閉弁応答性を向上させることができる。
【0010】
請求項2に記載の発明によれば、前記アーマチュアが単一のアーマチュアにより構成され、前記開弁駆動用ソレノイドが前記アーマチュアの長手方向一端に配置され、前記閉弁駆動用ソレノイドが前記アーマチュアの長手方向他端に配置され、前記閉弁駆動用ソレノイドに対する通電開始後の過渡時に発生する誘導起電力により、前記開弁駆動用ソレノイドに対する通電終了後に前記開弁駆動用ソレノイドに引き続き残留している磁気吸引力の消磁が促進せしめられる請求項1に記載の内燃機関用燃料噴射弁が提供される。
【0011】
請求項2に記載の内燃機関用燃料噴射弁では、開弁駆動用ソレノイドがアーマチュアの長手方向一端に配置されると共に閉弁駆動用ソレノイドがアーマチュアの長手方向他端に配置されるため、開弁駆動用ソレノイドによる開弁駆動及び閉弁駆動用ソレノイドによる閉弁駆動を確実に行うことができる。また、閉弁駆動用ソレノイドに対する通電開始後の過渡時に発生する誘導起電力により開弁駆動用ソレノイドに対する通電終了後に開弁駆動用ソレノイドに引き続き残留している磁気吸引力の消磁が促進せしめられるように、開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと、閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置される。そのため、開弁駆動用ソレノイドに対する通電開始後の定常時に発生する磁束により他方のソレノイドに引き続き残留している磁気吸引力の消磁を行うものと異なり、開弁駆動用ソレノイドに対する通電開始後の過渡時に開弁駆動用ソレノイドに引き続き残留している磁気吸引力の消磁を行うことができる。
【0016】
【発明の実施の形態】
以下、添付図面を用いて本発明の実施形態について説明する。
【0017】
図1は本発明の内燃機関用燃料噴射弁の一実施形態の部分断面側面図である。図1において、1はアーマチュア、2はアーマチュア1を開弁駆動するために開弁駆動用電流が通電される開弁駆動用ソレノイド、3はアーマチュア1を閉弁駆動するために閉弁駆動用電流が通電される閉弁駆動用ソレノイドである。4は噴孔、5は噴孔4を開閉するためにアーマチュア1に連結された弁体、6は本体パイプ、7は開弁駆動用ソレノイド2又は閉弁駆動用ソレノイド3により形成される磁路の一部を構成する磁路構成部材である。8は開弁駆動用ソレノイド2により形成される磁路と閉弁駆動用ソレノイド3により形成される磁路とが互いに重複してしまうのを阻止するために配置された非磁性体、9は燃料通路、10はアーマチュア1を閉弁方向(図1の左側)に付勢するためのスプリング、11は磁路がアーマチュア1内を通過するように磁路を規制するための非磁性部である。
【0018】
図2は開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものと比較して示した図である。詳細には、図2(a)は開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置した本実施形態の場合の図である。一方、図2(b)は本実施形態の場合(図2(a))と比較するために示した開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものとが逆方向になるように配置した場合の図である。
【0019】
図2(a)において、Lはアーマチュア軸線方向、12は開弁駆動用ソレノイド2のコイル、13は閉弁駆動用ソレノイド3のコイル、22は開弁駆動用ソレノイド2のコイル12を流れる開弁駆動用電流のアーマチュア軸線方向Lに対する向き、23は閉弁駆動用ソレノイド3のコイル13を流れる閉弁駆動用電流のアーマチュア軸線方向Lに対する向きである。32は開弁駆動用ソレノイド2のコイル12を流れる開弁駆動用電流の定常時に形成される磁束方向、33は閉弁駆動用ソレノイド3のコイル13を流れる閉弁駆動用電流の定常時に形成される磁束方向である。42は開弁駆動用ソレノイド2のコイル12を流れる開弁駆動用電流が減少する過渡時に発生する誘導起電力方向、43は閉弁駆動用ソレノイド3のコイル13を流れる閉弁駆動用電流が増加する過渡時に発生する誘導起電力方向である。尚、図1に示した参照番号と同一の参照番号は図1に示した部品又は部分と同一の部品又は部分を示している。また、図2(b)において、L’はアーマチュア軸線方向、101はアーマチュア、112は開弁駆動用ソレノイド102のコイル、113は閉弁駆動用ソレノイド103のコイル、122は開弁駆動用ソレノイド102のコイル112を流れる開弁駆動用電流のアーマチュア軸線方向L’に対する向き、123は閉弁駆動用ソレノイド103のコイル113を流れる閉弁駆動用電流のアーマチュア軸線方向L’に対する向きである。132は開弁駆動用ソレノイド102のコイル112を流れる開弁駆動用電流の定常時に形成される磁束方向、133は閉弁駆動用ソレノイド103のコイル113を流れる閉弁駆動用電流の定常時に形成される磁束方向である。142は開弁駆動用ソレノイド102のコイル112を流れる開弁駆動用電流が減少する過渡時に発生する誘導起電力方向、143は閉弁駆動用ソレノイド103のコイル113を流れる閉弁駆動用電流が増加する過渡時に発生する誘導起電力方向である。
【0020】
本実施形態の場合(図2(a))の効果を説明する前に、図3について説明する。図3は開弁駆動信号、閉弁駆動信号、開弁駆動用ソレノイドに流れる電流値、閉弁駆動用ソレノイドに流れる電流値及び弁体挙動と時間との関係を示したグラフである。これらの関係は、本実施形態の場合(図2(a))のみならず図2(b)に示した場合にも適用されるものである。図3に示すように、開弁駆動信号は時間T0にOFFからONに切り換えられ、時間T4にONからOFFに切り換えられる。一方、閉弁駆動信号は時間T5にOFFからONに切り換えられ、時間T9にONからOFFに切り換えられる。従って、開弁駆動用ソレノイドに流れる電流値は、時間T0から時間T1まで増加し、時間T1から時間T4まで一定値となる定常状態にあり、時間T4から時間T6まで減少する過渡状態にある。また、閉弁駆動用ソレノイドに流れる電流値は、時間T5から時間T7まで増加する過渡状態にあり、時間T7から時間T9まで一定値となる定常状態にあり、時間T9から時間T10まで減少する。開弁駆動用ソレノイドへの通電が開始されると開弁駆動用ソレノイドにはアーマチュアを開弁方向に吸引する磁気吸引力が発生し、それゆえ、弁体は時間T2〜時間T3に全閉位置から全開位置までスプリングの力に抗して移動する。一方、開弁駆動用ソレノイドへの通電が終了されると開弁駆動用ソレノイドがアーマチュアを開弁方向に吸引する磁気吸引力が消失し、アーマチュアはスプリングにより閉弁方向に付勢される。更に、閉弁駆動用ソレノイドへの通電が開始されると閉弁駆動用ソレノイドにはアーマチュアを閉弁方向に吸引する磁気吸引力が発生する。それゆえ、弁体は時間T9〜時間T10に全開位置から全閉位置まで移動する。
【0021】
図2(a)及び図3に示すように、本実施形態によれば、開弁駆動用ソレノイド2のコイル12を流れる開弁駆動用電流のアーマチュア軸線方向Lに対する向き22であって開弁駆動用電流通電時(時間T0〜時間T6)の定常状態(時間T1〜時間T4)におけるものは下向き(図2(a))とされる。更に、閉弁駆動用ソレノイド3のコイル13を流れる閉弁駆動用電流のアーマチュア軸線方向Lに対する向き23であって閉弁駆動用電流通電時(時間T5〜時間T10)の定常状態(時間T7〜時間T9)におけるものも下向き(図2(a))とされる。つまり、開弁駆動用ソレノイド2のコイル12を流れる開弁駆動用電流のアーマチュア軸線方向Lに対する向き22と閉弁駆動用ソレノイド3のコイル13を流れる閉弁駆動用電流のアーマチュア軸線方向Lに対する向き23とは同一方向とされる。
【0022】
そのため、閉弁駆動用ソレノイド3に対する通電の開始(時間T5)と開弁駆動用ソレノイド2に対する通電の終了(時間T4)とがほぼ同時期に行われる場合、通電を開始された閉弁駆動用ソレノイド3のコイル13を流れる電流であって過渡状態(時間T5〜時間T7)におけるものが発生する誘導起電力方向43は、通電を終了された開弁駆動用ソレノイド2のコイル12を流れる電流であって過渡状態(時間T4〜時間T6)におけるものが発生する誘導起電力方向42と逆向きになり、それぞれの誘導起電力は互いに相殺しあうことになる。つまり、通電を開始された閉弁駆動用ソレノイド3のコイル13を流れる電流であって過渡状態(時間T5〜時間T7)におけるものが発生する誘導起電力により、他方の開弁駆動用ソレノイド2が発生している磁気吸引力の消磁を促進せしめることができる。すなわち、通電が開始された消磁用ソレノイドのコイルを流れる電流であって定常状態(時間T7〜時間T9)におけるものが発生する磁束により他方の開弁駆動用ソレノイドが発生している磁気吸引力を消磁させる特開平7−198053号公報に記載されたものと異なり、通電が開始された閉弁駆動用ソレノイド3のコイル13を流れる電流の過渡時(時間T5〜時間T7)に他方の開弁駆動用ソレノイド2が発生している磁気吸引力を消磁せしめることができる。
【0023】
図2(b)に示した場合においては、開弁駆動用ソレノイド102のコイル112を流れる開弁駆動用電流のアーマチュア軸線方向L’に対する向き122であって開弁駆動用電流通電時(時間T0〜時間T6)の定常状態(時間T1〜時間T4)におけるものは下向き(図2(b))とされる。一方、閉弁駆動用ソレノイド103のコイル113を流れる閉弁駆動用電流のアーマチュア軸線方向L’に対する向き123であって閉弁駆動用電流通電時(時間T5〜時間T10)の定常状態(時間T7〜時間T9)におけるものは上向き(図2(b))とされる。つまり、開弁駆動用ソレノイド102のコイル112を流れる開弁駆動用電流のアーマチュア軸線方向L’に対する向き122と閉弁駆動用ソレノイド103のコイル113を流れる閉弁駆動用電流のアーマチュア軸線方向L’に対する向き123とは逆向きとされる。
【0024】
そのため、閉弁駆動用ソレノイド103に対する通電の開始(時間T5)と開弁駆動用ソレノイド102に対する通電の終了(時間T4)とがほぼ同時期に行われる場合、通電を開始された閉弁駆動用ソレノイド103のコイル113を流れる電流であって過渡状態(時間T5〜時間T7)におけるものが発生する誘導起電力方向143は、通電を終了された開弁駆動用ソレノイド102のコイル112を流れる電流であって過渡状態(時間T4〜時間T6)におけるものが発生する誘導起電力方向142と同一方向になり、それぞれの誘導起電力は互いに強められることになる。つまり、通電を開始された閉弁駆動用ソレノイド103のコイル113を流れる電流であって過渡状態(時間T5〜時間T7)におけるものが発生する誘導起電力により、他方の開弁駆動用ソレノイド102が発生している磁気吸引力の消磁が妨げられてしまう。つまり、他方の開弁駆動用ソレノイド102が発生している磁気吸引力の消磁が遅延せしめられてしまう。
【0025】
図4は開弁駆動信号がONからOFFに切り換えられてから閉弁駆動信号がOFFからONに切り換えられるまでに要する時間(T5−T4)と開弁駆動信号がONからOFFに切り換えられてから弁体が全閉位置に位置するまでに要する時間Tc(=T8−T4)との関係を示したグラフである。図4に示すように、開弁駆動信号がONからOFFに切り換えられてから閉弁駆動信号がOFFからONに切り換えられるまでに要する時間(T5−T4)を多少変化させても、開弁駆動信号がONからOFFに切り換えられてから弁体が全閉位置に位置するまでに要する時間Tc(=T8−T4)は、常に本実施形態の場合(図2(a))の方が図2(b)に示した場合よりも短くなる。つまり、本実施形態の場合(図2(a))のように開弁駆動用ソレノイド2のコイル12を流れる開弁駆動用電流のアーマチュア軸線方向Lに対する向き22であって開弁駆動用電流通電時の定常状態におけるものと、閉弁駆動用ソレノイド3のコイル13を流れる閉弁駆動用電流のアーマチュア軸線方向Lに対する向き23であって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置することにより、図2(b)に示した場合のように開弁駆動用ソレノイド102のコイル112を流れる開弁駆動用電流のアーマチュア軸線方向L’に対する向き122であって開弁駆動用電流通電時の定常状態におけるものと閉弁駆動用ソレノイド103のコイル113を流れる閉弁駆動用電流のアーマチュア軸線方向L’に対する向き123であって閉弁駆動用電流通電時の定常状態におけるものとが逆方向になるように配置するよりも、開弁駆動信号がONからOFFに切り換えられてから弁体が全閉位置に位置するまでに要する時間Tc(=T8−T4)を短くすることができる、すなわち、閉弁応答性を向上させることができる。尚、図4に示すように、閉弁応答性は、閉弁駆動信号がOFFからONに切り換えられる時間T5を開弁駆動信号がONからOFFに切り換えられる時間T4よりも若干早めた場合に最適となる。
【0026】
要約すると、本実施形態によれば、まず第一に、開弁駆動用ソレノイド2に開弁駆動用電流が通電されることによりアーマチュア1を開弁駆動することができるだけでなく、閉弁駆動用ソレノイド3に閉弁駆動用電流が通電されることによりアーマチュア1を閉弁駆動することができる。つまり、本実施形態によれば、閉弁駆動用ソレノイドが設けられていない場合に比べ、閉弁応答性を向上させることができる。また、閉弁駆動用ソレノイドを設けることにより、スプリング10の力を低減することができ、最高作動燃圧を向上させることができる。
【0027】
第二に、閉弁駆動用ソレノイド3に対する通電の開始(時間T5)と開弁駆動用ソレノイド2に対する通電の終了(時間T4〜時間T6)とがほぼ同時期に行われる場合、開弁駆動用ソレノイド102のコイル112を流れる開弁駆動用電流のアーマチュア軸線方向L’に対する向き122であって開弁駆動用電流通電時の定常状態におけるものと、閉弁駆動用ソレノイド103のコイル113を流れる閉弁駆動用電流のアーマチュア軸線方向L’に対する向き123であって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置されないもの(図2(b))に比べ、閉弁応答性を向上させ、ダイナミックレンジを向上させることができる。
【0028】
第三に、通電が開始された消磁用ソレノイドのコイルを流れる電流であって定常状態におけるものが発生する磁束により他方の開弁駆動用ソレノイドが発生している磁気吸引力を消磁させる特開平7−198053号公報に記載されたものと異なり、通電が開始された閉弁駆動用ソレノイド3のコイル13を流れる電流の過渡時(時間T5〜時間T7)に他方の開弁駆動用ソレノイド2が発生している磁気吸引力を消磁せしめることができる。つまり、本実施形態によれば、閉弁駆動用ソレノイド3のコイル13を流れる電流の定常時ではなく過渡時(時間T5〜時間T7)に開弁駆動用ソレノイド2が発生している磁気吸引力を消磁せしめることができる。
【0029】
更に本実施形態によれば、開弁駆動用ソレノイド2がアーマチュア1の長手方向一端に配置されると共に閉弁駆動用ソレノイド3がアーマチュア1の長手方向他端に配置されるため、例えば開弁駆動用ソレノイド及び閉弁駆動用ソレノイドがアーマチュアの長手方向同一位置に配置される場合に比べ、開弁駆動用ソレノイド2による開弁駆動及び閉弁駆動用ソレノイド3による閉弁駆動を確実に行うことができる。
【0030】
更に本実施形態によれば、一方のソレノイド3のコイル13を流れる電流であって過渡状態におけるものが発生する誘導起電力により他方のソレノイド2が発生している磁気吸引力の消磁が促進せしめられるように、開弁駆動用ソレノイド2のコイル12を流れる開弁駆動用電流のアーマチュア軸線方向Lに対する向き22であって開弁駆動用電流通電時の定常状態におけるものと、閉弁駆動用ソレノイド3のコイル13を流れる閉弁駆動用電流のアーマチュア軸線方向Lに対する向き23であって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置される。そのため、一方のソレノイドのコイルを流れる電流であって定常状態におけるものが発生する磁束により他方のソレノイドが発生している磁気の消磁を行うもの(特開平7−198053号)と異なり、一方のソレノイド3のコイル13を流れる電流の過渡時に他方のソレノイド2が発生している磁気の消磁を行うことができる。
【0031】
更に本実施形態によれば、閉弁駆動用ソレノイド3に対する通電開始後の過渡時に発生する誘導起電力により開弁駆動用ソレノイド2に対する通電終了後に開弁駆動用ソレノイド2に引き続き残留している磁気吸引力の消磁が促進せしめられるように、開弁駆動用ソレノイド2のコイル12を流れる開弁駆動用電流のアーマチュア軸線方向Lに対する向き22であって開弁駆動用電流通電時の定常状態におけるものと、閉弁駆動用ソレノイド3のコイル13を流れる閉弁駆動用電流のアーマチュア軸線方向Lに対する向き23であって閉弁駆動用電流通電時の定常状態におけるものとが同一方向になるように配置される。そのため、開弁駆動用ソレノイドに対する通電開始後の定常時に発生する磁束により他方のソレノイドに引き続き残留している磁気吸引力の消磁を行うもの(特開平7−198053号)と異なり、開弁駆動用ソレノイド2に対する通電開始後の過渡時に開弁駆動用ソレノイド2に引き続き残留している磁気吸引力の消磁を行うことができる。
【0032】
【発明の効果】
請求項1に記載の発明によれば、アーマチュアを開弁駆動することができると共にアーマチュアを閉弁駆動することができる。更に、一方のソレノイドのコイルを流れる電流であって定常状態におけるものが発生する磁束により他方のソレノイドが発生している磁気の消磁を行うものと異なり、一方のソレノイドのコイルを流れる電流の過渡時に他方のソレノイドが発生している磁気の消磁を行うことができ、閉弁応答性を向上させることができる。
【0033】
請求項2に記載の発明によれば、開弁駆動用ソレノイドによる開弁駆動及び閉弁駆動用ソレノイドによる閉弁駆動を確実に行うことができる。また、開弁駆動用ソレノイドに対する通電開始後の定常時に発生する磁束により他方のソレノイドに引き続き残留している磁気吸引力の消磁を行うものと異なり、開弁駆動用ソレノイドに対する通電開始後の過渡時に開弁駆動用ソレノイドに引き続き残留している磁気吸引力の消磁を行うことができる。
【図面の簡単な説明】
【図1】本発明の内燃機関用燃料噴射弁の一実施形態の部分断面側面図である。
【図2】開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものと比較して示した図である。
【図3】開弁駆動信号、閉弁駆動信号、開弁駆動用ソレノイドに流れる電流値、閉弁駆動用ソレノイドに流れる電流値及び弁体挙動と時間との関係を示したグラフである。
【図4】開弁駆動信号がONからOFFに切り換えられてから閉弁駆動信号がOFFからONに切り換えられるまでに要する時間(T5−T4)と開弁駆動信号がONからOFFに切り換えられてから弁体が全閉位置に位置するまでに要する時間Tc(=T8−T4)との関係を示したグラフである。
【符号の説明】
1…アーマチュア
2…開弁駆動用ソレノイド
3…閉弁駆動用ソレノイド
12…開弁駆動用ソレノイドのコイル
13…閉弁駆動用ソレノイドのコイル
22…開弁駆動用電流のアーマチュア軸線方向に対する向き
23…閉弁駆動用電流のアーマチュア軸線方向に対する向き
L…アーマチュア軸線方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection valve for an internal combustion engine.
[0002]
[Prior art]
Conventionally, an armature, a valve-opening drive solenoid in which a valve-opening drive current is supplied to drive the armature to open, and a valve-closing drive in which a valve-opening drive current is supplied to close the armature A fuel injection valve for an internal combustion engine including a solenoid is known. As an example of this type of fuel injection valve for an internal combustion engine, there is one described in FIG. 12 of JP-A-7-239050.
[0003]
[Problems to be solved by the invention]
However, Japanese Patent Application Laid-Open No. 7-239050 discloses that the direction of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid with respect to the direction of the armature axis and in the steady state when the valve-opening drive current is supplied, It is disclosed that the direction of the valve-closing drive current flowing through the coil of the valve drive solenoid with respect to the armature axis direction is arranged such that it is in the same direction as that in the steady state when the valve-closing drive current is supplied. Absent. Therefore, in the fuel injection valve for an internal combustion engine described in JP-A-7-239050, the direction of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid with respect to the armature axis direction, The direction of the valve-closing drive current flowing through the coil of the valve-closing drive solenoid with respect to the direction of the armature axis in the steady state at the time is the same as that in the steady state when the valve-closing drive current is supplied. And the induced electromotive force generated during the transition after the energization of the valve-closing drive solenoid is started promotes demagnetization of the magnetic attraction force remaining in the valve-opening drive solenoid after energization of the valve-opening drive solenoid I can't let it go.
[0004]
Japanese Patent Application Laid-Open No. Hei 7-198053 discloses an electromagnetic control provided with a degaussing solenoid for promoting degaussing of a magnetic attraction force remaining in the valve opening driving solenoid after the energization of the valve opening driving solenoid. A valve is disclosed.
[0005]
However, in the electromagnetic control valve described in Japanese Patent Application Laid-Open No. 7-198053, the direction of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid with respect to the armature axis direction and the steady state when the valve-opening drive current is supplied It is arranged so that the direction in the state and the direction of the demagnetizing current flowing through the coil of the degaussing solenoid with respect to the direction of the armature axis in the steady state when the demagnetizing current flows are opposite to each other. Therefore, in the electromagnetic control valve described in Japanese Patent Application Laid-Open No. 7-198053, the induced electromotive force generated during the transition after the energization of the demagnetizing solenoid is started causes the solenoid to be opened and closed after the energization of the solenoid for opening and closing is completed. The demagnetization of the magnetic attraction force remaining thereafter cannot be promoted.
[0006]
Furthermore, in the electromagnetic control valve described in Japanese Patent Application Laid-Open No. 7-198053, although the solenoid for valve opening drive is arranged at one end in the longitudinal direction of the armature, the solenoid for degaussing is arranged at the other end in the longitudinal direction of the armature. It is arranged at one end in the longitudinal direction of the armature similarly to the solenoid for valve-opening drive. Therefore, in the electromagnetic control valve described in Japanese Patent Application Laid-Open No. 7-198053, although the armature can be driven to be opened by the valve-opening solenoid, the armature cannot be driven to be closed by the demagnetizing solenoid.
[0007]
In view of the above problems, the present invention provides a valve opening drive by a valve opening drive solenoid and a valve closing drive by a valve closing drive solenoid, and an induced electromotive force generated during a transient after the start of energization to the valve closing drive solenoid. Accordingly, the present invention provides a fuel injection valve for an internal combustion engine capable of promoting demagnetization of a magnetic attraction force remaining in the valve-opening drive solenoid after energization of the valve-opening drive solenoid and improving valve-closing responsiveness. The purpose is to:
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, an armature, a valve-opening drive solenoid to which a valve-opening drive current is supplied to open and drive the armature, and a valve-closed valve to close-drive the armature A fuel injection valve for an internal combustion engine including a valve-closing drive solenoid to which a drive current is supplied, wherein the valve-opening drive current flowing through the coil of the valve-opening drive solenoid is oriented in the direction of the armature axis, and the valve is opened. The one in the steady state when the drive current is supplied and the one in the steady state when the valve closing drive current flowing through the coil of the valve closing drive solenoid is in the direction of the armature axis and the valve closing drive current is supplied. In the same directionThe demagnetization of the magnetism generated by the other solenoid is promoted by the induced electromotive force generated by the current flowing through the coil of one solenoid in the transient state.A fuel injector for an internal combustion engine is provided.
[0009]
In the fuel injection valve for an internal combustion engine according to the first aspect of the present invention, the armature can be driven to open by energizing the valve-opening drive solenoid with the valve-opening drive current, and the valve-closed drive solenoid is closed. When the driving current is supplied, the armature can be driven to close the valve. Further, the direction of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid with respect to the armature axis direction in a steady state when the valve-opening drive current is applied, and the valve closing of the valve-closing drive solenoid flowing through the coil of the valve-opening drive solenoid It is arranged so that the direction of the drive current with respect to the armature axis direction is the same as that in the steady state when the valve-closing drive current is supplied.The demagnetization of the magnetism generated by the other solenoid is promoted by the induced electromotive force generated by the current flowing through the coil of one solenoid in the transient state.. Therefore, when the start of energization of one solenoid and the end of energization of the other solenoid are performed at about the same time, an induction current that occurs in a transient state in the current flowing through the coil of the energized solenoid. The direction of the electric power is opposite to the direction of the induced electromotive force generated in the transient state, which is the current flowing through the coil of the solenoid that has been de-energized, and the respective induced electromotive forces cancel each other. . In other words, the demagnetization of the magnetism generated by the other solenoid can be promoted by the induced electromotive force generated by the current flowing through the solenoid coil that has been energized and in the transient state. That is, a current flowing through a coil of a solenoid that has been energized and a magnetic flux generated in a steady state demagnetizes the magnetism generated by the other solenoid, as described in JP-A-7-198053. In contrast, the magnetism generated by the other solenoid can be demagnetized during the transition of the current flowing through the solenoid coil when energization is started. Therefore, for example, when the start of energization of the valve-closing drive solenoid and the end of energization of the valve-opening drive solenoid are performed at substantially the same time, the armature axis of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid is used. Direction in the steady state when the valve-opening drive current is applied, and when the valve-closing drive current flowing through the coil of the valve-close drive solenoid is in the direction of the armature axis and the valve-opening drive current is applied. The valve closing responsiveness can be improved as compared with the case where the device is not arranged in the same direction as that in the steady state.
[0010]
According to the second aspect of the present invention, the armature is formed of a single armature, the valve-opening drive solenoid is disposed at one longitudinal end of the armature, and the valve-closing drive solenoid is provided in the longitudinal direction of the armature. Placed at the other end in the directionThe induced electromotive force generated during the transient after the energization of the valve-closing drive solenoid is started promotes the demagnetization of the magnetic attraction force remaining in the valve-opening drive solenoid after the energization of the valve-opening drive solenoid. BeA fuel injection valve for an internal combustion engine according to claim 1 is provided.
[0011]
In the fuel injection valve for an internal combustion engine according to the second aspect, the valve opening drive solenoid is disposed at one longitudinal end of the armature and the valve closing drive solenoid is disposed at the other longitudinal end of the armature. The valve opening drive by the drive solenoid and the valve closing drive by the valve closing drive solenoid can be reliably performed.In addition, the induced electromotive force generated during a transition after the energization of the valve-closing drive solenoid is started can promote demagnetization of the magnetic attraction force remaining in the valve-opening drive solenoid after the energization of the valve-opening drive solenoid is completed. The direction of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid with respect to the armature axis direction in the steady state when the valve-opening drive current is applied, and the valve closing through the valve-opening drive solenoid coil The direction of the drive current with respect to the armature axis direction is the same as that in the steady state when the valve-closing drive current is supplied. Therefore, unlike magnetic flux generated in the steady state after the start of energization of the valve-opening drive solenoid, the magnetic attraction force remaining in the other solenoid is demagnetized. It is possible to demagnetize the magnetic attraction force remaining in the valve opening drive solenoid.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0017]
FIG. 1 is a partial sectional side view of an embodiment of the fuel injection valve for an internal combustion engine of the present invention. In FIG. 1, reference numeral 1 denotes an armature, 2 denotes a valve-opening drive solenoid through which a valve-opening drive current is applied to open and drive the armature 1, and 3 denotes a valve-closing drive current to drive the armature 1 to close. Is a solenoid for valve closing drive to be energized. Reference numeral 4 denotes an injection hole, 5 denotes a valve body connected to the armature 1 for opening and closing the injection hole 4, 6 denotes a main body pipe, 7 denotes a magnetic path formed by a valve opening drive solenoid 2 or a valve closing drive solenoid 3. Is a magnetic path constituting member constituting a part of the magnetic path. Numeral 8 denotes a non-magnetic member arranged to prevent a magnetic path formed by the valve-opening drive solenoid 2 and a magnetic path formed by the valve-closing drive solenoid 3 from overlapping each other, and 9 denotes a fuel. The passage 10 is a spring for urging the armature 1 in the valve closing direction (left side in FIG. 1), and the reference numeral 11 is a non-magnetic portion for regulating the magnetic path so that the magnetic path passes through the inside of the armature 1.
[0018]
FIG. 2 shows the direction of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid with respect to the direction of the armature axis in a steady state when the valve-opening drive current flows, and the valve closing through the valve-closing drive solenoid. FIG. 5 is a diagram showing a direction of a driving current with respect to an armature axis direction, which is compared with a direction in a steady state when a valve closing driving current is supplied. Specifically, FIG. 2A shows the direction of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid with respect to the direction of the armature axis. FIG. 9 is a diagram of the present embodiment in which the direction of the valve-closing drive current flowing through the solenoid coil with respect to the armature axis direction is the same as that in the steady state when the valve-closing drive current is applied, in the steady state. . On the other hand, FIG. 2B shows the direction of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid shown in the present embodiment (FIG. 2A) for comparison with the armature axis direction. The one in the steady state when the valve-opening drive current is applied and the one in the steady state when the valve-closing drive current flowing through the coil of the valve-closing drive solenoid is oriented in the direction of the armature axis and the valve-closing drive current is applied. It is a figure in the case of arrange | positioning so that it may become a reverse direction.
[0019]
In FIG. 2 (a), L is the axial direction of the armature, 12 is the coil of the solenoid 2 for driving the valve opening, 13 is the coil of the solenoid 3 for driving the valve closing, and 22 is the valve opening which flows through the coil 12 of the solenoid 2 for driving the valve opening. The direction 23 of the drive current with respect to the armature axis direction L is the direction of the valve closing drive current flowing through the coil 13 of the valve closing drive solenoid 3 with respect to the armature axis direction L. Reference numeral 32 denotes a magnetic flux direction formed when the valve-opening drive current flowing through the coil 12 of the valve-opening drive solenoid 2 is steady. Reference numeral 33 denotes a magnetic flux direction formed when the valve-closing drive current flowing through the coil 13 of the valve-close drive solenoid 3 is steady. Magnetic flux direction. Reference numeral 42 denotes an induced electromotive force direction generated during a transition when the valve-opening drive current flowing through the coil 12 of the valve-opening drive solenoid 2 decreases, and 43 denotes an increase in valve-closing drive current flowing through the coil 13 of the valve-opening drive solenoid 3. This is the direction of the induced electromotive force that occurs at the time of the transient. Note that the same reference numerals as those shown in FIG. 1 indicate the same parts or parts as those shown in FIG. In FIG. 2B, L 'is the direction of the armature axis, 101 is the armature, 112 is the coil of the solenoid 102 for driving the valve opening, 113 is the coil of the solenoid 103 for driving the valve closing, and 122 is the solenoid 102 for driving the valve opening. Is the direction of the valve-opening drive current flowing through the coil 112 with respect to the armature axis direction L ′, and 123 is the direction of the valve-closing drive current flowing through the coil 113 of the valve-closing drive solenoid 103 with respect to the armature axis direction L ′. 132 is a magnetic flux direction formed when the valve-opening drive current flowing through the coil 112 of the valve-opening drive solenoid 102 is steady, and 133 is formed when the valve-closing drive current flowing through the coil 113 of the valve-opening drive solenoid 103 is steady. Magnetic flux direction. Reference numeral 142 denotes an induced electromotive force direction generated during a transition when the valve-opening drive current flowing through the coil 112 of the valve-opening drive solenoid 102 decreases, and 143 denotes an increase in valve-closing drive current flowing through the coil 113 of the valve-opening drive solenoid 103. This is the direction of the induced electromotive force that occurs at the time of the transient.
[0020]
Before describing the effects of the present embodiment (FIG. 2A), FIG. 3 will be described. FIG. 3 is a graph showing the relationship between the valve opening drive signal, the valve closing drive signal, the current value flowing through the valve opening driving solenoid, the current value flowing through the valve closing driving solenoid, and the behavior of the valve element and time. These relationships are applied not only in the case of the present embodiment (FIG. 2A) but also in the case shown in FIG. 2B. As shown in FIG. 3, the valve opening drive signal is switched from OFF to ON at time T0, and is switched from ON to OFF at time T4. On the other hand, the valve closing drive signal is switched from OFF to ON at time T5, and is switched from ON to OFF at time T9. Accordingly, the value of the current flowing through the valve-opening drive solenoid increases from time T0 to time T1, is in a steady state in which the value is constant from time T1 to time T4, and is in a transient state in which it decreases from time T4 to time T6. Further, the value of the current flowing through the valve-closing drive solenoid is in a transient state in which the current increases from time T5 to time T7, is in a steady state in which the value is constant from time T7 to time T9, and decreases from time T9 to time T10. When energization of the valve-opening drive solenoid is started, a magnetic attraction force is generated in the valve-opening drive solenoid to attract the armature in the valve-opening direction. Therefore, the valve body is in the fully closed position between time T2 and time T3. To the fully open position against the force of the spring. On the other hand, when the energization of the valve-opening drive solenoid is terminated, the magnetic attraction force for the valve-opening drive solenoid to attract the armature in the valve opening direction disappears, and the armature is urged in the valve closing direction by a spring. Furthermore, when energization of the valve-closing drive solenoid is started, a magnetic attraction force is generated in the valve-closing drive solenoid to attract the armature in the valve closing direction. Therefore, the valve body moves from the fully open position to the fully closed position between time T9 and time T10.
[0021]
As shown in FIGS. 2A and 3, according to the present embodiment, the valve-opening drive current flowing through the coil 12 of the valve-opening drive solenoid 2 has a direction 22 with respect to the armature axis direction L, and the valve-opening drive is performed. In the steady state (time T1 to time T4) at the time of application of the use current (time T0 to time T6), the state is downward (FIG. 2A). Further, the direction of the valve closing drive current flowing through the coil 13 of the valve closing drive solenoid 3 with respect to the armature axis direction L is 23 and the steady state (time T7 to time T10) when the valve closing drive current is supplied (time T5 to time T10). The one at the time T9) is also directed downward (FIG. 2A). That is, the direction 22 of the valve-opening drive current flowing through the coil 12 of the valve-opening drive solenoid 2 with respect to the armature axis direction L, and the direction of the valve-closing drive current flowing through the coil 13 of the valve-closing drive solenoid 3 with respect to the armature axis direction L. 23 and the same direction.
[0022]
Therefore, when the energization of the valve-closing drive solenoid 3 is started (time T5) and the energization of the valve-opening drive solenoid 2 is ended almost at the same time (time T4), the valve-closing drive for which the energization is started is started. The induced electromotive force direction 43 in which the current flowing through the coil 13 of the solenoid 3 and generated in the transient state (time T5 to time T7) is the current flowing through the coil 12 of the valve-opening solenoid 2 whose energization is terminated. Then, the direction of the induced electromotive force 42 generated in the transient state (time T4 to time T6) is opposite to each other, and the respective induced electromotive forces cancel each other. In other words, the current flowing through the coil 13 of the valve-closing drive solenoid 3 that has been energized is generated by the induced electromotive force generated in the transient state (time T5 to time T7), so that the other valve-opening drive solenoid 2 is activated. Demagnetization of the generated magnetic attraction can be promoted. That is, the magnetic attraction force generated by the other valve-opening drive solenoid by the magnetic flux generated in the steady state (time T7 to time T9), which is the current flowing through the coil of the demagnetizing solenoid that has been energized, is generated. Unlike the one described in Japanese Patent Application Laid-Open No. Hei 7-198053, in which the current is flowing through the coil 13 of the valve-closing drive solenoid 3 in which the energization is started, the other valve-opening drive is performed during the time (time T5 to time T7). The magnetic attraction generated by the solenoid 2 for use can be demagnetized.
[0023]
In the case shown in FIG. 2B, the direction 122 of the valve-opening drive current flowing through the coil 112 of the valve-opening drive solenoid 102 with respect to the armature axis direction L ′ and when the valve-opening drive current is applied (time T0) In the steady state (time T1 to time T4) from time T6 to time T6, the state is downward (FIG. 2B). On the other hand, the direction 123 of the valve closing drive current flowing through the coil 113 of the valve closing drive solenoid 103 with respect to the armature axis direction L ′ is in a steady state (time T7) when the valve closing drive current is supplied (time T5 to time T10). To (time T9) are directed upward (FIG. 2B). That is, the direction 122 of the valve-opening drive current flowing through the coil 112 of the valve-opening drive solenoid 102 with respect to the armature axis direction L ′, and the armature axis direction L ′ of the valve-closing drive current flowing through the coil 113 of the valve-closing drive solenoid 103. The direction 123 is opposite to the direction 123.
[0024]
Therefore, when the start of energization to the valve-closing drive solenoid 103 (time T5) and the end of energization to the valve-opening drive solenoid 102 (time T4) are performed at approximately the same time, the valve-closing drive for which energization is started is started. The induced electromotive force direction 143, which is a current flowing through the coil 113 of the solenoid 103 and is generated in a transient state (time T5 to time T7), is a current flowing through the coil 112 of the valve-opening drive solenoid 102 that has been de-energized. Therefore, the induced electromotive force is in the same direction as the induced electromotive force direction 142 in which the one in the transient state (time T4 to time T6) is generated, and the respective induced electromotive forces are strengthened with each other. In other words, the current flowing through the coil 113 of the valve-closing drive solenoid 103, which has been energized, is generated by the induced electromotive force generated in the transient state (time T5 to time T7). The demagnetization of the generated magnetic attraction is hindered. That is, the demagnetization of the magnetic attraction generated by the other valve-opening drive solenoid 102 is delayed.
[0025]
FIG. 4 shows the time (T5-T4) required from the time when the valve opening drive signal is switched from ON to OFF to the time when the valve closing drive signal is switched from OFF to ON, and the time after the valve opening drive signal is switched from ON to OFF. It is the graph which showed the relationship with time Tc (= T8-T4) required until a valve body was located in a fully closed position. As shown in FIG. 4, even if the time (T5−T4) required from when the valve opening drive signal is switched from ON to OFF to when the valve closing drive signal is switched from OFF to ON is slightly changed, the valve opening drive signal is changed. The time Tc (= T8−T4) required from when the signal is switched from ON to OFF to when the valve body is at the fully closed position is always the same as in FIG. 2A in the present embodiment (FIG. 2A). It becomes shorter than the case shown in FIG. That is, as in the case of the present embodiment (FIG. 2A), the direction of the valve-opening drive current flowing through the coil 12 of the valve-opening drive solenoid 2 with respect to the armature axis direction L is 22 and the valve-opening drive current is supplied. In a steady state when the valve closing drive current flowing through the coil 13 of the valve closing drive solenoid 3 is in the direction 23 with respect to the armature axis direction L, and in the steady state when the valve closing drive current is supplied. 2B, the direction 122 of the valve-opening drive current flowing through the coil 112 of the valve-opening drive solenoid 102 with respect to the armature axis direction L ′ as shown in FIG. 2B. The current in the steady state when the valve-opening drive current is applied and the valve-closing drive current flowing through the coil 113 of the valve-closing drive solenoid 103 in the armature axis direction L ′. Rather than in the normal direction when the valve-closing drive current is supplied, the valve is completely closed after the valve-opening drive signal is switched from ON to OFF. Can be shortened, that is, the valve closing responsiveness can be improved. As shown in FIG. 4, the valve closing response is optimal when the time T5 when the valve closing drive signal is switched from OFF to ON is slightly earlier than the time T4 when the valve opening drive signal is switched from ON to OFF. It becomes.
[0026]
In summary, according to the present embodiment, first, not only can the armature 1 be driven to open by supplying a valve-opening drive current to the valve-opening drive solenoid 2, but also the valve-closing drive The armature 1 can be driven to close by energizing the solenoid 3 with a valve closing drive current. That is, according to the present embodiment, the valve-closing responsiveness can be improved as compared with the case where the valve-closing drive solenoid is not provided. In addition, by providing the valve closing drive solenoid, the force of the spring 10 can be reduced, and the maximum operating fuel pressure can be improved.
[0027]
Second, when the start of energization of the valve-closing drive solenoid 3 (time T5) and the end of energization of the valve-opening drive solenoid 2 (time T4 to time T6) are performed almost simultaneously, The direction 122 of the valve-opening drive current flowing through the coil 112 of the solenoid 102 with respect to the armature axis direction L ′ in the steady state when the valve-opening drive current is applied, and the direction of closing the valve-opening drive solenoid 103 flowing through the coil 113. The direction 123 of the valve driving current with respect to the armature axis direction L ′, which is not arranged so as to be in the same direction as that in the steady state when the valve driving current is supplied (FIG. 2B). Valve responsiveness can be improved, and the dynamic range can be improved.
[0028]
Third, a current flowing through the coil of the degaussing solenoid that has been energized and demagnetizing the magnetic attraction generated by the other valve-opening drive solenoid by a magnetic flux generated in a steady state is disclosed in Japanese Patent Application Laid-Open No. H07-19764. Unlike the one described in Japanese Patent Application Publication No. 198053, the other valve-opening drive solenoid 2 is generated when the current flowing through the coil 13 of the valve-closure drive solenoid 3 is turned on (time T5 to time T7). This can demagnetize the magnetic attraction force. That is, according to the present embodiment, the magnetic attraction force generated by the valve-opening drive solenoid 2 at the time of transition (time T5 to time T7), but not at the time of steady state of the current flowing through the coil 13 of the valve-closing drive solenoid 3. Can be demagnetized.
[0029]
Further, according to the present embodiment, the valve opening drive solenoid 2 is disposed at one longitudinal end of the armature 1 and the valve closing drive solenoid 3 is disposed at the other longitudinal end of the armature 1. The valve-opening drive solenoid 2 and the valve-closing drive solenoid 3 make it possible to reliably perform the valve-closing drive and the valve-closing drive solenoid 3 as compared with the case where the solenoid for valve-closing and the solenoid for valve-closing drive are arranged at the same position in the longitudinal direction of the armature. it can.
[0030]
Further, according to the present embodiment, the demagnetization of the magnetic attraction force generated by the other solenoid 2 is promoted by the induced electromotive force generated in the transient state in the coil 13 of the one solenoid 3. As described above, the direction 22 of the valve-opening drive current flowing through the coil 12 of the valve-opening drive solenoid 2 with respect to the armature axis direction L in a steady state when the valve-opening drive current is applied is different from that in the steady state. The direction 23 of the valve closing drive current flowing through the coil 13 with respect to the armature axis direction L is arranged in the same direction as that in the steady state when the valve closing drive current is supplied. Therefore, unlike one in which the current flowing through the coil of one solenoid is demagnetized by the magnetic flux generated in the steady state and generated by the other solenoid (Japanese Patent Laid-Open No. 7-198053), When the current flowing through the third coil 13 transitions, the magnetism generated by the other solenoid 2 can be demagnetized.
[0031]
Furthermore, according to the present embodiment, the magnetic force remaining in the valve-opening drive solenoid 2 after the power-on to the valve-opening drive solenoid 2 is terminated by the induced electromotive force generated during the transition after the power-on to the valve-closing drive solenoid 3 is started. The direction 22 of the valve-opening drive current flowing through the coil 12 of the valve-opening drive solenoid 2 with respect to the armature axis direction L in a steady state when the valve-opening drive current is applied so that demagnetization of the attraction force is promoted. And the direction 23 of the valve-closing drive current flowing through the coil 13 of the valve-closing drive solenoid 3 with respect to the armature axis direction L, so that the direction is the same as that in the steady state when the valve-closing drive current is supplied. Is done. For this reason, unlike a valve in which the magnetic attraction force remaining in the other solenoid is demagnetized by a magnetic flux generated in a steady state after the energization of the valve-opening drive solenoid is started (Japanese Patent Laid-Open No. 7-198053), At the time of transition after the start of energization of the solenoid 2, the magnetic attraction force remaining in the valve-opening drive solenoid 2 can be demagnetized.
[0032]
【The invention's effect】
According to the first aspect of the present invention, the armature can be driven to open and the armature can be driven to close. Furthermore,Unlike the current flowing through the coil of one solenoid that demagnetizes the magnetism generated by the other solenoid by the magnetic flux generated in the steady state, the other current flows through the coil of one solenoid during the transition of the other. It can demagnetize the magnetism generated by the solenoid,Valve closing responsiveness can be improved.
[0033]
According to the second aspect of the invention, the valve opening drive by the valve opening drive solenoid and the valve closing drive by the valve closing drive solenoid can be reliably performed.Also, unlike magnetic flux generated in the steady state after the start of energization of the valve-opening drive solenoid, the magnetic attraction force remaining in the other solenoid is demagnetized. It is possible to demagnetize the magnetic attraction force remaining in the valve opening drive solenoid.
[Brief description of the drawings]
FIG. 1 is a partial sectional side view of one embodiment of a fuel injection valve for an internal combustion engine of the present invention.
FIG. 2 shows the orientation of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid in the steady state when the valve-opening drive current is applied and the direction of the valve-opening drive current flowing through the coil of the valve-opening drive solenoid. FIG. 5 is a diagram showing the direction of the valve driving current with respect to the armature axis direction, which is compared with that in a steady state when the valve closing driving current is supplied.
FIG. 3 is a graph showing a relationship between a valve opening drive signal, a valve closing drive signal, a current value flowing through a valve opening driving solenoid, a current value flowing through a valve closing driving solenoid, and valve behavior and time.
FIG. 4 is a graph showing the time required (T5-T4) from when the valve-opening drive signal is switched from ON to OFF to when the valve-closing drive signal is switched from OFF to ON, and when the valve-opening drive signal is switched from ON to OFF. 5 is a graph showing a relationship between the time Tc (= T8−T4) required until the valve element is located at the fully closed position from FIG.
[Explanation of symbols]
1 ... Armature
2. Solenoid for valve opening drive
3. Solenoid for valve closing drive
12 ... Coil of solenoid for valve opening drive
13 ... Coil of solenoid for valve closing drive
22: Direction of valve opening drive current to armature axis
23: Direction of the valve closing drive current with respect to the armature axis direction
L: Armature axial direction

Claims (2)

アーマチュアと、前記アーマチュアを開弁駆動するために開弁駆動用電流が通電される開弁駆動用ソレノイドと、前記アーマチュアを閉弁駆動するために閉弁駆動用電流が通電される閉弁駆動用ソレノイドとを具備する内燃機関用燃料噴射弁において、前記開弁駆動用ソレノイドのコイルを流れる開弁駆動用電流のアーマチュア軸線方向に対する向きであって開弁駆動用電流通電時の定常状態におけるものと、前記閉弁駆動用ソレノイドのコイルを流れる閉弁駆動用電流のアーマチュア軸線方向に対する向きであって閉弁駆動用電流通電時の定常状態におけるものとが同一方向とされ、一方のソレノイドのコイルを流れる電流であって過渡状態におけるものが発生する誘導起電力により、他方のソレノイドが発生している磁気の消磁が促進せしめられる内燃機関用燃料噴射弁。An armature, a valve-opening drive solenoid that is energized with a valve-opening drive current to open the armature, and a valve-closing drive that is energized with a valve-closing drive current to drive the armature closed. A fuel injection valve for an internal combustion engine comprising a solenoid and a valve opening drive current flowing through a coil of the valve opening drive solenoid with respect to an armature axis direction and in a steady state when a valve opening drive current is supplied. The direction of the valve-closing drive current flowing through the coil of the valve-closing drive solenoid with respect to the armature axis direction is the same as that in the steady state when the valve-closing drive current is supplied, and the coil of one solenoid is turned on. The induced electromotive force generated by the flowing current in the transient state promotes the demagnetization of the magnetism generated by the other solenoid. For an internal combustion engine fuel injection valve is fit. 前記アーマチュアが単一のアーマチュアにより構成され、前記開弁駆動用ソレノイドが前記アーマチュアの長手方向一端に配置され、前記閉弁駆動用ソレノイドが前記アーマチュアの長手方向他端に配置され、前記閉弁駆動用ソレノイドに対する通電開始後の過渡時に発生する誘導起電力により、前記開弁駆動用ソレノイドに対する通電終了後に前記開弁駆動用ソレノイドに引き続き残留している磁気吸引力の消磁が促進せしめられる請求項1に記載の内燃機関用燃料噴射弁。The armature is constituted by a single armature, the valve opening drive solenoid is disposed at one longitudinal end of the armature, the valve closing drive solenoid is disposed at the other longitudinal end of the armature, and the valve closing drive is provided. 2. An induced electromotive force generated at the time of transition after the start of energization of the solenoid for valve opening accelerates the demagnetization of the magnetic attraction force remaining in the solenoid for valve opening drive after the energization of the solenoid for valve opening drive ends. 3. A fuel injection valve for an internal combustion engine according to claim 1.
JP23442099A 1999-08-20 1999-08-20 Fuel injection valve for internal combustion engine Expired - Fee Related JP3539294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23442099A JP3539294B2 (en) 1999-08-20 1999-08-20 Fuel injection valve for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23442099A JP3539294B2 (en) 1999-08-20 1999-08-20 Fuel injection valve for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001059462A JP2001059462A (en) 2001-03-06
JP3539294B2 true JP3539294B2 (en) 2004-07-07

Family

ID=16970750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23442099A Expired - Fee Related JP3539294B2 (en) 1999-08-20 1999-08-20 Fuel injection valve for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3539294B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4764248B2 (en) * 2006-05-15 2011-08-31 本田技研工業株式会社 Control device for fuel injection device
JP2008095521A (en) 2006-10-06 2008-04-24 Denso Corp Solenoid operated valve device and fuel injection system using the same

Also Published As

Publication number Publication date
JP2001059462A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
JP4126787B2 (en) Electromagnetic drive device
US4546339A (en) Pole structure for a polarized electromagnet
JP3715460B2 (en) Electromagnetic drive device for engine valve
JPH0656140B2 (en) Electromagnetic fuel injection valve
JPS61248402A (en) Electromagnetic controller for switching element
JP3835024B2 (en) Electromagnetic drive device for internal combustion engine
JP3539294B2 (en) Fuel injection valve for internal combustion engine
JP4389140B2 (en) Fuel injection apparatus and fuel injection valve control method
JP2007046499A (en) Solenoid-driven valve
JP2006336525A (en) Electromagnetic actuation valve
JP2007224828A (en) Fuel injection valve
JPH08326620A (en) Electromagnetic fuel injection valve for internal combustion engine
JP2001165014A (en) Fuel injection device
JPH11350929A (en) Electromagnetic valve
JP2004353651A (en) Fuel injection apparatus
JP2592375Y2 (en) Electromagnetic drive valve
JP4228254B2 (en) Electromagnetically driven valve device
JPS63201366A (en) Electromagnetically-operated fuel injection device
JP3463525B2 (en) Control device for electromagnetically driven valve
JPH0821220A (en) Electromagnetic driving device of engine valve for internal combustion engine
JP2582212Y2 (en) Electromagnetic fuel injection device
JP2001263141A (en) Electromagnetic fuel injection device
JP2000002163A (en) Fuel injection device and electromagnet device
JP2007146673A (en) Solenoid-driven valve
JP2002206468A (en) Solenoid fuel injection valve

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees