JP3529520B2 - Welding method to prevent ductility degradation crack of ferritic stainless steel - Google Patents

Welding method to prevent ductility degradation crack of ferritic stainless steel

Info

Publication number
JP3529520B2
JP3529520B2 JP30848395A JP30848395A JP3529520B2 JP 3529520 B2 JP3529520 B2 JP 3529520B2 JP 30848395 A JP30848395 A JP 30848395A JP 30848395 A JP30848395 A JP 30848395A JP 3529520 B2 JP3529520 B2 JP 3529520B2
Authority
JP
Japan
Prior art keywords
welding
temperature
ductility
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30848395A
Other languages
Japanese (ja)
Other versions
JPH09122915A (en
Inventor
学 奥
佳幸 藤村
美博 植松
正二 井上
勝彦 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP30848395A priority Critical patent/JP3529520B2/en
Publication of JPH09122915A publication Critical patent/JPH09122915A/en
Application granted granted Critical
Publication of JP3529520B2 publication Critical patent/JP3529520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、フェライト系ステ
ンレス鋼の溶接熱影響部の延性低下割れを防止する溶接
方法に関するものである。 【0002】 【従来の技術】フェライト系ステンレス鋼は、オーステ
ナイト系ステンレス鋼よりも熱膨張係数が小さく、加熱
・冷却の繰り返される用途に有利であること、応力腐食
割れが発生しないこと、比較的安価であることから、自
動車排ガス経路部材、各種プラント材、建材などの様々
な分野で使用されている。これらの用途には、溶接施工
が頻繁に行われる。 【0003】フェライト系ステンレス鋼の溶接上の問題
として、溶接部および熱影響部の結晶粒粗大化による
靱性低下、熱影響部の鋭敏化による耐食性の低下、
溶接施工時の高温割れ、などが挙げられる。これらの問
題に対しては、従来からいくつかの対策が採られてお
り、例えば、に対しては母材および溶接心線に結晶粒
の粗大化を抑制する合金元素を添加すること、に対し
てはNb,Tiなどを含む安定化鋼の使用、に対して
は高温割れ感受性を高めるP,Sなどの合金元素の低
減、などが図られてきた。 【0004】 【発明が解決しようとする課題】しかし、の割れに
は、溶接金属に発生するものばかりでなく、溶接施工方
法によっては熱影響部に発生することもある。この溶接
熱影響部に発生する割れは、液化割れと延性低下割れに
分類できる。前者は粒界に偏析した低融点の化合物が加
熱によって液化して割れに至るものであり、後者は材料
そのものの延性が低下する温度域で割れに至るものであ
る。液化割れに対しては上述のの対策にて、ある程度
防止することが可能であるが、延性低下割れに対して
は、割れを防止する有効な解決手段が明らかにされてい
ないのが実情である。 【0005】本発明の目的は、フェライト系ステンレス
鋼の溶接時に発生することのある延性低下割れを再現性
良く防止するための溶接方法を提供することにある。 【0006】 【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、溶接熱サイクル再現装置を用いた引
張試験により延性低下割れの発生する温度域を明らかに
するとともに、実溶接により延性低下割れが発生する条
件を詳細に検討した。その結果、延性低下割れはフェラ
イト系ステンレス鋼の融点直下の非常に狭い温度域で起
こること、これを安定して防止するには溶接中の溶接部
裏面の最高到達温度および溶接部の溶け込み率を規制す
る必要があることを知見し、本発明に至った。 【0007】すなわち、本発明は、質量%において、
C:0.03%以下、Si:2.0%以下、Mn:2.0
%以下、Cr:5.0〜30.0%、N:0.03%以下
を含有し、かつ、Nb:0.05〜1.0%、Ti:0.
05〜1.0%、Mo:0.05〜3.0%、Cu:0.0
2〜1.0%の1種または2種以上を含有し、残部がF
eおよび製造上の不可避的な不純物からなるフェライト
系ステンレス鋼の溶接において、溶接中の溶接部裏面の
最高到達温度を当該鋼の融点より100℃以上低い温度
とし、かつ、下記(1)式で定義される溶け込み率
(%)を20〜80%の範囲とする、フェライト系ステ
ンレス鋼の溶接熱影響部の延性低下割れを防止する溶接
方法を提供する。 溶け込み率(%)=溶け込み深さ/当該被溶接母材の厚さ×100…(1) ここで、溶け込み深さとは、被溶接母材の溶けた部分の
最頂点(最深部)と溶接する面の表面との距離と定義す
る。 【0008】 【発明の実施の形態】以下に、本発明を特定するための
事項について、限定理由を説明する。 【0009】CとNは、一般的には高温での強度を高め
るためには重要な元素である。しかし、含有量が多くな
ると加工性および低温靱性の低下をきたすので、それぞ
れ0.03%以下とする。 【0010】Siは、耐高温酸化性を改善する元素であ
る。しかし、過剰に添加すると硬質になり、加工性およ
び靱性の劣化をもたらすので、2.0%以下とする。 【0011】Mnは、表層酸化物の密着性を著しく改善
するため、耐熱用途には積極的に添加する場合がある。
しかし、過剰に添加すると耐食性を劣化させるととも
に、硬質となり、低温靱性や加工性を低下させるので、
2.0%以下とする。 【0012】Crは、耐食性および耐高温酸化性を付与
するために有効な元素であり、5.0%以上の添加を必
要とする。一方、過剰に添加すると鋼の脆化を招き、ま
た、硬質となって加工性を劣化させる他、原料価格が高
くなる。したがって、Crの範囲は、5.0〜30.0%
とする。 【0013】Nbは、高温強度の上昇に有効に作用す
る。高温強度を上昇させるためには少なくとも0.05
%以上添加する必要がある。一方、Nbを過剰に添加す
ると低温靱性や加工性の低下を招く。高温強度を維持
し、かつ低温靱性や加工性低下にあまり影響を及ぼさな
いように、Nbの範囲は0.05〜1.0%とする。 【0014】Tiは、鋼板のr値を向上させ、深絞り性
の向上に有効な元素である。その効果を発揮させるため
には0.05%以上の添加を必要とする。しかし、過剰
に添加するとTiNを生成しやすく、鋼板におけるヘゲ
疵の発生による歩留低下を招くとともに、溶接性を劣化
させる原因ともなる。したがって、Tiの範囲は0.0
5〜1.0%とする。 【0015】Moは、耐食性、耐酸化性および高温強度
の改善に有効な元素である。これらの効果を発揮させる
ためには0.05%以上の添加を必要とする。しかし、
過剰に添加すると鋼の脆化を招く。したがって、Moの
範囲は0.05〜3.0%とする。 【0016】Cuは、低温靱性と加工性の両方を向上さ
せるのに有効な元素である。その効果は0.02%の添
加で顕著となる。しかし、多量に添加すると加工性を阻
害する。したがって、Cuの範囲は0.02〜1.0%と
する。 【0017】溶接部裏面の最高到達温度は、延性低下割
れを防止するうえで最も重要な因子である。本発明者ら
は、以下の試験研究を重ねた結果、溶接部裏面の最高到
達温度を融点より100℃以上低い温度とすることを規
定した。 【0018】現実に熱影響部で発生した延性低下割れの
破面について、いくつかの事例を調査してみると、いず
れの破面も粒界破壊の破面であり、しかも粒界は液化し
ていないことが判った。そこで、まず、各種のフェライ
ト系ステンレス鋼を用いて、延性低下割れ破面の再現を
試みた。図1に、SUS429相当鋼,SUS444相
当鋼,SUS430J1L相当鋼を用いて、溶接熱サイ
クル再現装置にて高温引張試験を行った後の板幅の減少
率と引張試験温度との関係を示す。1000℃から14
00℃までは、いずれの鋼も良好な延性を示しているこ
とがわかり、この温度範囲では、仮に溶接中熱影響部に
引張応力が加わったとしても、延性的に変形するものと
考えられる。一方、1400℃を越えると延性は急激に
低下する。そして、1440℃以上では粒界破壊を呈す
るようになる。この粒界破壊の破面は、前述の事例調査
で観察された延性低下割れの破面とよく一致しているこ
とを確認した。このことから、溶接熱影響部の延性低下
およびこれに起因した割れは、1400℃を越え融点
(約1500℃)までの非常に狭い温度範囲で起こるこ
とが明らかとなった。すなわち、融点より100℃以上
低い温度であれば良好な延性を示すことがわかった。次
に、この知見をもとに実際の溶接における溶接部裏面の
温度と延性低下割れの関係を種々調査した。その結果、
被溶接母材の溶接部裏面の温度が融点より100℃以上
低い温度であれば、延性低下割れを再現性良く防止でき
ることを突き止めた。これは、被溶接母材の溶接部の板
厚のうち溶融していない部分(=板厚−溶け込み深さで
表される部分)の一部にでも延性の良好な領域があれ
ば、板全体としての延性低下割れの発生はくい止められ
るものと考えられる。 【0019】以上の結果から、フェライト系ステンレス
鋼の溶接時の延性低下割れを再現性良く抑制する手段と
して、図2に示すような溶接部裏面の溶接中における最
高到達温度を融点より100℃以上低い温度とするとい
う事項を規定した。なお、図1に示した鋼の融点はいず
れも約1500℃であるが、融点は鋼の組成によって変
動する。したがって、使用する鋼に応じて溶接部裏面の
最高到達温度を規定する必要がある。例えば、SUS4
29系,SUS444系,SUS430系の鋼であれ
ば、溶接部裏面の最高到達温度を1400℃以下に規定
すればよい。 【0020】溶け込み率は、20%未満であると溶接条
件の変動によっては接合不良あるいは接合強度不足を生
じるため、20%以上とすることが必要である。しか
し、溶け込み率が80%を越えると、溶接中の溶接部裏
面の最高到達温度が融点−100℃の温度を越え、延性
低下割れを生じる場合があるため、80%以下とする。 【0021】ここで、溶接部裏面の最高到達温度および
溶け込み率の具体的設定手段について述べる。図2に示
すような継手形状では、実溶接施工時においては温度測
定ならびに溶け込み率の測定は事実上できない。そこ
で、例えば、実施工に即した継手のモデルを事前に製作
し、これを種々の溶接入熱条件にて溶接し、溶接部裏面
の最高到達温度が融点より100℃以上低い温度に、溶
け込み率が20〜80%の範囲になるような溶接入熱条
件範囲を選定し、この溶接入熱条件範囲を実溶接施工時
に適用する方法を用いることができる。溶接部裏面の温
度測定としては、例えば、熱電対を複数配列して貼付け
て測温する方法、あるいはサーモグラフィーによる測定
方法などが採用できる。溶け込み率は、例えば、各種の
溶接入熱条件にて溶接した試片から、一試片あたり複数
の断面を採取し、断面研磨後光学顕微鏡観察により測定
して求めることができる。 【0022】ところで、溶接時に熱影響部に発生してい
る応力も延性低下割れ発生に係る重要な因子である。図
3は、図1と同じ供試材を用いて、一定応力を負荷した
状態で試験片を加熱したときに破断する温度を測定した
結果を示す。応力の低下とともに破断温度は上昇し、図
1の結果と同様に1440℃以上の温度で粒界破壊を示
すようになる。この時の応力は2.0〜2.5N/mm2
ある。一方、1.5N/mm2以下の応力を負荷した場合に
は、試験片が溶融し始めるまで破断しない。このことか
ら、延性低下割れは溶接時の応力が1.5N/mm2を越え
る場合に生じる可能性のあることがわかった。したがっ
て、溶接部裏面の最高到達温度と溶け込み率とから選定
した溶接入熱条件を実溶接施工に適用するにあたって
は、溶接熱応力の弾塑性解析等(例えば、溶接力学とそ
の応用;朝倉書店刊参照)により、その値が1.5N/m
m2以下であることを確認して適用するのが望ましい。 【0023】本発明の方法は、溶接継手については、J
ISZ3001にいう重ね継手,T継手,せぎり継手な
ど、溶接継手を構成する被溶接材の一方もしくは両方の
母材の溶け込みが、表面から裏面まで貫通しない施工方
法をとる溶接継手について適用できる。 【0024】溶接方法については特に限定されることは
ない。また、溶接に使用するシールドガスおよび溶接心
線についても、限定されることはない。さらに、フェラ
イト系ステンレス鋼と他の合金との異材継手溶接におい
ても、本発明方法の適用により、フェライト系ステンレ
ス鋼の熱影響部の延性低下割れは防止できる。 【0025】 【実施例】表1に示す3種類の鋼を溶製し、熱間圧延,
焼鈍および冷間圧延により板厚2.0mmの板とし、90
0〜1050℃の範囲で焼鈍したのち酸洗して溶接試験
用の供試材を得た。これらの供試材を用いて溶接試験を
行い延性低下割れを評価した。表2に溶接条件および結
果を示す。 【0026】 【表1】 【0027】 【表2】 【0028】延性低下割れは、2枚の板を重ねて治具に
て固定し、重ね継手溶接を行った後の割れの有無で評価
した。割れ有無の判定は、溶接部の断面を5箇所切断採
取し、バフ研磨後光学顕微鏡にて割れの有無を検査して
行った。その後エッチングを行い溶け込み率を測定し
た。なお、切断した溶接部断面試片にはあらかじめ溶接
部裏面に熱電対を貼り付けておき、溶接時の最高到達温
度を測定した。なお、供試材の融点は、いずれも約15
00℃である。 【0029】No.1〜11は、本発明方法によるもの
である。TIG溶接,MIG溶接およびMAG溶接のい
ずれの方法で行なっても、溶接部裏面の最高到達温度を
1400℃(=融点−100℃)以下とし、かつ溶け込
み率を20〜80%の範囲となるように入熱条件を選定
して溶接すれば、熱影響部の延性低下割れは発生しない
ことが確認できた。 【0030】No.12〜16は、比較方法を示したも
のである。No.12及びNo.16は、最高到達温度お
よび溶け込み率が本発明方法から外れているため、延性
低下割れを起こした。また、No.13は、溶け込み率
は本発明の範囲に含まれるものの、溶接部裏面の最高到
達温度が本発明方法から外れているため、延性低下割れ
を起こした。なお、No.14およびNo.15は、溶け
落ちたため溶接部に穴があき製品として使用できなかっ
た。 【0031】 【発明の効果】本発明は、フェライト系ステンレス鋼の
溶接において延性低下割れが再現性良く防止できる溶接
方法を提供するものであり、特に、種々の構造の溶接継
手に適用できる汎用性の高いものである。したがって、
実際の溶接施行に際しては、本発明で規定する事項を満
足するように個々の状況に応じた適切な溶接条件を設定
することにより、従来は不明確であった溶接条件の許容
範囲を適切に設定することが可能となり、各種溶接現場
における溶接条件の最適化が図られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding method for preventing ductility-reducing cracks in a heat affected zone of a ferritic stainless steel. [0002] Ferritic stainless steel has a smaller coefficient of thermal expansion than austenitic stainless steel, is advantageous for applications where heating and cooling are repeated, does not generate stress corrosion cracking, and is relatively inexpensive. Therefore, it is used in various fields such as automobile exhaust gas path members, various plant materials, and building materials. For these applications, welding work is frequently performed. [0003] Problems in welding ferritic stainless steel include a decrease in toughness due to coarsening of the grains in the weld zone and the heat-affected zone, a reduction in corrosion resistance due to a sharpening of the heat-affected zone,
Hot cracking during welding work, and the like. To address these problems, several countermeasures have been taken in the past, such as adding an alloying element to the base metal and the welding core wire to suppress the coarsening of crystal grains. In addition, the use of stabilized steel containing Nb, Ti, etc., has been attempted to reduce alloying elements such as P, S, etc., which increase hot cracking susceptibility. However, cracks not only occur in the weld metal but also in the heat-affected zone depending on the welding method. The cracks generated in the heat affected zone can be classified into liquefaction cracks and ductility-reduced cracks. In the former, the low-melting compound segregated at the grain boundaries is liquefied by heating to cause cracking, and in the latter, cracking occurs in a temperature range where the ductility of the material itself is reduced. Liquefaction cracking can be prevented to some extent by the above measures, but effective ductile cracking has not been clarified yet. . SUMMARY OF THE INVENTION An object of the present invention is to provide a welding method for preventing ductility-reducing cracks which may occur during welding of ferritic stainless steel with good reproducibility. In order to achieve the above object, the present inventors have clarified a temperature range in which ductility-reducing cracks are generated by a tensile test using a welding heat cycle reproducing apparatus. The conditions under which ductility-reducing cracks occur during actual welding were studied in detail. As a result, ductility reduction cracking occurs in a very narrow temperature range just below the melting point of ferritic stainless steel.To stably prevent this, the maximum temperature of the back surface of the weld during welding and the penetration rate of the weld are determined. The present inventors have found that it is necessary to regulate, and have led to the present invention. That is, the present invention relates to
C: 0.03% or less, Si: 2.0% or less, Mn: 2.0
%, Cr: 5.0-30.0%, N: 0.03% or less, and Nb: 0.05-1.0%, Ti: 0.03%.
0.05 to 1.0%, Mo: 0.05 to 3.0%, Cu: 0.0
2 to 1.0% of one or more, the balance being F
In welding of ferrite stainless steel consisting of e and unavoidable impurities in production, the maximum temperature of the back surface of the welded portion during welding is set to a temperature lower than the melting point of the steel by 100 ° C. or more, and the following formula (1) is used. Provided is a welding method for preventing ductility-reducing cracks in a heat-affected zone of a ferritic stainless steel with a defined penetration ratio (%) in a range of 20 to 80%. Penetration rate (%) = Penetration depth / Thickness of the base metal to be welded × 100 (1) Here, the penetration depth is welded to the highest point (deepest part) of the melted portion of the base metal to be welded. Defined as the distance between the surface and the surface. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for specifying the present invention will be described below. C and N are generally important elements for increasing the strength at high temperatures. However, when the content increases, the workability and the low-temperature toughness decrease. [0010] Si is an element that improves high-temperature oxidation resistance. However, if added excessively, it becomes hard, resulting in deterioration of workability and toughness. [0011] Mn is sometimes added aggressively for heat-resistant applications in order to significantly improve the adhesion of the surface oxide.
However, if added in excess, it will deteriorate the corrosion resistance and become hard, lowering the low-temperature toughness and workability,
2.0% or less. [0012] Cr is an element effective for imparting corrosion resistance and high-temperature oxidation resistance, and requires addition of 5.0% or more. On the other hand, if it is added excessively, the steel will be embrittled, and it will become hard and deteriorate workability, and the raw material price will increase. Therefore, the range of Cr is 5.0-30.0%.
And Nb effectively acts on the increase in high-temperature strength. At least 0.05 to increase high temperature strength
% Must be added. On the other hand, if Nb is added excessively, low-temperature toughness and workability are reduced. The range of Nb is set to 0.05 to 1.0% so that high-temperature strength is maintained and low-temperature toughness and workability are not significantly affected. [0014] Ti is an element effective for improving the r-value of the steel sheet and improving the deep drawability. In order to exert its effect, 0.05% or more must be added. However, if added excessively, TiN is likely to be generated, leading to a decrease in yield due to generation of barbed flaws in the steel sheet and a cause of deterioration in weldability. Therefore, the range of Ti is 0.0
5 to 1.0%. Mo is an element effective for improving corrosion resistance, oxidation resistance and high-temperature strength. In order to exhibit these effects, 0.05% or more must be added. But,
Excessive addition causes brittleness of the steel. Therefore, the range of Mo is set to 0.05 to 3.0%. Cu is an element effective in improving both low-temperature toughness and workability. The effect becomes remarkable by adding 0.02%. However, when added in a large amount, workability is impaired. Therefore, the range of Cu is set to 0.02 to 1.0%. The highest temperature reached on the back surface of the weld is the most important factor in preventing ductility-reducing cracks. The present inventors have repeatedly conducted the following test and research, and have determined that the highest ultimate temperature of the back surface of the welded portion is a temperature lower than the melting point by 100 ° C. or more. Investigation of some examples of the fracture surface of ductility-reduced cracks actually occurring in the heat-affected zone reveals that all fracture surfaces are fracture surfaces of grain boundary fracture, and that the grain boundaries are liquefied. It turned out not to be. Therefore, first, an attempt was made to reproduce a fracture surface with reduced ductility using various ferritic stainless steels. FIG. 1 shows the relationship between the reduction ratio of the sheet width and the tensile test temperature after performing a high-temperature tensile test with a welding heat cycle reproduction device using SUS429 equivalent steel, SUS444 equivalent steel, and SUS430J1L equivalent steel. 1000 ° C to 14
It is understood that all steels show good ductility up to 00 ° C., and in this temperature range, even if a tensile stress is applied to the heat-affected zone during welding, it is considered that the steel is ductilely deformed. On the other hand, if it exceeds 1400 ° C., the ductility sharply decreases. At 1440 ° C. or higher, grain boundary destruction occurs. It was confirmed that the fracture surface of the grain boundary fracture was in good agreement with the fracture surface of the ductility-reduced crack observed in the case study described above. From this, it became clear that the ductility reduction of the heat affected zone and the cracks caused by it occur in a very narrow temperature range from over 1400 ° C. to the melting point (about 1500 ° C.). That is, it was found that good ductility was exhibited at a temperature lower than the melting point by 100 ° C. or more. Next, based on this finding, various investigations were made on the relationship between the temperature of the back surface of the weld and the ductility-reduced crack in actual welding. as a result,
It has been found that if the temperature of the back surface of the welded portion of the base material to be welded is lower than the melting point by 100 ° C. or more, ductility-reducing cracks can be prevented with good reproducibility. This is because if there is a region with good ductility even in a part of the unmelted part (= part expressed by thickness-penetration depth) in the thickness of the welded portion of the base metal to be welded, It is considered that the occurrence of cracks with reduced ductility as described above can be suppressed. From the above results, as a means for suppressing the ductility-reducing cracks during welding of ferritic stainless steel with good reproducibility, the highest temperature during welding on the back surface of the welded portion as shown in FIG. It specified that the temperature should be low. The melting point of each of the steels shown in FIG. 1 is about 1500 ° C., but the melting point varies depending on the composition of the steel. Therefore, it is necessary to define the maximum temperature at the back surface of the welded portion according to the steel used. For example, SUS4
For 29 series, SUS444 series, and SUS430 series steels, the maximum temperature at the back surface of the welded portion may be set to 1400 ° C. or less. If the penetration rate is less than 20%, poor joining or insufficient joining strength may occur depending on the variation of welding conditions, and therefore it is necessary to set the penetration rate to 20% or more. However, if the penetration rate exceeds 80%, the maximum temperature of the back surface of the welded portion during welding exceeds the temperature of the melting point of −100 ° C., which may cause ductility-reducing cracks. Here, specific means for setting the maximum attained temperature and penetration rate of the back surface of the welded portion will be described. With the joint shape as shown in FIG. 2, it is practically impossible to measure the temperature and the penetration rate during actual welding. Therefore, for example, a model of the joint suitable for the actual work is manufactured in advance, and this is welded under various welding heat input conditions. Can be selected such that the welding heat input condition range is in the range of 20 to 80%, and this welding heat input condition range is applied at the time of actual welding. As the temperature measurement of the back surface of the welded portion, for example, a method of arranging a plurality of thermocouples and pasting them, and measuring the temperature, or a measuring method by thermography can be adopted. The penetration rate can be determined, for example, by collecting a plurality of cross sections per test piece from a test piece welded under various welding heat input conditions, measuring the cross section after polishing, and then observing the cross section with an optical microscope. Incidentally, the stress generated in the heat-affected zone at the time of welding is also an important factor relating to the occurrence of cracking with reduced ductility. FIG. 3 shows the results of measuring the temperature at which a test piece breaks when a test piece is heated under a constant stress while using the same test material as in FIG. As the stress decreases, the rupture temperature increases, and at the temperature of 1440 ° C. or higher, grain boundary fracture occurs as in the result of FIG. The stress at this time is 2.0 to 2.5 N / mm 2 . On the other hand, when a stress of 1.5 N / mm 2 or less is applied, the test piece does not break until it begins to melt. From this, it was found that ductility-reducing cracks may occur when the stress during welding exceeds 1.5 N / mm 2 . Therefore, when applying the welding heat input conditions selected from the maximum temperature at the back of the weld and the penetration rate to actual welding work, elasto-plastic analysis of welding thermal stress (for example, welding mechanics and its applications; published by Asakura Shoten) ), The value is 1.5 N / m
it is desirable to apply to confirm that this is m 2 or less. The method of the present invention provides a method for welding joints comprising:
The present invention can be applied to a welded joint having a construction method in which the penetration of one or both base materials of the material to be welded constituting the welded joint does not penetrate from the front surface to the back surface, such as a lap joint, a T-joint, and a barbed joint referred to in ISZ3001. The welding method is not particularly limited. Further, the shielding gas and the core wire used for welding are not limited. Furthermore, in the dissimilar joint welding of ferritic stainless steel and another alloy, the application of the method of the present invention can prevent the ductility-reducing cracks in the heat-affected zone of ferritic stainless steel. EXAMPLES Three types of steel shown in Table 1 were melted, hot-rolled,
Annealed and cold rolled to a 2.0mm thick plate,
After annealing in the range of 0 to 1050 ° C., the specimen was pickled to obtain a test material for a welding test. A welding test was performed using these test materials to evaluate ductility-reducing cracks. Table 2 shows the welding conditions and results. [Table 1] [Table 2] The ductility-reduced cracks were evaluated by the presence or absence of cracks after lap joint welding was carried out by fixing two plates and fixing them with a jig. The determination of the presence or absence of cracks was performed by cutting and collecting five sections of the welded portion, inspecting the presence or absence of cracks with an optical microscope after buffing. Thereafter, etching was performed and the penetration ratio was measured. In addition, the thermocouple was pasted on the back surface of the welded part in advance on the cut specimen of the welded part, and the maximum temperature during welding was measured. The melting point of each test material was about 15
00 ° C. Nos. 1 to 11 are based on the method of the present invention. Regardless of the method of TIG welding, MIG welding or MAG welding, the maximum temperature of the back surface of the welded portion is set to 1400 ° C. (= melting point−100 ° C.) or less, and the penetration rate is in the range of 20 to 80%. It was confirmed that if the heat input conditions were selected and welding was performed, no ductility-reducing cracks occurred in the heat-affected zone. Nos. 12 to 16 show comparison methods. In No. 12 and No. 16, since the maximum attained temperature and the penetration ratio deviated from the method of the present invention, ductility-reduced cracking occurred. Further, in No. 13, although the penetration rate was included in the range of the present invention, the highest ultimate temperature of the back surface of the welded portion was out of the range of the method of the present invention, so that ductility-reduced cracking occurred. In addition, No. 14 and No. 15 could not be used as a product with a hole in the welded portion because they had melted down. The present invention provides a welding method capable of preventing ductility-reduced cracking with good reproducibility in the welding of ferritic stainless steel, and in particular, has a versatility applicable to welded joints having various structures. Is high. Therefore,
At the time of actual welding, by setting appropriate welding conditions according to each situation so as to satisfy the items stipulated in the present invention, the allowable range of welding conditions, which was conventionally unclear, is appropriately set. It is possible to optimize welding conditions at various welding sites.

【図面の簡単な説明】 【図1】高温引張試験の試験温度と板幅減少率の関係を
示すグラフ。 【図2】重ね継手,T継手の溶接部裏面位置を示す断面
図。 【図3】応力を負荷した状態で加熱したときの応力値と
破断温度との関係を示すグラフ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a relationship between a test temperature of a high-temperature tensile test and a reduction ratio of a sheet width. FIG. 2 is a cross-sectional view showing the positions of the back surfaces of welded portions of a lap joint and a T joint. FIG. 3 is a graph showing a relationship between a stress value and a breaking temperature when heating is performed in a state where a stress is applied.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // B23K 103:04 B23K 103:04 (72)発明者 井上 正二 兵庫県尼崎市鶴町1番地 日新製鋼株式 会社技術研究所内 (72)発明者 福村 勝彦 兵庫県尼崎市鶴町1番地 日新製鋼株式 会社技術研究所内 (56)参考文献 特開 昭60−83792(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 9/095 B23K 9/23 B23K 103:04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI // B23K 103: 04 B23K 103: 04 (72) Inventor Shoji Inoue 1 Tsurumachi, Amagasaki-shi, Hyogo Nisshin Steel Co., Ltd. (72) inventor Katsuhiko Fukumura Amagasaki, Hyogo Prefecture Tsurumachi address 1 Nisshin Steel Co., Ltd. intra-technology research Institute (56) reference Patent Sho 60-83792 (JP, a) (58 ) investigated the field (Int.Cl. 7 , DB name) B23K 9/095 B23K 9/23 B23K 103: 04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 質量%において、C :0.03%以
下、Si:2.0%以下、Mn:2.0%以下、Cr:
5.0〜30.0%、N :0.03%以下を含有し、か
つNb:0.05〜1.0%、Ti:0.05〜1.0%、
Mo:0.05〜3.0%、Cu:0.02〜1.0%の1
種または2種以上を含有し、残部がFeおよび製造上の
不可避的な不純物からなるフェライト系ステンレス鋼の
溶接において、溶接中の溶接部裏面の最高到達温度を当
該鋼の融点より100℃以上低い温度とし、かつ、下記
(1)式で定義される溶け込み率(%)を20〜80%
の範囲とする、フェライト系ステンレス鋼の溶接熱影響
部の延性低下割れを防止する溶接方法。 溶け込み率(%)=溶け込み深さ/当該被溶接母材の厚さ×100…(1)
(57) [Claims 1] In mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, Cr:
5.0-30.0%, N: 0.03% or less, Nb: 0.05-1.0%, Ti: 0.05-1.0%,
Mo: 0.05 to 3.0%, Cu: 0.02 to 1.0%
In welding of ferritic stainless steel containing one or more species and the balance being Fe and inevitable impurities in production, the highest ultimate temperature of the back surface of the weld during welding is 100 ° C. or more lower than the melting point of the steel. Temperature and the penetration rate (%) defined by the following equation (1) is 20 to 80%
A welding method for preventing ductility-reducing cracks in the heat-affected zone of a ferritic stainless steel within the range described above. Penetration rate (%) = Penetration depth / Thickness of the base metal to be welded × 100 (1)
JP30848395A 1995-11-02 1995-11-02 Welding method to prevent ductility degradation crack of ferritic stainless steel Expired - Lifetime JP3529520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30848395A JP3529520B2 (en) 1995-11-02 1995-11-02 Welding method to prevent ductility degradation crack of ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30848395A JP3529520B2 (en) 1995-11-02 1995-11-02 Welding method to prevent ductility degradation crack of ferritic stainless steel

Publications (2)

Publication Number Publication Date
JPH09122915A JPH09122915A (en) 1997-05-13
JP3529520B2 true JP3529520B2 (en) 2004-05-24

Family

ID=17981565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30848395A Expired - Lifetime JP3529520B2 (en) 1995-11-02 1995-11-02 Welding method to prevent ductility degradation crack of ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP3529520B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455082B1 (en) * 2000-05-30 2004-11-08 주식회사 포스코 Method for manufacturing ferrite stainless steel having a good weldability

Also Published As

Publication number Publication date
JPH09122915A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
Qin et al. Microstructures and mechanical properties of stainless steel clad plate joint with diverse filler metals
JP6104008B2 (en) Stainless steel sheet molded product joined by resistance heat
DiGiovanni et al. Predicting liquid metal embrittlement severity in resistance spot welding using hot tensile testing data
JP3529520B2 (en) Welding method to prevent ductility degradation crack of ferritic stainless steel
JPH0636993B2 (en) Method for producing stainless clad steel sheet with excellent corrosion resistance and toughness
Gan et al. Microstructure–fracture toughness relationship of vanadium alloy/stainless steel brazed joints
JP2002294404A (en) High carbon hot rolling steel material suitable for friction pressure welding and production method therefor
JPS6018729B2 (en) Manufacturing method of medium-low carbon high tensile strength wire rod
JP2011526654A (en) Ferritic stainless steel excellent in workability of welded portion, welded steel pipe using the same, and manufacturing method thereof
Linder et al. Fatigue design of spot‐welded austenitic and duplex stainless sheet steels
JP3533548B2 (en) Ferritic stainless steel pipe for heat resistance with excellent workability
JP3937369B2 (en) Processing method of ferritic stainless steel pipe
JPH07103871A (en) Method for evaluating fatigue fracture sensibility at part subjected to welding heat
JP2002363650A (en) Method for producing ultrahigh strength cold rolled steel sheet having excellent seam weldability
JP3528759B2 (en) Cu-aged steel and method for producing the same
CN111069751A (en) Application of low-carbon gas shield welding wire in welding of 40Cr plate and Q355 plate
JP4283380B2 (en) Dissimilar material welded turbine rotor and method of manufacturing the same
JP2864338B2 (en) Flash welding method for high strength steel
Chandel et al. Mechanical and metallurgical aspects of spot-welded joints in heat-treated low-carbon mild steel sheet
JP7304476B1 (en) Evaluation Method for Liquid Metal Brittle Cracking Susceptibility in Resistance Spot Welds of Steel Plates
JPH0665686A (en) Austenitic stainless steel cast clad steel material excellent in workability and its production
JP3629184B2 (en) Liquid phase diffusion bonding method for joints with high strength and toughness
JPH09194997A (en) Welded steel tube and its production
JP2691456B2 (en) Manufacturing method of composite type damping steel sheet
WO2024029626A1 (en) Method for manufacturing spot welded joint, and spot welded joint

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9