JP3532701B2 - Inner diameter groove porous body bearing mechanism and motor having the same - Google Patents

Inner diameter groove porous body bearing mechanism and motor having the same

Info

Publication number
JP3532701B2
JP3532701B2 JP17567696A JP17567696A JP3532701B2 JP 3532701 B2 JP3532701 B2 JP 3532701B2 JP 17567696 A JP17567696 A JP 17567696A JP 17567696 A JP17567696 A JP 17567696A JP 3532701 B2 JP3532701 B2 JP 3532701B2
Authority
JP
Japan
Prior art keywords
inner diameter
groove
porous body
bearing
bearing mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17567696A
Other languages
Japanese (ja)
Other versions
JPH09117094A (en
Inventor
元博 宮坂
茂 大塚
近藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP17567696A priority Critical patent/JP3532701B2/en
Publication of JPH09117094A publication Critical patent/JPH09117094A/en
Application granted granted Critical
Publication of JP3532701B2 publication Critical patent/JP3532701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低振動、低騒音お
よび低ゴギング(もしくは低ジッタ)を達成する高精度
回転モータおよびその軸受機構に関するものである。例
えばCD−ROMやHDD、MOなどの高速回転で軸振
れがないことが要求される小型スピンドルモータに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-accuracy rotary motor that achieves low vibration, low noise, and low gogging (or low jitter) and its bearing mechanism. For example, the present invention relates to a small-sized spindle motor such as a CD-ROM, an HDD, or an MO that is required to have no shaft runout at high speed rotation.

【0002】[0002]

【従来の技術】軸受の内径部にグルーブを設ける方法
は、実公昭47−36739号公報に開示されているよ
うに、内径部に凸部の密な平滑面と凹部の粗面を組み合
わせ、摩擦損失および騒音の低減を目的としたものがあ
る。また、実開昭61−101124号公報に記載され
ているように、軸受内径部にスパイラル状の溝を形成
し、軸回転に伴い内側へ潤滑剤を導くことにより、高度
の回転精度を達成し、かつエネルギー損失を低減すると
共に、軸受が焼結金属であるため溝形状の加工が容易で
あり、かつ低廉となるものがある。さらに、特開昭62
−167921号公報および特開昭62−167922
号公報には、軸受内周面に軸芯を中心とする円弧面より
大きい曲率の円弧面の3面以上の組み合わせ、およびそ
の円弧面が平面状である内径面を有する軸受であって、
軸との接触が線接触となるため摩擦損失を低減できるも
のが記載されている。また、特開平5−115146号
公報に記載された軸受は、内径面に実質的に矩形状の溝
部が複数個ある焼結含油軸受であり、簡単な構造によっ
て動圧機能の向上と低ノイズおよび低摩耗化を達成する
ものである。
2. Description of the Related Art As disclosed in Japanese Utility Model Publication No. 47-36739, a method of forming a groove in the inner diameter portion of a bearing is such that a dense smooth surface of a convex portion and a rough surface of a concave portion are combined with the inner diameter portion to cause friction. Some are aimed at reducing loss and noise. Further, as described in Japanese Utility Model Laid-Open No. 61-101124, a high degree of rotation accuracy is achieved by forming a spiral groove in the inner diameter portion of the bearing and guiding the lubricant inward as the shaft rotates. In addition, the energy loss is reduced, and since the bearing is made of sintered metal, it is easy to process the groove shape and the cost is low. Furthermore, JP-A-62
No. 167921 and JP-A No. 62-167922.
Japanese Unexamined Patent Application Publication No. JP-A-2003-242242 discloses a bearing having a combination of three or more arc-shaped surfaces having a curvature larger than that of the arc-shaped surface centered on the shaft center on the inner peripheral surface of the bearing, and an inner-diameter surface of which the arc-shaped surface is flat.
It is described that the friction loss can be reduced because the contact with the shaft becomes a line contact. Further, the bearing described in Japanese Patent Laid-Open No. 5-115146 is a sintered oil-impregnated bearing having a plurality of substantially rectangular groove portions on the inner diameter surface, and has a simple structure to improve dynamic pressure function and low noise. Achieving low wear.

【0003】上記のように、既に開示されている技術
は、クリアランスの低減や回転数の増大に伴う流体潤滑
剤の流体抵抗の増大に対し、いずれも軸受内径溝を形成
し、軸支持するクリアランスを大きくすることなく流体
抵抗を低減しようとするものである。また、それに伴う
溝部における動圧効果により、軸支持部の軸受剛性を高
め、金属接触を防止し、騒音を低減するものである。
As described above, in the technologies disclosed above, the clearance for forming the bearing inner diameter groove and supporting the shaft is provided in each case against the increase in the fluid resistance of the fluid lubricant due to the reduction of the clearance and the increase of the rotation speed. It is intended to reduce the fluid resistance without increasing. Further, due to the dynamic pressure effect in the groove associated therewith, the bearing rigidity of the shaft support portion is increased, metal contact is prevented, and noise is reduced.

【0004】[0004]

【発明が解決しようとする課題】軸受として内径に溝を
形成する上記の技術は、摩擦損失の低減には確かに効果
があるが、それに伴い発生する動圧効果による軸および
軸受機構の振動発生源ともなる。これは、高精度回転と
いう観点から好ましいとはいえず、特に高速回転時に
は、周波数的に耳障りな領域の騒音、振動等の発生とい
う甚だ厄介な問題が起こることが多い。また、これらの
軸受装置は、その多くがモータ軸受として使用されてお
り、モータ構成部品として、ステータやロータとの関係
が重要となってくる。マグネットに着磁された磁極数や
電機子の極数は、その機能上の問題として、それらの最
小公倍数を基準とする調和関数的にゴギング(もしくは
ジッタ)が発生し、モータ自体やメディア、システム等
の振動発生源となる。このマグネット磁極数と電機子極
数に起因する振動と軸受内径溝に起因する振動が周波数
的に一致すると、振動が増幅され大きな音の発生や軸振
動の増大、それに起因する軸および軸受機構等の局部摩
耗を引き起こすこととなる。
The above-described technique of forming a groove in the inner diameter as a bearing is certainly effective in reducing friction loss, but vibration of the shaft and the bearing mechanism is generated due to the dynamic pressure effect that accompanies it. It also becomes a source. This is not preferable from the viewpoint of high precision rotation, and particularly at the time of high speed rotation, there are often serious troubles such as generation of noise and vibration in a frequency annoying area. Further, most of these bearing devices are used as motor bearings, and as a motor component, the relationship with the stator and rotor becomes important. As a functional problem, the number of magnetic poles magnetized in the magnet or the number of poles of the armature causes harmonically-related gogging (or jitter) based on the least common multiple of them, and the motor itself, media, or system. It becomes the source of vibration. When the vibration due to the number of magnet magnetic poles and the number of armature poles and the vibration due to the bearing inner diameter groove match in frequency, the vibration is amplified and a large noise is generated or the shaft vibration is increased. This will cause local wear.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決する技
術手段としては、多孔質体軸受の内径部にグルーブを有
し、そのグルーブの個数(C)がモータマグネットの磁
極数(A)と電機子極数(B)に対して、nA−C≠0
およびmB−C≠0(但しn、mは自然数の関係を共
満足するようなグルーブ数となっているモータ用内径
グルーブ多孔質体軸受機構により達成される。また、そ
のグルーブの中心位置が軸受内径の中心に対してランダ
ムピッチで配置されていることによっても、軸受機構に
起因する振動を周波数的に分散できるモータ用内径グル
ーブ多孔質体軸受機構を構成でき得るので、低騒音およ
び低振動化を達成することができる。その上、上記両者
の構成要件を同時に備えることによってそれら相乗効果
により、更に超低騒音、超低振動の目的を達成すること
も可能である。さらに、内径部の両端面付近の少なくと
も2ヶ所に内径が小さい部分を設け、その部分にグルー
ブを形成したことによって、摩擦トルクを一層低くする
ことが可能となる。
As a technical means for solving the above-mentioned problems, as a technical means for solving the above problems, a groove is formed in the inner diameter portion of the porous body bearing, and the number (C) of the grooves corresponds to the number (A) of magnetic poles of the motor magnet. and to the armature pole number (B), nA-C ≠ 0
And mB-C ≠ 0 (where n, m are natural numbers) co the relationship
This is achieved by an inner diameter groove porous body bearing mechanism for a motor having a groove number satisfying the above condition. Also, by arranging the center positions of the grooves at a random pitch with respect to the center of the bearing inner diameter, it is possible to configure an inner diameter groove porous body bearing mechanism for a motor that can disperse the vibration caused by the bearing mechanism in frequency. Therefore, low noise and low vibration can be achieved. Moreover, by simultaneously providing the above-mentioned both constitutional requirements, it is possible to achieve the objectives of ultra-low noise and ultra-low vibration by their synergistic effect. Further, the friction torque can be further reduced by providing a portion having a small inner diameter at least at two locations near both end surfaces of the inner diameter portion and forming a groove in that portion.

【0006】さらに、グルーブ部の気孔分布をそれ以外
の内径部分より粗にし、かつグルーブ部の気孔分布を面
積百分率で5〜40%とすることによって、グルーブ効
果が確実なものとなり、かつ、グルーブを幅0.1〜1
mm、深さ5〜100μmとすることによって、グルー
ブとしての効果をさらに増大させることができる。
Further, by making the pore distribution of the groove portion coarser than that of the other inner diameter portion and making the pore distribution of the groove portion 5% to 40% in area percentage, the groove effect can be ensured and the groove effect can be ensured. The width is 0.1 to 1
When the depth is 5 mm and the depth is 5 to 100 μm, the effect as a groove can be further increased.

【0007】[0007]

【作用】モータのマグネット磁極数(A)と電機子極数
(B)に対し、多孔質体の内径部のグルーブ個数(C)
は、基本的には素数となる数であれば、A、Bの振動に
対して共振による増幅を防止できることになるが、次の
ような関係であっても目的は達成される。その関係はn
A−C≠0、mB−C≠0(但しn、mは自然数)で表
わされる。すなわち、AもしくはBの自然数倍以外のグ
ルーブ数ということになる。また、nA+mB−C≠0
となる関係、すなわちAとBの公倍数とならないグルー
ブ数であっても良い。これは、すべてA、Bに対して共
振しないような関係となるグルーブ数とすることを要件
としたこととなる。これらの式が成立すれば、共振によ
る振動の増幅が抑制され、きわめて低騒音で、低振動の
安定した回転が得られる。言い換えると、本発明におい
ては、nA−C=0かつmB−C=0である場合を除外
するものである。
[Function] With respect to the number of magnet magnetic poles (A) and the number of armature poles (B) of the motor, the number of grooves (C) in the inner diameter portion of the porous body
Is basically a prime number, it is possible to prevent amplification due to resonance with respect to vibrations of A and B, but the object can be achieved even with the following relationship. The relationship is n
It is represented by AC ≠ 0 and mB−C ≠ 0 (where n and m are natural numbers ). That is, the number of grooves is not a natural multiple of A or B. Also, nA + mB−C ≠ 0
The relationship may be, that is, the number of grooves that is not a common multiple of A and B. This requires that the number of grooves be such that A and B do not resonate. If these expressions are satisfied, amplification of vibration due to resonance is suppressed, and extremely low noise and stable rotation with low vibration can be obtained. In other words, the present invention excludes the case where nA-C = 0 and mB-C = 0 .

【0008】また、更に他の手法として、軸受のグルー
ブが何個であっても規則的な位置に形成されていると、
その個数による1回転中に一定周波数の大きな振動が必
ず発生するが、これを軸受内径の中心に対して不規則な
角度の位置にグルーブ中心を形成すること(ランダムピ
ッチ化)により、周波数的に1回転中に何個かの小さな
振動に分散することが可能となり、軸受機構およびそれ
を搭載するモータに対しても騒音および振動の低減が可
能となる。さらに、そのグルーブが軸受内径部の一部に
形成されていると、その効果はほぼ達成されることにな
る。軸受長さ方向(両端面方向)の少なくとも両端部付
近に接触部が2ヶ所以上あれば、その間で軸を支持する
ことができ、かえって軸受長さ方向全てで摺動するより
も摺動面積を低減することとなり、またその部分だけの
矯正によって同軸度を高めることができるため、寸法精
度の向上につながることになる。
As yet another method, if the bearing grooves are formed at regular positions no matter how many,
Large vibrations of a certain frequency always occur during one rotation due to the number of them, but by forming the groove center at a position at an irregular angle with respect to the center of the bearing inner diameter (random pitching), It is possible to disperse into several small vibrations during one rotation, and it is possible to reduce noise and vibration even for the bearing mechanism and the motor in which the bearing mechanism is mounted. Furthermore, when the groove is formed in a part of the inner diameter portion of the bearing, the effect is almost achieved. If there are two or more contact parts near at least both ends in the bearing length direction (both end face directions), the shaft can be supported between them, and rather the sliding area can be made larger than sliding in all of the bearing length direction. Since the coaxiality can be increased by correcting only that portion, the dimensional accuracy is improved.

【0009】さらに、グルーブはその効果、すなわち疑
似クリアランス増大による摩擦低減効果、グルーブコー
ナー部での動圧効果、また、多孔質体特有のグルーブ部
での部分的ポンプ作用がある。部分的ポンプ作用とは、
グルーブ以外の内径面で発生した油圧が軸受内に浸透
し、そのすぐ横にあるグルーブの部分で軸回転に伴う負
圧状態および回転摺動熱の油の体積膨張から軸受内から
油を浸出させ、その油を軸回転によって動圧を発生させ
ながらまた軸支持部の内径面へと供給するという油循環
作用である。
Further, the groove has its effect, that is, a friction reducing effect by increasing pseudo clearance, a dynamic pressure effect at the groove corner portion, and a partial pumping action at the groove portion peculiar to the porous body. What is partial pumping?
The oil pressure generated on the inner diameter surface other than the groove permeates into the bearing, and the groove immediately next to the oil leaks from the bearing due to the negative pressure condition accompanying the shaft rotation and the volume expansion of the oil due to the rotating sliding heat. The oil circulation action is to supply the oil to the inner diameter surface of the shaft support portion while generating dynamic pressure by the shaft rotation.

【0010】このグルーブ部の気孔分布状態としては、
内径摺動部(グルーブ以外の部分)は軸を流体で保持す
るため気孔分布は密の状態であることが望ましい。これ
は、油等の多孔質体に含浸させる動圧媒体の油膜剛性お
よび軸受剛性の点からも言えることであるが、ただ、あ
まり密にすると多孔質体特有のポンプ作用などの油循環
作用に支障をきたすため、ある程度の適正値が選定され
る。一方、先の内径摺動部に対し、油循環作用の油供給
部としての作用から、グルーブ部分の気孔分布は粗であ
り、多くの油を内径部に供給する必要がある。なお、こ
のグルーブ部の気孔分布のレベルは、5〜40%(面積
百分率)であることが望ましい。5%以下では油供給作
用が十分に発揮できず、40%を越えると粗になり過
ぎ、材料の全体強度の問題および内径摺動部の気孔も粗
になり過ぎるという問題がある。さらに、そのグルーブ
の効果を達成するため、グルーブは、幅が0.1〜1m
mおよび深さが5〜100μmであることが必要であ
る。幅は製造上の問題もあるが、0.1mm以下では上
記のようなグルーブとしての効果が期待できず、1mm
以上では軸を支持する内径面の面積が少なく、十分な油
膜剛性および軸受剛性が得られなくなる。また、深さが
5μm以下ではグルーブとしての効果が十分に達成でき
ず、一方、100μm以上では特に動圧効果や部分的ポ
ンプ作用効果がやはり期待できなくなる。
The distribution of pores in this groove is as follows:
Since the inner diameter sliding portion (portion other than the groove) holds the shaft with a fluid, it is desirable that the pore distribution be dense. This can be said from the viewpoint of the oil film rigidity and bearing rigidity of the dynamic pressure medium that is impregnated into the porous body such as oil, but if it is made too dense, it will cause an oil circulation action such as a pump action peculiar to the porous body. An appropriate value is selected to some extent because it causes trouble. On the other hand, the pore distribution in the groove portion is coarse due to the action of the oil circulation function as the oil supply portion with respect to the inner diameter sliding portion, and it is necessary to supply a large amount of oil to the inner diameter portion. The level of pore distribution in the groove is preferably 5 to 40% (area percentage). If it is less than 5%, the oil supply action cannot be sufficiently exerted, and if it exceeds 40%, there is a problem that the material becomes too rough and the pores of the inner diameter sliding portion become too rough. Furthermore, in order to achieve the effect of the groove, the groove has a width of 0.1 to 1 m.
It is necessary that m and depth be 5 to 100 μm. Although there is a manufacturing problem in the width, if the width is 0.1 mm or less, the effect as the groove as described above cannot be expected, and the width is 1 mm.
With the above, the area of the inner diameter surface supporting the shaft is small, and sufficient oil film rigidity and bearing rigidity cannot be obtained. Further, when the depth is 5 μm or less, the effect as a groove cannot be sufficiently achieved, while when it is 100 μm or more, the dynamic pressure effect and the partial pump effect cannot be expected.

【0011】本発明は、多孔質体を前提としており、こ
のような内径面にグルーブを設ける軸受の使用条件とし
て高速回転低荷重という条件が挙げられる。そのような
使用条件下では、多孔質体特有のポンプ作用は一定方向
の荷重に対して有効な作用であるために、本来比較的低
荷重の用途には、活発なポンプ作用は期待できないが、
本発明からなるグルーブによる部分的なポンプ作用によ
り、含浸された油の循環が活発となり、多孔質体本来の
油循環作用によるメンテナンスフリーおよび長寿命化が
達成される。また、溶製法によって製造された動圧タイ
プの軸受に対する有効性として、前述のポンプ作用以外
にも、グルーブの形状を安価、かつ容易に形成可能であ
ることが挙げられる。
The present invention is premised on a porous body, and the conditions for using such a bearing having a groove on its inner diameter surface include a condition of high speed rotation and low load. Under such conditions of use, the pumping action peculiar to the porous body is an effective action against a load in a certain direction, so an active pumping action cannot be expected for applications with a relatively low load.
Circulation of the impregnated oil is activated by the partial pumping action of the groove according to the present invention, and maintenance-free and longer life are achieved by the oil circulation action inherent to the porous body. Further, as the effectiveness for the dynamic pressure type bearing manufactured by the melting method, it is possible to form the shape of the groove inexpensively and easily in addition to the above-mentioned pump action.

【0012】[0012]

【発明の実施の形態】多孔質体からなる軸受の内径部に
グルーブを形成するに際し、モータマグネットの磁極数
をAおよび電機子の極数をBとした場合に、グルーブの
個数Cを、次の式を共に満足するような数にする。nA−C≠0 およびmB−C≠0 但しn、mは自然数である。
BEST MODE FOR CARRYING OUT THE INVENTION When forming a groove in the inner diameter portion of a bearing made of a porous body, where the number of magnetic poles of a motor magnet is A and the number of poles of an armature is B, the number C of grooves is Set the number of so as to satisfy both . nA-C ≠ 0 and mB-C ≠ 0 where n and m are natural numbers .

【0013】[0013]

【実施例】本発明について、実際のモータとして構成し
た場合の実施例を図1に示す。この実施例では、モータ
マグネット1の磁極数Aを8とし、コイル4を有する電
機子2の極数Bを6とし、軸受3の内径部5に形成した
グルーブ6の数Cを7としたものである。このモータ
は、nA+mB−C≠0もしくはnA−C≠0もしくは
mB−C≠0(但しn、mは自然数)の関係を満たして
おり、実際のモータ試験において低振動、低騒音および
低ゴギング(もしくは低ジッタ)の効果を達成すること
ができた。また、nA+mB−C≠0、nA−C≠0お
よびmB−C≠0(但しn、mは自然数)の関係の何れ
をも満たさない内径グルーブ数の軸受を用いたモータで
は、各々の最小公倍数およびその高調波成分により振動
が増幅されゴギング(もしくはジッタ)が各周波数で大
きく、振動および異音が発生した。
FIG. 1 shows an embodiment of the present invention when it is constructed as an actual motor. In this embodiment, the number of magnetic poles A of the motor magnet 1 is 8, the number of poles B of the armature 2 having the coil 4 is 6, and the number C of the grooves 6 formed in the inner diameter portion 5 of the bearing 3 is 7. Is. This motor satisfies the relationship of nA + mB-C ≠ 0 or nA-C ≠ 0 or mB-C ≠ 0 (where n and m are natural numbers ), and has low vibration, low noise and low goggling (in the actual motor test). Or the effect of low jitter) could be achieved. Further, in a motor using a bearing having an inner diameter groove number that does not satisfy any of the relations of nA + mB-C ≠ 0, nA-C ≠ 0 and mB-C ≠ 0 (where n and m are natural numbers ), the least common multiple of each Vibration was amplified by the harmonic component and its gogging (or jitter) was large at each frequency, and vibration and noise were generated.

【0014】図2には軸受3の内径部5のグルーブ6の
形状を示す。図2(a)から(c)は軸受3を上から見
た形状を示す。(a)はグルーブ6の数を5とし、グル
ーブの断面形状(以下「グルーブ形状」という)を三角
形にしたものである。(b)はグルーブ6の数を11と
し、かつランダムピッチに配置したものである。なお、
油膜圧力発生による動圧的バランスを考慮して、求心位
置は軸受中心となるようにした。グルーブ形状は楕円曲
線である。(c)はグルーブ6の数が3であり、グルー
ブ形状は矩形である。基本的に動圧効果およびポンプ作
用を達成し得るならばグルーブは任意の形状に形成する
ことが可能である。図2(d)から(f)はそれぞれ他
の軸受3の縦断面図である。(d)はグルーブ6が傾斜
して内径部5の各端面まで貫通している。(e)はグル
ーブ6がV型となっており、(f)は軸受3の軸方向に
平行なグルーブ6を有する実施例である。但し(f)は
グルーブ6が内径部5において上下に貫通している場
合、グルーブ6が中断している場合、および内径部5の
面の中にのみグルーブ6がある場合を示す。このような
態様についても、前述の動圧効果およびポンプ作用を達
成し得るものであれば、如何なる形態の組合せでも本発
明の範囲を逸脱するものではない。本発明者らによる実
験によれば、上記(a)から(f)のいずれの形状のグ
ルーブの場合でも、同様のグルーブ効果が得られた。
FIG. 2 shows the shape of the groove 6 in the inner diameter portion 5 of the bearing 3. 2A to 2C show the shape of the bearing 3 viewed from above. In (a), the number of grooves 6 is 5, and the cross-sectional shape of the groove (hereinafter referred to as “groove shape”) is triangular. In (b), the number of the grooves 6 is 11, and the grooves 6 are arranged at a random pitch. In addition,
The centering position is set to the bearing center in consideration of the dynamic pressure balance due to the oil film pressure generation. The groove shape is an elliptic curve. In (c), the number of grooves 6 is 3, and the groove shape is rectangular. The groove can be formed in any shape as long as it can basically achieve the dynamic pressure effect and the pumping effect. FIGS. 2D to 2F are vertical cross-sectional views of another bearing 3. In (d), the groove 6 is inclined and penetrates to each end surface of the inner diameter portion 5. (E) is an example in which the groove 6 is V-shaped, and (f) is an embodiment having the groove 6 parallel to the axial direction of the bearing 3. However, (f) shows the case where the groove 6 penetrates vertically in the inner diameter portion 5, the case where the groove 6 is interrupted, and the case where the groove 6 exists only in the surface of the inner diameter portion 5. Even in such a mode, any combination of modes can be used without departing from the scope of the present invention as long as the dynamic pressure effect and the pump function described above can be achieved. According to the experiments conducted by the present inventors, similar groove effects were obtained in the case of any of the shapes (a) to (f).

【0015】図3は、通常2個の軸受がハウジングケー
スに組み付けられるものを、軸受3で一体化した例であ
る。軸受端面付近の両端2ヶ所で摺動するように中央部
で逃げており、両端摺動部に内径グルーブを形成してあ
る。この軸受は、2個の軸受をアッセンブリーしたもの
に比較して同程度の摩擦トルクとなり、本軸受は一体品
で長さ方向内径部の逃げのないタイプに比較して摩擦ト
ルク低減の効果が確認された。
FIG. 3 shows an example in which two bearings, which are normally assembled in a housing case, are integrated by the bearing 3. It escapes at the central part so that it slides at both ends near the end face of the bearing, and inner diameter grooves are formed at the sliding parts at both ends. This bearing has about the same friction torque as the two bearings assembled, and this bearing has the effect of reducing the friction torque as compared with the integrated type in which the inner diameter in the length direction does not escape. Was done.

【0016】[0016]

【発明の効果】本発明によれば、多孔質体軸受およびそ
れを使用したモータにおいて、前述のような簡便な方法
によって、摩擦損失および軸振れの低減を達成した上
に、軸受に起因する振動およびそれに伴う騒音の発生を
周波数的に分散して、共振を防止することにより、従来
困難であった低振動、低騒音および低ゴギング(もしく
は低ジッタ)などの作用効果を達成することができる。
すなわち、モータとして従来よりも高精度の回転が求め
られる用途に対し、安価で有効な手段を提供でき、軸受
のさらなる長寿命化も期待できるものである。
According to the present invention, in the porous body bearing and the motor using the same, the friction loss and the shaft runout can be reduced by the simple method as described above, and the vibration caused by the bearing can be achieved. Further, by suppressing the generation of noise associated therewith in terms of frequency to prevent resonance, it is possible to achieve the effects such as low vibration, low noise, and low gogging (or low jitter), which have been difficult in the past.
That is, it is possible to provide an inexpensive and effective means for an application in which a motor is required to rotate with higher precision than before, and it is expected that the bearing will have a longer life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のモータの構造を示す略示縦
断面図である。
FIG. 1 is a schematic vertical sectional view showing the structure of a motor according to an embodiment of the present invention.

【図2】(a)から(c)はそれぞれ本発明の軸受の実
施例の平面図および(d)から(f)はそれぞれ他の軸
受の実施例の縦断面図である。
2 (a) to (c) are plan views of an embodiment of the bearing of the present invention, and (d) to (f) are vertical cross-sectional views of other bearing embodiments.

【図3】本発明の軸受の一実施例の縦断面図である。FIG. 3 is a vertical sectional view of an embodiment of the bearing of the present invention.

【符号の説明】[Explanation of symbols]

1 マグネット 2 電機子 3 軸受 4 コイル 5 内径部 5a 摺動内径部 5b 非摺動内径部 6 グルーブ 1 magnet 2 armature 3 bearings 4 coils 5 Inner diameter 5a Sliding inner diameter 5b Non-sliding inner diameter 6 groove

フロントページの続き (72)発明者 近藤 誠 千葉県松戸市稔台520番地 日立粉末冶 金株式会社内 (56)参考文献 特開 平5−115146(JP,A) 特開 平6−249235(JP,A) 特開 平7−6336(JP,A) 特開 平9−112560(JP,A) 実公 昭47−36739(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) H02K 5/167,5/24 F16C 17/02,33/10 Front page continuation (72) Inventor Makoto Kondo 520 Minorita, Minato, Chiba Prefecture, Hitachi Powdered Metals Co., Ltd. (56) References JP-A-5-115146 (JP, A) JP-A-6-249235 (JP, A) JP 7-6336 (JP, A) JP 9-112560 (JP, A) Jitsuko Sho 47-36739 (JP, Y1) (58) Fields investigated (Int.Cl. 7 , DB name) ) H02K 5 / 167,5 / 24 F16C 17 / 02,33 / 10

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔質体軸受の内径部にグルーブを有
し、そのグルーブの個数(C)が、モータマグネットの
磁極数(A)と電機子極数(B)に対して、nA−C≠
0およびmB−C≠0(但しn、mは自然数)の関係を
共に満たすようなグルーブ数であることを特徴とする内
径グルーブ多孔質体軸受機構。
1. A porous bearing has a groove in its inner diameter, and the number of grooves (C) is nA-C with respect to the number of magnetic poles (A) and the number of armature poles (B) of a motor magnet. ≠
0 and mB-C ≠ 0 (where n, m are natural numbers) the relationship
An inner diameter groove porous body bearing mechanism characterized in that the number of grooves satisfy both of them.
【請求項2】 多孔質体軸受のグルーブの中心位置が、
軸受内径中心に対してランダムピッチで配置されている
ことを特徴とする請求項1に記載の内径グルーブ多孔質
体軸受機構。
Wherein the center position of the porous body bearings guru over blanking is,
2. The inner diameter groove porous body bearing mechanism according to claim 1, wherein the inner diameter groove porous body is arranged at a random pitch with respect to the center of the inner diameter of the bearing.
【請求項3】 多孔質体軸受のグルーブ部の気孔分布
が、それ以外の内径部分より粗であり、かつグルーブ部
の気孔分布が面積百分率で5〜40%であることを特徴
とする請求項1または請求項2に記載の内径グルーブ多
孔質体軸受機構。
3. A pore distribution of the glue over blanking portion of the porous body bearings are, said the other a coarse than the inner diameter portion of, and pore distribution of the groove portion is from 5 to 40% by area percentage The inner diameter groove porous body bearing mechanism according to claim 1 or 2.
【請求項4】 グルーブの幅が0.1〜1mmで、深さ
が5〜100μmであることを特徴とする請求項3記載
の内径グルーブ多孔質体軸受機構。
4. The inner diameter groove porous body bearing mechanism according to claim 3, wherein the groove has a width of 0.1 to 1 mm and a depth of 5 to 100 μm.
【請求項5】 請求項1から請求項4のいずれかに記載
の内径グルーブ多孔質体軸受の内径部において、両端面
付近の少なくとも2ヶ所の内径を小さくしたことを特徴
とする内径グルーブ多孔質体軸受機構。
5. The inner diameter groove porous body according to any one of claims 1 to 4, characterized in that the inner diameter groove porous body bearing has an inner diameter groove at least at two locations in the vicinity of both end surfaces, which is small. Body bearing mechanism.
【請求項6】 請求項1から請求項5のいずれかに記載
の内径グルーブ多孔質体軸受機構を具備することを特徴
とするモータ。
6. A motor comprising the inner diameter groove porous body bearing mechanism according to any one of claims 1 to 5.
JP17567696A 1995-08-11 1996-06-14 Inner diameter groove porous body bearing mechanism and motor having the same Expired - Lifetime JP3532701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17567696A JP3532701B2 (en) 1995-08-11 1996-06-14 Inner diameter groove porous body bearing mechanism and motor having the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22740495 1995-08-11
JP7-227404 1995-08-11
JP17567696A JP3532701B2 (en) 1995-08-11 1996-06-14 Inner diameter groove porous body bearing mechanism and motor having the same

Publications (2)

Publication Number Publication Date
JPH09117094A JPH09117094A (en) 1997-05-02
JP3532701B2 true JP3532701B2 (en) 2004-05-31

Family

ID=26496869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17567696A Expired - Lifetime JP3532701B2 (en) 1995-08-11 1996-06-14 Inner diameter groove porous body bearing mechanism and motor having the same

Country Status (1)

Country Link
JP (1) JP3532701B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006311709A (en) * 2005-04-28 2006-11-09 Nippon Densan Corp Sleeve, sleeve unit, and motor
JP2007043887A (en) 2005-07-06 2007-02-15 Nippon Densan Corp Motor and disc drive
JP4953160B2 (en) * 2007-02-08 2012-06-13 株式会社ダイヤメット Sintered oil-impregnated bearing and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09117094A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
US5746516A (en) Porous bearing system having internal grooves and electric motor provided with the same
US5834870A (en) Oil impregnated porous bearing units and motors provided with same
US6364532B1 (en) Hydrodynamic bearing and motor having the same
CA2185181C (en) Self pressurizing journal bearing assembly
US7466050B2 (en) Brushless motor and method of manufacturing the same
JP3532701B2 (en) Inner diameter groove porous body bearing mechanism and motor having the same
JP3939987B2 (en) Spindle motor
JPH10148212A (en) Dynamic pressure fluid bearing device
JP3983435B2 (en) Hydrodynamic bearing unit
JPH05215128A (en) Bering device
JP2006304565A (en) Brushless electric motor and its manufacturing method
JP3320832B2 (en) Spindle motor
JP3984449B2 (en) Fluid dynamic bearing, spindle motor using the same, and disk drive using the spindle motor
JP3842499B2 (en) Hydrodynamic bearing unit
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP3578810B2 (en) Spindle motor
KR20020006737A (en) Spindle motor
KR20030090560A (en) Fluid dynamic bearing spindle motor
KR100376998B1 (en) Hydrostatic bearing motor
JP4357051B2 (en) Thrust dynamic pressure bearing
JP2006314186A (en) Fixed shaft type dynamic pressure fluid bearing motor and recording disk unit
JPH11117935A (en) Bearing device
KR20020045670A (en) Spindle motor
JPH0775284A (en) Dynamic pressure bearing device, and motor using the same and requiring prevention of asynchronous shaking
JPH0821444A (en) Bearing device for motor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040120

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term