JP2007046499A - Solenoid-driven valve - Google Patents

Solenoid-driven valve Download PDF

Info

Publication number
JP2007046499A
JP2007046499A JP2005229605A JP2005229605A JP2007046499A JP 2007046499 A JP2007046499 A JP 2007046499A JP 2005229605 A JP2005229605 A JP 2005229605A JP 2005229605 A JP2005229605 A JP 2005229605A JP 2007046499 A JP2007046499 A JP 2007046499A
Authority
JP
Japan
Prior art keywords
valve
current
coil
electromagnetically driven
swinging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005229605A
Other languages
Japanese (ja)
Other versions
JP2007046499A5 (en
Inventor
Masahiko Asano
昌彦 浅野
Yutaka Sugie
豊 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005229605A priority Critical patent/JP2007046499A/en
Priority to EP07013997A priority patent/EP1840341B1/en
Priority to EP06015546A priority patent/EP1752624A1/en
Priority to US11/492,950 priority patent/US20070028873A1/en
Priority to DE602006004303T priority patent/DE602006004303D1/en
Priority to CNA2006101075725A priority patent/CN1912357A/en
Publication of JP2007046499A publication Critical patent/JP2007046499A/en
Publication of JP2007046499A5 publication Critical patent/JP2007046499A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2105Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids comprising two or more coils
    • F01L2009/2109The armature being articulated perpendicularly to the coils axes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solenoid-driven valve with increased controllability, specifically a rotary solenoid-driven valve with increased controllability used for an internal combustion engine and driven by an electromagnetic force and an elastic force. <P>SOLUTION: This solenoid-driven valve 1 comprises a drive valve 14 having a valve stem 12 and reciprocating along the extending direction of the valve stem 12, a disk 30 interlocking with the drive valve 14, extending from one end 32 to the other end 33, and swinging around a center axis 35 extending at the other end 33, a coil 62 swinging the disk 30, a power supply 200 supplying current to the coil 62, and an ECU 100 controlling the flow of current from the power supply 200 to the coil 62. When the disk 30 is initially driven, the ECU 100 controls the flow of current to periodically supply current from the power supply 200 to the coil 62. The ECU 100 controls the quantity and the length of the frequency of the current and the current value during the initial driving according to the voltage and the temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、一般的には、電磁駆動弁に関し、より特定的には、内燃機関に用いられ、電磁力と弾性力とによって駆動する回転式の電磁駆動弁に関するものである。   The present invention relates generally to an electromagnetically driven valve, and more particularly to a rotary electromagnetically driven valve used in an internal combustion engine and driven by electromagnetic force and elastic force.

従来、電磁駆動弁は、たとえば米国特許第6,467,441号(特許文献1)に開示されている。
米国特許第6,467,441号
Conventionally, an electromagnetically driven valve is disclosed in, for example, US Pat. No. 6,467,441 (Patent Document 1).
US Pat. No. 6,467,441

従来の技術では、低温時と高温時で摺動抵抗が異なり、制御性が異なるという問題があった。さらに、リフト可変制御でディスクをコアから浮かせて保持する場合に、 負荷によるバッテリ電圧変動の影響を受けてコイル電流が変化すると安定して保持制御できないという問題があった。   The conventional technology has a problem that the sliding resistance is different between the low temperature and the high temperature, and the controllability is different. Furthermore, when holding the disk floating from the core with variable lift control, there is a problem that stable holding control cannot be performed if the coil current changes due to the influence of the battery voltage fluctuation due to the load.

そこで、この発明は上述のような問題点を解決するためになされたものであり、安定した駆動が可能な電磁駆動弁を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and an object thereof is to provide an electromagnetically driven valve capable of stable driving.

この発明の1つの局面に従った電磁駆動弁は、電磁力と弾性力との協働により作動する電磁駆動弁であって、弁軸を有し、弁軸が延びる方向に沿って往復運動する駆動弁と、駆動弁と連動する一方端から他方端へ延び、他方端で延びる中心軸を中心に揺動する揺動部材と、揺動部材を揺動させるコイルと、コイルに電流を供給する電源と、電源からコイルへの通電を制御する制御部とを備える。揺動部材の初期駆動時には、電源からコイルへ周期的に電流が供給されるように制御部が通電を制御し、制御部は電圧と温度に応じて初期駆動時の電流の周期の数、周期の長さおよび電流値を制御する。   An electromagnetically driven valve according to one aspect of the present invention is an electromagnetically driven valve that operates by cooperation of electromagnetic force and elastic force, has a valve shaft, and reciprocates along a direction in which the valve shaft extends. Drive valve, swing member extending from one end linked to the drive valve to the other end, swinging about a central axis extending at the other end, coil swinging the swing member, and supplying current to the coil A power supply and a control unit that controls energization from the power supply to the coil are provided. When the swing member is initially driven, the control unit controls energization so that current is periodically supplied from the power source to the coil, and the control unit determines the number of cycles and the period of current during initial drive according to voltage and temperature. Control the length and current value.

このように構成された電磁駆動弁では、制御部は電圧と温度に応じて初期駆動時の電流の周期の数、周期の長さおよび電流値を制御するため、摺動抵抗の大きい低温時に大きな電流を流すことにより発熱を早めて制御性を向上させることができる。   In the electromagnetically driven valve configured in this way, the control unit controls the number of current cycles, the length of the cycle, and the current value according to the voltage and temperature. By supplying a current, heat generation can be accelerated and controllability can be improved.

この発明の別の局面に従った電磁駆動弁は、電磁力と弾性力との協働により作動する電磁駆動弁であって、弁軸を有し、弁軸が延びる方向に沿って往復運動する駆動弁と、駆動弁と連動する一方端から他方端へ延び、他方端で延びる中心軸を中心に揺動する揺動部材と、揺動部材を揺動させる電磁石のコアと、揺動部材の外周側に設けられて揺動部材とコアとを通る磁束が大きくなる位置に配置された永久磁石とを備える。   An electromagnetically driven valve according to another aspect of the present invention is an electromagnetically driven valve that operates by cooperation of electromagnetic force and elastic force, has a valve shaft, and reciprocates along a direction in which the valve shaft extends. A drive valve, a swing member extending from one end linked to the drive valve to the other end, swinging about a central axis extending at the other end, an electromagnet core swinging the swing member, and a swing member A permanent magnet disposed on the outer peripheral side and disposed at a position where the magnetic flux passing through the swinging member and the core is increased.

このように構成された電磁駆動弁では揺動部材とコアを通る磁束が大きくなるので、中間リフト固定時の消費電力を小さくでき、電圧の影響を受けにくくなる。その結果、制御性が向上し安定した動作を確保できる電磁駆動弁を提供することができる。   In the electromagnetically driven valve configured as described above, since the magnetic flux passing through the swing member and the core is increased, the power consumption when the intermediate lift is fixed can be reduced, and the influence of the voltage is less likely. As a result, it is possible to provide an electromagnetically driven valve capable of improving controllability and ensuring stable operation.

この発明に従えば安定した動作を確保することができる電磁駆動弁を提供することができる。   According to the present invention, an electromagnetically driven valve that can ensure stable operation can be provided.

以下、この発明の実施の形態について、図面を参照して説明する。なお、以下の実施の形態では同一または相当する部分については同一の参照符号を付し、その説明については繰返さない。   Embodiments of the present invention will be described below with reference to the drawings. In the following embodiments, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1はこの発明の実施の形態1に従った電磁駆動弁の断面図である。図1を参照して、この発明の実施の形態1に従った電磁駆動弁1は、電磁力と弾性力との協働により作動する電磁駆動弁であって、弁軸としてのバルブステム12を有し、バルブステム12が延びる方向(矢印10)に沿って往復運動する駆動弁14と、駆動弁14と連動する一方端32から他方端33へ延び、他方端33で延びる中心軸35を中心に揺動する揺動部材としてのディスク30と、ディスク30を揺動させる上側電磁石60および下側電磁石160のコイル62,162と、コイル62,162に電流を供給する電源200と、電源200からコイル62,162への通電を制御する制御部としてのECU(電子制御ユニット)100とを備える。ディスク30の初期駆動時には、電源200からコイル62,162へ周期的に電流が供給されるようにECU100が通電を制御し、ECU100は、電圧と温度に応じて初期駆動時の電流の周期の数、周期の長さおよび電流値を制御する。
(Embodiment 1)
FIG. 1 is a sectional view of an electromagnetically driven valve according to Embodiment 1 of the present invention. Referring to FIG. 1, an electromagnetically driven valve 1 according to Embodiment 1 of the present invention is an electromagnetically driven valve that operates by cooperation of electromagnetic force and elastic force, and includes a valve stem 12 as a valve shaft. A drive valve 14 that reciprocates along the direction in which the valve stem 12 extends (arrow 10), and a central axis 35 that extends from one end 32 to the other end 33 and that extends at the other end 33, interlocked with the drive valve 14. A disk 30 as a swinging member, a coil 62,162 of the upper electromagnet 60 and the lower electromagnet 160 that swings the disk 30, a power supply 200 for supplying current to the coils 62,162, An ECU (electronic control unit) 100 is provided as a control unit that controls energization of the coils 62 and 162. When the disk 30 is initially driven, the ECU 100 controls energization so that current is periodically supplied from the power source 200 to the coils 62 and 162. The ECU 100 determines the number of current cycles during initial driving according to the voltage and temperature. Control the length of the period and the current value.

「コ」の字型のハウジング51はベース部材であり、ハウジング51にさまざまな要素が取付けられる。上側電磁石60および下側電磁石160の各々は、磁性体からなるコア61,161と、そのコア61,161に巻付けられたコイル62,162とを有する。コイル62,162に通電されることで磁界が発生し、この磁界によりディスク30を駆動させることができる。ディスク30は上側電磁石60および下側電磁石160の間に配置されて上側電磁石60および下側電磁石160の吸引力により、いずれか一方に吸引される。これにより、上側電磁石60および下側電磁石160の間でディスク30が往復運動する。ディスク30の往復運動は長孔22およびピン21を介してステム46に伝えられる。   The “U” -shaped housing 51 is a base member, and various elements are attached to the housing 51. Each of the upper electromagnet 60 and the lower electromagnet 160 includes cores 61 and 161 made of a magnetic material, and coils 62 and 162 wound around the cores 61 and 161. When the coils 62 and 162 are energized, a magnetic field is generated, and the disk 30 can be driven by the magnetic field. The disk 30 is disposed between the upper electromagnet 60 and the lower electromagnet 160 and is attracted to either one by the attraction force of the upper electromagnet 60 and the lower electromagnet 160. As a result, the disk 30 reciprocates between the upper electromagnet 60 and the lower electromagnet 160. The reciprocating motion of the disk 30 is transmitted to the stem 46 through the long hole 22 and the pin 21.

本実施の形態における電磁駆動弁1は、ガソリンエンジンやディーゼルエンジンなどの内燃機関の吸排気バルブ(吸気弁または排気弁)を構成している。この実施の形態では、吸気ポート18に設けられる吸気弁としての駆動弁の場合を説明するが、排気弁としての駆動弁に本発明を適用してもよい。   The electromagnetically driven valve 1 in the present embodiment constitutes an intake / exhaust valve (intake valve or exhaust valve) of an internal combustion engine such as a gasoline engine or a diesel engine. In this embodiment, the case of a drive valve as an intake valve provided in the intake port 18 will be described, but the present invention may be applied to a drive valve as an exhaust valve.

図1で示す電磁駆動弁1は、回転駆動式の電磁駆動弁であり、その駆動機構としてディスク30を用いている。ハウジング51はシリンダヘッド41上に設けられ、シリンダヘッド41に近い側に下側電磁石160が配置され、シリンダヘッド41から遠い側に上側電磁石60が配置される。上側電磁石60を構成するコイル62と下側電磁石160を構成するコイル162とは配線202により接続されている。さらに、コイル62は電源200に配線201により接続され、コイル162は配線203により電源200に接続されている。すなわち、電源200に対して直列的にコイル62,162が接続されている。   The electromagnetically driven valve 1 shown in FIG. 1 is a rotationally driven electromagnetically driven valve, and uses a disk 30 as its drive mechanism. The housing 51 is provided on the cylinder head 41, the lower electromagnet 160 is disposed on the side close to the cylinder head 41, and the upper electromagnet 60 is disposed on the side far from the cylinder head 41. A coil 62 constituting the upper electromagnet 60 and a coil 162 constituting the lower electromagnet 160 are connected by a wiring 202. Further, the coil 62 is connected to the power source 200 by a wiring 201, and the coil 162 is connected to the power source 200 by a wiring 203. That is, the coils 62 and 162 are connected in series with the power source 200.

ディスク30は、アーム部31と軸受部38とを有し、アーム部31が一方端32から他方端33へ延びている。アーム部31は上側電磁石60および上側電磁石60により吸引されて矢印30aで示す方向に揺動(回動)する部材である。アーム部31の端部に軸受部38が取付けられ、アーム部31は軸受部38を中心として回動する。アーム部31の上側の表面は上側電磁石60と当接可能であり、下側の表面は下側電磁石160と当接可能である。   The disk 30 has an arm portion 31 and a bearing portion 38, and the arm portion 31 extends from one end 32 to the other end 33. The arm portion 31 is a member that is attracted by the upper electromagnet 60 and the upper electromagnet 60 and swings (turns) in the direction indicated by the arrow 30a. A bearing portion 38 is attached to an end portion of the arm portion 31, and the arm portion 31 rotates around the bearing portion 38. The upper surface of the arm portion 31 can contact the upper electromagnet 60, and the lower surface can contact the lower electromagnet 160.

軸受部38は円筒形状であり、その内部にはトーションバー36が収納されている。トーションバー36の第1の端部はハウジング51にスプライン嵌合で嵌め合わされ、他方の端部は軸受部38に嵌め合わせられる。これにより、軸受部38が回動しようとすると、この回動に逆らう力がトーションバー36から軸受部38へ加えられる。そのため、軸受部38は常に中立状態に位置決めされる。一方端32ではディスク30から力を受けるようにステム46が設けられ、ステム46はステムガイド45により案内される。ステム46およびディスク30は矢印30aで示す方向に揺動運動することが可能である。   The bearing portion 38 has a cylindrical shape, and a torsion bar 36 is accommodated therein. A first end portion of the torsion bar 36 is fitted into the housing 51 by spline fitting, and the other end portion is fitted into the bearing portion 38. As a result, when the bearing portion 38 tries to rotate, a force against the rotation is applied from the torsion bar 36 to the bearing portion 38. Therefore, the bearing portion 38 is always positioned in a neutral state. At one end 32, a stem 46 is provided so as to receive a force from the disk 30, and the stem 46 is guided by a stem guide 45. The stem 46 and the disk 30 can swing in the direction indicated by the arrow 30a.

他方端33側では、ハウジング51に凸部52が設けられ、凸部52内に他方端33が収納されている。軸受部38とハウジング51の凸部52との間にはベアリング59が配置されている。   On the other end 33 side, the convex portion 52 is provided in the housing 51, and the other end 33 is accommodated in the convex portion 52. A bearing 59 is disposed between the bearing portion 38 and the convex portion 52 of the housing 51.

シリンダヘッド41の下部には吸気ポート18が設けられ、吸気ポート18は吸気を燃焼室へ導入するための経路であり、吸気ポート18内を混合気または空気が通過する。吸気ポート18と燃焼室との間にはバルブシート42が設けられ、バルブシート42により駆動弁14の密閉性を高めることができる。   An intake port 18 is provided below the cylinder head 41. The intake port 18 is a path for introducing intake air into the combustion chamber, and the air-fuel mixture or air passes through the intake port 18. A valve seat 42 is provided between the intake port 18 and the combustion chamber, and the valve seat 42 can improve the sealing performance of the drive valve 14.

シリンダヘッド41には、吸気バルブとしての駆動弁14が取付けられている。駆動弁14は長手方向に延びるバルブステム12と、バルブステム12の端部に取付けられた傘部13とを有する。バルブステム12はステムガイド43により案内される。バルブステム12にはスプリングリテーナ19が嵌め合わせられている。スプリングリテーナ19はバルブスプリング17により上方向に付勢されている。このため、スプリングリテーナ19およびバルブステム12はバルブスプリング17により付勢される。   A drive valve 14 as an intake valve is attached to the cylinder head 41. The drive valve 14 includes a valve stem 12 extending in the longitudinal direction and an umbrella portion 13 attached to an end of the valve stem 12. The valve stem 12 is guided by a stem guide 43. A spring retainer 19 is fitted on the valve stem 12. The spring retainer 19 is biased upward by the valve spring 17. For this reason, the spring retainer 19 and the valve stem 12 are urged by the valve spring 17.

電源200からコイル62,162への通電はECU100により制御される。ECU100は温度センサ102および電圧センサ101から温度情報および電圧情報を得る。電圧センサ101は電源200の電圧をモニタする。温度センサ102は温度(水温、外気温または電磁駆動弁1の温度)を検出する。ECU100には記憶部104が接続され、記憶部104では、コイル62,162に流す電流の周期、電流の大きさなどに関するさまざまなマップデータが収納されている。   The energization from the power source 200 to the coils 62 and 162 is controlled by the ECU 100. ECU 100 obtains temperature information and voltage information from temperature sensor 102 and voltage sensor 101. The voltage sensor 101 monitors the voltage of the power source 200. The temperature sensor 102 detects the temperature (water temperature, outside air temperature, or temperature of the electromagnetically driven valve 1). A storage unit 104 is connected to the ECU 100, and the storage unit 104 stores various map data related to the period of current flowing through the coils 62 and 162, the magnitude of the current, and the like.

図2は、図1で示す電磁駆動弁の回路図である。図2を参照して、電源200に対して直列的に2つのコイル62,162が接続されている。なお、この実施の形態では2つの上側および下側電磁石60,160が設けられる例を示したが、これに限られるものではなく、さらに多くの電磁石が設けられていてもよい。   FIG. 2 is a circuit diagram of the electromagnetically driven valve shown in FIG. Referring to FIG. 2, two coils 62 and 162 are connected in series to power supply 200. In this embodiment, an example in which two upper and lower electromagnets 60 and 160 are provided has been described. However, the present invention is not limited to this, and more electromagnets may be provided.

図3は、初期駆動時の弁リフトと電流との関係を示すグラフである。図4は、中立位置を示す電磁駆動弁の断面図である。図5は、閉弁状態を示す電磁駆動弁の断面図である。図1から図5を参照して、まず中立状態では、図4で示すようにディスク30のアーム部31は上側電磁石60と下側電磁石160の中間に位置している。この状態で図3の時間t10となり、コイル62,162に電流Iを時間t11まで流す。すると、アーム部31と上側電磁石60との間の距離がアーム部31と下側電磁石160との距離よりも若干短いため、アーム部31と上側電磁石60との間に大きな力が働き、時間t11では、駆動弁14は図3の「中立」から「閉弁」へ向かって移動する。   FIG. 3 is a graph showing the relationship between the valve lift and the current during the initial drive. FIG. 4 is a cross-sectional view of the electromagnetically driven valve showing the neutral position. FIG. 5 is a cross-sectional view of the electromagnetically driven valve showing a valve closing state. Referring to FIGS. 1 to 5, first, in the neutral state, as shown in FIG. 4, the arm portion 31 of the disk 30 is positioned between the upper electromagnet 60 and the lower electromagnet 160. In this state, time t10 in FIG. 3 is reached, and the current I flows through the coils 62 and 162 until time t11. Then, since the distance between the arm part 31 and the upper electromagnet 60 is slightly shorter than the distance between the arm part 31 and the lower electromagnet 160, a large force acts between the arm part 31 and the upper electromagnet 60, and time t11. Then, the drive valve 14 moves from “neutral” in FIG. 3 toward “closed valve”.

時間t11となれば電流を減少させる。一旦上側へ移動したアーム部31にはトーションバー36により下向きの捩り力が加わっている。そのためアーム部31は下方向へ移動し、中立点から下へ移動した時点で停止してさらに上方向へ向かう。上方向の移動が開始したときに再度コイル62,162に通電され、アーム部31は上方向へ大きく引付けられる。この往復運動を周期1から3にわたって繰り返す。このようにして駆動弁14は徐々に大きく振幅し、最後には閉弁状態となる。このときの初期駆動における電流の周期(図3中の周期1から周期3)が制御される。   At time t11, the current is decreased. A downward twisting force is applied to the arm 31 once moved upward by the torsion bar 36. Therefore, the arm portion 31 moves downward, stops when it moves downward from the neutral point, and further moves upward. When the upward movement starts, the coils 62 and 162 are energized again, and the arm portion 31 is greatly attracted upward. This reciprocating motion is repeated over periods 1 to 3. In this way, the drive valve 14 gradually increases in amplitude and finally closes. At this time, the period of the current in the initial drive (cycle 1 to cycle 3 in FIG. 3) is controlled.

図5で示す閉弁状態となった後には少ない保持電流をコイル62に流すことにより上側電磁石60でアーム部31を保持することができる。   After the valve is closed as shown in FIG. 5, the arm portion 31 can be held by the upper electromagnet 60 by flowing a small holding current through the coil 62.

図3で示す周期は、電圧と温度により適宜変更される。図6は、温度と電圧が変化した場合の電流マップのグラフである。図7は、温度と電圧が変化した場合の周期長さマップのグラフである。図8は、温度と電圧が変化した場合の周期数マップのグラフである。図6を参照して、温度と電圧が図1中の温度センサ102および電圧センサ101で測定される。この温度と電圧とに基づきECU100は記憶部104に収納された図6の電流マップから初期駆動に適切な電流値を計算する。たとえば、初期駆動時の温度がT2とT3の間でかつ電圧がV3とV4の間の値であれば、初期駆動の電流は、I23、I33、I24およびI34の4つの電流値から必要な電流値を算出する。図7を参照して、ECU100は、それぞれの周期の長さを図7の周期長さマップから測定する。上述の温度および電圧の条件の場合には、周期マップ長さから周期長さL23、L33、L24およびL34をもとに周期長さをECU100が計算する。   The period shown in FIG. 3 is appropriately changed depending on the voltage and temperature. FIG. 6 is a graph of a current map when temperature and voltage change. FIG. 7 is a graph of a periodic length map when temperature and voltage change. FIG. 8 is a graph of a cycle number map when the temperature and voltage change. Referring to FIG. 6, temperature and voltage are measured by temperature sensor 102 and voltage sensor 101 in FIG. Based on this temperature and voltage, ECU 100 calculates a current value suitable for initial driving from the current map of FIG. For example, if the temperature at the initial drive is between T2 and T3 and the voltage is a value between V3 and V4, the current for the initial drive is the current required from the four current values I23, I33, I24 and I34. Calculate the value. Referring to FIG. 7, ECU 100 measures the length of each cycle from the cycle length map of FIG. In the case of the above-described temperature and voltage conditions, the ECU 100 calculates the cycle length based on the cycle lengths L23, L33, L24, and L34 from the cycle map length.

また、ECU100は図8の周期数マップから周期数を算出する。上述の温度および電圧条件の場合には周期数N23、N33、N24およびN34から周期数をECU100が算出する。図6から図8で示すマップデータは記憶部104に記憶されており、ECU100は常に記憶部104にアクセスすることが可能である。   Further, ECU 100 calculates the number of cycles from the cycle number map of FIG. In the case of the temperature and voltage conditions described above, ECU 100 calculates the number of periods from the number of periods N23, N33, N24, and N34. The map data shown in FIGS. 6 to 8 is stored in the storage unit 104, and the ECU 100 can always access the storage unit 104.

すなわち、本発明では初期駆動の電流、周期および周期数を温度と電圧によりマップ化し、温度および電圧の各センサのモニタ値を入力してマップ適合制御を行なう。特に、摺動抵抗の高い極低温時は、通常の過電流設定値を瞬間的に嵩上げする。この嵩上げ量は、コイル62,162の発熱限界までの温度差が極低温時には通常運転時より大きくなる。その増加した温度差と、嵩上げ電流値によるコイル発熱温度が等しくなるように設定する。また、極低温時の初期駆動の回数は高い摺動抵抗をほぼ通常運転時の摺動抵抗レベルまで下げるべくアクチュエータの温度が十分に上昇する温度とする。すなわち、上側および下側電磁石60,160をヒーティングする通電制御とする。このように構成された電磁駆動弁では、摺動抵抗の大きい低温時において電磁駆動弁1の発熱を早めて制御性を向上させることができる。   That is, in the present invention, the current, cycle, and number of cycles for initial driving are mapped by temperature and voltage, and monitor values of each sensor of temperature and voltage are input to perform map adaptation control. In particular, at an extremely low temperature with high sliding resistance, the normal overcurrent set value is instantaneously increased. This raising amount is larger than that during normal operation when the temperature difference to the heat generation limit of the coils 62 and 162 is extremely low. The increased temperature difference is set to be equal to the coil heat generation temperature due to the raised current value. In addition, the number of initial driving times at a very low temperature is set to a temperature at which the temperature of the actuator sufficiently rises so as to reduce the high sliding resistance to the level of sliding resistance during normal operation. That is, energization control is performed to heat the upper and lower electromagnets 60 and 160. With the electromagnetically driven valve configured as described above, the heat generation of the electromagnetically driven valve 1 can be accelerated and the controllability can be improved at a low temperature with a large sliding resistance.

(実施の形態2)
図9はこの発明の実施の形態2に従った電磁駆動弁の断面図である。図9を参照して、この発明の実施の形態2に従った電磁駆動弁1ではアーム部31の一方端32側に永久磁石300が設けられている。永久磁石300はコア61から離れて位置決めされており、これによりアーム部31もコア61に直接接触しない位置に保持される。すなわち、実施の形態2に従った電磁駆動弁1は電磁力と弾性力との協働により作動する電磁駆動弁であって、バルブステム12を有し、バルブステム12が延びる方向に沿って往復運動する駆動弁14と、駆動弁14と連動する一方端32から他方端33へ延び、他方端33で延びる中心軸35を中心に揺動するディスク30と、ディスク30を揺動させる上側電磁石60のコア61と、ディスク30の外周側に設けられてディスク30とコア61とを通る矢印301で示す方向の磁束が大きくなる位置に配置された永久磁石300とを備える。この実施の形態では、駆動弁14のリフト量を可変とし、ディスク30をコア61から浮かせて保持する際に、電流(消費電力)を低減するためにディスク30外周部に永久磁石300を配置している。永久磁石300の位置はコア61から離れた位置であって、かつアーム部31の一方端32に近接するが、アーム部31と直接接触しない位置とされる。このような永久磁石300を設けることにより、矢印301で示す永久磁石による磁束の流れが増加する。その結果、中間リフト固定時の消費電力を低減することができ、電圧の影響を受けにくくなり制御性の高い電磁駆動弁1を提供することができる。
(Embodiment 2)
FIG. 9 is a sectional view of an electromagnetically driven valve according to Embodiment 2 of the present invention. Referring to FIG. 9, in electromagnetically driven valve 1 according to the second embodiment of the present invention, permanent magnet 300 is provided on one end 32 side of arm portion 31. The permanent magnet 300 is positioned away from the core 61, so that the arm portion 31 is also held at a position where it does not directly contact the core 61. That is, the electromagnetically driven valve 1 according to the second embodiment is an electromagnetically driven valve that operates by cooperation of electromagnetic force and elastic force, and has a valve stem 12 and reciprocates along the direction in which the valve stem 12 extends. A drive valve 14 that moves, a disk 30 that swings from a first end 32 that interlocks with the drive valve 14 to the other end 33, swings about a central axis 35 that extends at the other end 33, and an upper electromagnet 60 that swings the disk 30. And a permanent magnet 300 disposed on the outer peripheral side of the disk 30 and disposed at a position where the magnetic flux in the direction indicated by the arrow 301 passing through the disk 30 and the core 61 increases. In this embodiment, the lift amount of the drive valve 14 is variable, and the permanent magnet 300 is disposed on the outer periphery of the disk 30 in order to reduce the current (power consumption) when the disk 30 is held floating from the core 61. ing. The position of the permanent magnet 300 is a position away from the core 61 and close to the one end 32 of the arm portion 31 but is not in direct contact with the arm portion 31. By providing such a permanent magnet 300, the flow of magnetic flux by the permanent magnet indicated by the arrow 301 is increased. As a result, it is possible to reduce the power consumption when the intermediate lift is fixed, and it is possible to provide the electromagnetically driven valve 1 that is less affected by the voltage and has high controllability.

以上、この発明の実施の形態について説明したが、ここで示した実施の形態はさまざまに変形することが可能である。本発明で示した電磁駆動弁は1枚のディスクが駆動するものに限られず、平行な2枚のディスクを設け、その間に電磁石を配置してもよい。   Although the embodiment of the present invention has been described above, the embodiment shown here can be variously modified. The electromagnetically driven valve shown in the present invention is not limited to one driven by one disk, and two parallel disks may be provided, and an electromagnet may be disposed between them.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明は、たとえば車両に搭載される内燃機関の電磁駆動弁の分野で用いることができる。   The present invention can be used, for example, in the field of an electromagnetically driven valve for an internal combustion engine mounted on a vehicle.

この発明の実施の形態1に従った電磁駆動弁の断面図である。It is sectional drawing of the electromagnetically driven valve according to Embodiment 1 of this invention. 図1で示す電磁駆動弁の回路図である。It is a circuit diagram of the electromagnetically driven valve shown in FIG. 初期駆動時の電流と弁リフトとの関係を示すグラフである。It is a graph which shows the relationship between the electric current at the time of initial stage drive, and a valve lift. 中立位置を示す電磁駆動弁の断面図である。It is sectional drawing of the electromagnetically driven valve which shows a neutral position. 閉弁状態を示す電磁駆動弁の断面図である。It is sectional drawing of the electromagnetically driven valve which shows a valve closing state. 温度と電圧が変化した場合の電流マップのグラフである。It is a graph of the current map when temperature and voltage change. 温度と電圧が変化した場合の周期長さマップのグラフである。It is a graph of a period length map when temperature and voltage change. 温度と電圧が変化した場合の周期数マップのグラフであるIt is a graph of cycle number map when temperature and voltage change この発明の実施の形態2に従った電磁駆動弁の断面図である。It is sectional drawing of the electromagnetically driven valve according to Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 電磁駆動弁、12 ステム、13 傘部、14 駆動弁、30 ディスク、32 一方端、33 他方端、35 中心軸、100 ECU、200 電源。   DESCRIPTION OF SYMBOLS 1 Electromagnetic drive valve, 12 stem, 13 umbrella part, 14 drive valve, 30 disc, 32 one end, 33 other end, 35 central axis, 100 ECU, 200 power supply.

Claims (2)

電磁力と弾性力との協働により作動する電磁駆動弁であって、
弁軸を有し、前記弁軸が延びる方向に沿って往復運動する駆動弁と、
前記駆動弁と連動する一方端から他方端へ延び、前記他方端で延びる中心軸を中心に揺動する揺動部材と、
前記揺動部材を揺動させるコイルと、
前記コイルに電流を供給する電源と、
前記電源から前記コイルへの通電を制御する制御部とを備え、
前記揺動部材の初期駆動時には、前記電源から前記コイルへ周期的に電流が供給されるように前記制御部が通電を制御し、前記制御部は、電圧と温度に応じて初期駆動時の電流の周期の数、周期の長さおよび電流値を制御する、電磁駆動弁。
An electromagnetically driven valve that operates in cooperation with electromagnetic force and elastic force,
A drive valve having a valve shaft and reciprocating along a direction in which the valve shaft extends;
A swinging member extending from one end linked to the drive valve to the other end and swinging about a central axis extending at the other end;
A coil for swinging the swing member;
A power supply for supplying current to the coil;
A controller that controls energization of the coil from the power source,
When the swing member is initially driven, the control unit controls energization so that a current is periodically supplied from the power source to the coil, and the control unit determines the current during the initial drive according to the voltage and temperature. An electromagnetically driven valve that controls the number of cycles, the length of the cycle, and the current value.
電磁力と弾性力との協働により作動する電磁駆動弁であって、
弁軸を有し、前記弁軸が延びる方向に沿って往復運動する駆動弁と、
前記駆動弁と連動する一方端から他方端へ延び、前記他方端で延びる中心軸を中心に揺動する揺動部材と、
前記揺動部材を揺動させる電磁石のコアと、
前記揺動部材の外周側に設けられて前記揺動部材と前記コアとを通る磁束が大きくなる位置に配置された永久磁石とを備えた、電磁駆動弁。
An electromagnetically driven valve that operates in cooperation with electromagnetic force and elastic force,
A drive valve having a valve shaft and reciprocating along a direction in which the valve shaft extends;
A swinging member extending from one end linked to the drive valve to the other end and swinging about a central axis extending at the other end;
An electromagnet core for swinging the swing member;
An electromagnetically driven valve comprising: a permanent magnet provided on an outer peripheral side of the swing member and disposed at a position where a magnetic flux passing through the swing member and the core is increased.
JP2005229605A 2005-08-08 2005-08-08 Solenoid-driven valve Withdrawn JP2007046499A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005229605A JP2007046499A (en) 2005-08-08 2005-08-08 Solenoid-driven valve
EP07013997A EP1840341B1 (en) 2005-08-08 2006-07-26 Electromagnetically driven valve and driving method of the same
EP06015546A EP1752624A1 (en) 2005-08-08 2006-07-26 Electromagnetically driven valve and driving method of the same
US11/492,950 US20070028873A1 (en) 2005-08-08 2006-07-26 Electromagnetically driven valve and driving method of the same
DE602006004303T DE602006004303D1 (en) 2005-08-08 2006-07-26 Electromagnetically driven valve and its control method
CNA2006101075725A CN1912357A (en) 2005-08-08 2006-07-26 Electromagnetically driven valve and driving method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229605A JP2007046499A (en) 2005-08-08 2005-08-08 Solenoid-driven valve

Publications (2)

Publication Number Publication Date
JP2007046499A true JP2007046499A (en) 2007-02-22
JP2007046499A5 JP2007046499A5 (en) 2008-08-21

Family

ID=37402596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229605A Withdrawn JP2007046499A (en) 2005-08-08 2005-08-08 Solenoid-driven valve

Country Status (5)

Country Link
US (1) US20070028873A1 (en)
EP (2) EP1752624A1 (en)
JP (1) JP2007046499A (en)
CN (1) CN1912357A (en)
DE (1) DE602006004303D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053325A (en) * 2014-09-03 2016-04-14 株式会社デンソー Variable valve timing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2969694B1 (en) * 2010-12-22 2015-08-07 Valeo Sys Controle Moteur Sas METHOD FOR CONTROLLING VALVE ACTUATOR AND CORRESPONDING CONTROL DEVICE.
US9322480B2 (en) * 2012-11-12 2016-04-26 Ford Global Technologies, Llc Turbocharger arrangement and set of feedbacks for electric actuator control
CN107615890A (en) * 2015-05-11 2018-01-19 株式会社荏原制作所 Electromagnet apparatus, electromagnet control device, electromagnet control method and electromagnet system
CN104882242B (en) * 2015-05-28 2017-05-03 常熟理工学院 Electromagnet used for electronic multi-arm reading mechanism

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610187B2 (en) * 1989-04-28 1997-05-14 株式会社いすゞセラミックス研究所 Valve drive
US5375738A (en) * 1993-10-27 1994-12-27 Nordson Corporation Apparatus for dispensing heated fluid materials
DE19628860B4 (en) * 1996-07-17 2008-07-31 Bayerische Motoren Werke Aktiengesellschaft Electromagnetic actuator for an internal combustion engine globe valve
DE19651846B4 (en) * 1996-12-13 2005-02-17 Fev Motorentechnik Gmbh Method for the electromagnetic actuation of a gas exchange valve without pole surface contact
US6354253B1 (en) * 1998-11-20 2002-03-12 Toyota Jidosha Kabushiki Kaisha Solenoid valve device
JP4126787B2 (en) * 1998-12-07 2008-07-30 トヨタ自動車株式会社 Electromagnetic drive device
DE19914593C1 (en) * 1999-03-31 2000-09-07 Daimler Chrysler Ag Operating actuators for electromagnetic valve controller involves applying heating current to electromagnet stimulation coils before actuator starts to warm stimulation coils, sleeve lubricant
JP3715460B2 (en) * 1999-03-31 2005-11-09 株式会社日立製作所 Electromagnetic drive device for engine valve
IT1311131B1 (en) * 1999-11-05 2002-03-04 Magneti Marelli Spa METHOD FOR THE CONTROL OF ELECTROMAGNETIC ACTUATORS FOR THE ACTIVATION OF INTAKE AND EXHAUST VALVES IN A-MOTORS
JP2001336431A (en) * 2000-05-29 2001-12-07 Toyota Motor Corp Internal combustion engine provided with electromagnetically driven valves
ITBO20000366A1 (en) * 2000-06-23 2001-12-23 Magneti Marelli Spa ELECTROMAGNETIC ACTUATOR FOR THE OPERATION OF THE VALVES OF A COMBUSTION ENGINE.
DE10035759A1 (en) * 2000-07-22 2002-01-31 Daimler Chrysler Ag Electromagnetic poppet valve actuator for motor vehicle internal combustion engine has solenoid mounted in housing to operate on armature
DE10053596A1 (en) * 2000-10-28 2002-05-02 Daimler Chrysler Ag Electromagnetic actuator for gas exchange valve of IC engine, comprises armature with laminations having apertures forming duct for medium transport
ITBO20000678A1 (en) * 2000-11-21 2002-05-21 Magneti Marelli Spa METHOD OF CONTROL OF AN ELECTROMAGNETIC ACTUATOR FOR THE CONTROL OF A MOTOR VALVE
DE10120401A1 (en) * 2001-04-25 2002-10-31 Daimler Chrysler Ag Device for actuating a gas exchange valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016053325A (en) * 2014-09-03 2016-04-14 株式会社デンソー Variable valve timing device

Also Published As

Publication number Publication date
CN1912357A (en) 2007-02-14
US20070028873A1 (en) 2007-02-08
EP1840341A2 (en) 2007-10-03
DE602006004303D1 (en) 2009-01-29
EP1840341A3 (en) 2007-12-19
EP1752624A1 (en) 2007-02-14
EP1840341B1 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP3629362B2 (en) Driving method of electromagnetic valve for driving engine valve
EP1077313B1 (en) Apparatus for controlling electromagnetically powered engine valve
JP2007046499A (en) Solenoid-driven valve
EP1789659B1 (en) Electromagnetically driven valve
JP2006336525A (en) Electromagnetic actuation valve
JP2007046503A (en) Solenoid-driven valve
US20070058321A1 (en) Electromagnetically driven valve and control method thereof
JP4475198B2 (en) Solenoid valve
JP4124183B2 (en) Electromagnetically driven valve and control method thereof
JP2006022776A (en) Solenoid-driven valve
JP2007046497A (en) Solenoid-driven valve
US7428887B2 (en) Electromagnetically driven valve
JP2007146673A (en) Solenoid-driven valve
JP2000091118A (en) Electromagnetic driving device and its current flowing control method
JP2001289017A (en) Variable valve lift device
JPH05280316A (en) Electromagnetic drive valve
JP2007154714A (en) Solenoid valve
JPH0783012A (en) Electromagnetic drive type valve
JP2001059462A (en) Fuel injection valve for internal combustion engine
JP2007056780A (en) Solenoid-operated valve
JPH09151716A (en) Valve of magnetic system for internal combustion engine
JP2008248845A (en) Solenoid valve
JP2002231527A (en) Electromagnetic driving valve control device
JP2001061267A (en) Electromagnetic actuator
JP2008116003A (en) Control device of solenoid driving valve, control method, program for implementing the method and recording medium recorded with the program

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081224