JP3528879B2 - Automatic voltage adjustment method for photovoltaic power converter - Google Patents

Automatic voltage adjustment method for photovoltaic power converter

Info

Publication number
JP3528879B2
JP3528879B2 JP11857295A JP11857295A JP3528879B2 JP 3528879 B2 JP3528879 B2 JP 3528879B2 JP 11857295 A JP11857295 A JP 11857295A JP 11857295 A JP11857295 A JP 11857295A JP 3528879 B2 JP3528879 B2 JP 3528879B2
Authority
JP
Japan
Prior art keywords
power
voltage
power converter
adjustment method
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11857295A
Other languages
Japanese (ja)
Other versions
JPH08317563A (en
Inventor
克利 山中
サジャド フセイン モハマド
澄利 園田
常生 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP11857295A priority Critical patent/JP3528879B2/en
Publication of JPH08317563A publication Critical patent/JPH08317563A/en
Application granted granted Critical
Publication of JP3528879B2 publication Critical patent/JP3528879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は太陽電池の発電電力を交
流電力に変換し、交流電力を電力系統へ送電する太陽発
電用電力変換装置の自動電圧調整方法に関する。 【0002】 【従来の技術】この種の太陽光発電用電力変換装置にお
いて、電力変換装置が電力系統へ電力を送電する場合
に、電力変換装置と電力系統とがつながる受電点の電圧
は、電力系統の送電線のインピーダンスによって、送電
を行わない場合に比べて上昇する。柱上変圧器から受電
点までが遠く送電線のインピーダンスが大きい場合や、
送電電力が送電線の容量を越える程大きい場合には、受
電点の電圧がここにつながる負荷の電圧許容値を越えて
上昇し、負荷に悪影響を及ぼすおそれがある。従来、こ
の電圧上昇を抑制するために、電圧上昇を検出して電力
変換装置の出力を減少させるか、電力変換装置の出力電
流の位相を受電点電圧の位相よりも進める方法(進相無
効電力制御)がとられていた。 【0003】図3は従来の進相無効電力制御を用いた自
動電圧調整方法を説明するベクトル図である。太陽光発
電用電力変換装置は通常、受電点電圧との力率が1とな
るように電流を出力する。ここで簡単にするため送電線
のインピーダンスが純抵抗だと仮定すると、このときの
ベクトル図は図4のように電流Io と送電線の電圧降下
dVの位相は一致し、受電点電圧Vo の絶対値をVo
(=|Vo |)、電力系統の電圧をV1とすれば、Vo
1=|V1|+|dV|になる。また、図5のように電
力変換装置の出力電流Io の位相を受電点電圧Vo に対
して進めた(位相差をαとする)場合の受電点電圧Vo
の絶対値をVo 2(=|Vo |)とすると、|V1|と
|dV|の大きさは力率1の場合と等しいが、図5のよ
うにV1とdVに角度が付くので、Vo 2<Vo 1とな
って、受電点電圧Vo の電圧上昇を抑えることができ
る。送電線インピーダンスが純抵抗でない場合(図3)
でも基本的には前記の原理によって受電点電圧Vo の抑
制が可能である。しかし、この従来の進相無効電力制御
では電流を進めることによって、インバータから出力さ
れる有効電流が減少し、電力系統へ送電する有効電流も
進相前のP1=|Vo |×|I o |からP2=|Vo
×|Io |×cos αに減少して、太陽電池の発電電
力を有効に系統へ送ることができなくなるという問題が
あった。 【0004】本発明の目的は、受電点の電圧上昇を抑制
するとともに、太陽電池の発電電力を電力系統に有効に
送電できる、太陽光発電用電力変換装置の自動電圧調整
方法を提供することにある。 【0005】 【課題を解決するための手段】上記問題を解決するため
に、本発明の太陽光発電用電力変換装置の自動電圧調整
方法は、電力変換装置と電力系統が接続される受電点の
電圧上昇を、電力変換装置の有効電流出力を一定に保ち
ながら進相無効電流を流すことによって抑制することを
特徴とする。 【0006】 【作用】有効電流を一定にしたまま進相無効電流を流す
ことで、電力系統に送電する電力を減少させずに受電点
の電圧上昇を抑制できるため、太陽電池の発電電力を有
効に利用できる。 【0007】 【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は太陽光発電用電力変換装置と電力系
統との接続図、図2は電圧と電流の位相を示すベクトル
図である。電力変換装置2は太陽電池1の発電電力を交
流電力に変換し、送電線4を経て電力系統3に送電す
る。送電線4には負荷5が接続されている。電力変換装
置2の制御回路は、図2に示すように、電力変換装置2
の出力電流Io の有効電流分Iorを一定にしたまま出力
電流Io の位相を受電点6の電圧Vo の位相に対して進
める。ここで、有効電流分Iorは図3の出力電流Io
等しい。したがって、図2のIo >図3のIo であり、
図2と図3の電圧Vo と電流Io の位相差αが同じなら
ば、本実施例における出力電圧の有効成分は図3の場合
のものよりも大きくなる。 【0008】また、図2において、送電線インピーダン
スが抵抗分R1とリアクタンス分X1の和で表され、電
力変換装置の出力電流がすべて系統電源3へ流れて電圧
降下dVがもっとも高くなる条件の場合(負荷5のイン
ピーダンスが高く、負荷5へ流れる電流が殆どなく負荷
5の影響が無視できる場合)、受電点6の電圧Vo は、 【0009】 【数1】 の式で表わされ、有効電流分Iorを一定としても位相差
αを増加させれば電圧V o を減少させることができ、従
来方式よりも電力系統3へ送電する有効電力を減少させ
ずに受電点の電圧Vo の上昇を抑制することができる。 【0010】 【発明の効果】以上説明したように、本発明は、有効電
流を一定にしたまま進相無効電流を流すことで、電力系
統に送電する電力を減少させずに受電点の電圧上昇を抑
制できるため、太陽電池の発電電力を有効に利用できる
効果がある。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention
Solar power that converts AC power to AC power and sends it to the power grid
The present invention relates to an automatic voltage adjustment method for a power conversion device. [0002] 2. Description of the Related Art This type of photovoltaic power converter is
And the power converter transmits power to the power grid
At the receiving point where the power converter and the power system are connected
Depends on the transmission line impedance of the power system.
Rises compared to the case where it is not performed. Receive power from pole transformer
If the point is far and the impedance of the transmission line is large,
If the transmission power is large enough to exceed the capacity of the transmission line,
The voltage of the electric point exceeds the voltage tolerance of the load connected to it.
And may adversely affect the load. Conventionally,
To suppress the voltage rise of the
Reduce the output of the converter or reduce the output power of the power converter.
How to advance the phase of the current beyond the phase of the receiving point voltage (no advance
Active power control). FIG. 3 shows a conventional self-advanced reactive power control.
It is a vector diagram explaining a dynamic-voltage adjustment method. From sunlight
Power converters usually have a power factor of 1 with the receiving point voltage.
To output current. Transmission lines here for simplicity
Assuming that the impedance of is a pure resistance,
The vector diagram shows the current I as shown in FIG.o And transmission line voltage drop
The phase of dV matches, and the receiving point voltage Vo The absolute value of Vo 1
(= | Vo |), If the voltage of the power system is V1,o
1 = | V1 | + | dV |. Also, as shown in FIG.
Output current I of force convertero Is the receiving point voltage Vo To
Receiving point voltage V when advanced (the phase difference is α)o
The absolute value of Vo 2 (= | Vo |), | V1 |
| DV | is equal to that of unity power factor, but as shown in FIG.
Since V1 and dV are angled,o 2 <Vo One
The receiving point voltage Vo Voltage rise can be suppressed
You. When transmission line impedance is not pure resistance (Fig. 3)
But basically, the receiving point voltage Vo Suppression of
Control is possible. However, this conventional advanced phase reactive power control
Now, by increasing the current, the output from the inverter
Effective current to be transmitted to the power grid
P1 = | V before advanceo │ × │I o | To P2 = | Vo |
× | Io │ × cos α
The problem is that power cannot be sent to the grid effectively
there were. An object of the present invention is to suppress a voltage rise at a power receiving point.
And effectively use the power generated by the solar cells in the power grid.
Automatic voltage adjustment of photovoltaic power converters that can transmit power
It is to provide a method. [0005] [MEANS FOR SOLVING THE PROBLEMS] To solve the above problems.
Automatic voltage regulation of the power converter for photovoltaic power generation of the present invention
The method includes determining the power receiving point at which the power converter and the power system are connected.
The voltage rise is maintained by keeping the effective current output of the power converter constant.
While suppressing the leading phase reactive current.
Features. [0006] [Effect] Leading reactive current is passed while keeping the effective current constant
Power receiving point without reducing the power transmitted to the power grid.
Voltage rise of the solar cell can be suppressed,
It can be used effectively. [0007] BRIEF DESCRIPTION OF THE DRAWINGS FIG.
Will be explained. Figure 1 shows the power converter for photovoltaic power generation and the power system
Connection diagram, Fig. 2 is a vector showing the phase of voltage and current
FIG. The power converter 2 exchanges the power generated by the solar cell 1.
Power to the power system 3 via the transmission line 4
You. A load 5 is connected to the transmission line 4. Power conversion equipment
As shown in FIG. 2, the control circuit of the power converter 2
Output current Io Effective current I oforOutput with constant
Current Io Is the voltage V of the receiving point 6.o With respect to the phase of
I will. Here, the effective current IorIs the output current I of FIG.o To
equal. Therefore, I in FIG.o > I in FIG.o And
The voltage V in FIGS. 2 and 3o And current Io If the phase difference α of
For example, the effective component of the output voltage in this embodiment is the case of FIG.
Larger than the ones. In FIG. 2, the transmission line impedance
Is expressed as the sum of the resistance R1 and the reactance X1.
All the output current of the force converter flows to the system power supply 3 and the voltage
Under the condition where the dV drop is the highest (the load 5
Load with high impedance and little current flowing to load 5
5 is negligible), the voltage V at the receiving point 6o Is [0009] (Equation 1) The effective current IorPhase difference even if
If α is increased, the voltage V o Can be reduced,
The active power to be transmitted to the power system 3
Without receiving point voltage Vo Can be suppressed. [0010] As described above, the present invention provides an effective
By supplying a leading reactive current while keeping the current constant,
Voltage rise at the receiving point without reducing the power transmitted to
Power can be effectively used
effective.

【図面の簡単な説明】 【図1】太陽光発電用電力変換装置と電力系統の接続図
である。 【図2】本発明の太陽光発電用電力変換装置の自動電圧
調整方法を示す電圧と電流の位相を示すベクトル図であ
る。 【図3】従来の自動電圧調整方法を示す電圧と電流の位
相を示すベクトル図である。 【図4】送電線インピーダンスと負荷が純抵抗の場合で
送電電流が力率1の場合の電圧と電流の位相を示すベク
トル図である。 【図5】送電線インピーダンスと負荷が純抵抗の場合の
従来の自動電圧調整法を示すベクトル図である。 【符号の説明】 1 太陽電池 2 電力変換装置 3 系統電源 4 送電線 5 負荷 6 受電点
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a connection diagram of a power converter for photovoltaic power generation and a power system. FIG. 2 is a vector diagram showing phases of voltage and current showing an automatic voltage adjustment method of the power converter for photovoltaic power generation of the present invention. FIG. 3 is a vector diagram showing phases of a voltage and a current showing a conventional automatic voltage adjustment method. FIG. 4 is a vector diagram showing phases of a voltage and a current when a transmission line has a power factor of 1 when a transmission line impedance and a load are pure resistance. FIG. 5 is a vector diagram showing a conventional automatic voltage adjustment method when a transmission line impedance and a load are pure resistance. [Description of Signs] 1 Solar cell 2 Power converter 3 System power supply 4 Transmission line 5 Load 6 Power receiving point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久米 常生 福岡県北九州市八幡西区黒崎城石2番1 号 株式会社安川電機内 (56)参考文献 特開 昭59−181928(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Tsuneo Kume 2-1, Kurosaki Shiroishi, Yawatanishi-ku, Kitakyushu-city, Fukuoka Prefecture Inside Yaskawa Electric Co., Ltd. (56) References JP-A-59-181928 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H02J 3/00-5/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 太陽電池の発電電力を交流電力に変換
し、前記交流電力を電力系統へ送電する太陽光発電用電
力変換装置の自動電圧調整方法において、前記電力変換
装置と前記電力系統が接続される受電点の電圧上昇を、
前記電力変換装置の有効電流出力を一定に保ちながら進
相無効電流を流すことによって抑制することを特徴とす
る、太陽光発電用電力変換装置の自動電圧調整方法。
(1) An automatic voltage adjustment method for a power conversion device for photovoltaic power generation, wherein the power generated by a solar cell is converted into AC power and the AC power is transmitted to a power system. A voltage rise at a power receiving point where the power converter and the power system are connected,
An automatic voltage adjustment method for a power converter for photovoltaic power generation, characterized in that the power converter is suppressed by flowing a leading-phase reactive current while keeping the effective current output of the power converter constant.
JP11857295A 1995-05-17 1995-05-17 Automatic voltage adjustment method for photovoltaic power converter Expired - Fee Related JP3528879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11857295A JP3528879B2 (en) 1995-05-17 1995-05-17 Automatic voltage adjustment method for photovoltaic power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11857295A JP3528879B2 (en) 1995-05-17 1995-05-17 Automatic voltage adjustment method for photovoltaic power converter

Publications (2)

Publication Number Publication Date
JPH08317563A JPH08317563A (en) 1996-11-29
JP3528879B2 true JP3528879B2 (en) 2004-05-24

Family

ID=14739924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11857295A Expired - Fee Related JP3528879B2 (en) 1995-05-17 1995-05-17 Automatic voltage adjustment method for photovoltaic power converter

Country Status (1)

Country Link
JP (1) JP3528879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169013A1 (en) 2011-06-07 2012-12-13 東芝三菱電機産業システム株式会社 Operation control device for photovoltaic power generation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482674B (en) * 2017-07-25 2020-06-05 中国科学院电工研究所 Grid-connected point voltage rise suppression method for distributed power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169013A1 (en) 2011-06-07 2012-12-13 東芝三菱電機産業システム株式会社 Operation control device for photovoltaic power generation system
US10033189B2 (en) 2011-06-07 2018-07-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation Operation control apparatus for solar power system

Also Published As

Publication number Publication date
JPH08317563A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
US6949843B2 (en) Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
JP3541982B2 (en) System overvoltage protection method and device for photovoltaic power converter
CN101123352A (en) Rear change converter of wind power generation system and its loop current control method
EP0827254A3 (en) Power control apparatus for solar power generation system
EP1143594A3 (en) Power converting apparatus, control method therefor, and solar power generation apparatus
JP2013055874A (en) Solar power generation system with electrical energy adaptive control function and control method thereof
JP3936092B2 (en) AC uninterruptible power supply system
CN116722576B (en) Offshore wind power direct current output topological circuit and system based on series-parallel converter valve
JP3820757B2 (en) Distributed power equipment
JP3528879B2 (en) Automatic voltage adjustment method for photovoltaic power converter
JP5812503B1 (en) Power supply system for photovoltaic power generation
WO2023077741A1 (en) Photovoltaic system and control method
Snyman et al. Novel technique for improved power conversion efficiency in systems with battery back-up
JP2000083330A (en) Distributed power supply installation
CN209881421U (en) Oil well area multi-source micro-grid power supply device system
Deevela et al. Improved MOV-FxLMS control for an autonomous solar PV-DG-BES hybrid system for powering base transceiver stations
US20220094174A1 (en) Multi-source microgrid power supply system in oil well area
WO2021019814A1 (en) Power conversion device and power generation system
CN110635472B (en) Method for increasing carrying capacity of three-phase energy storage inversion system and three-phase energy storage inversion system applying same
TWI443927B (en) Cable system with phase switch apparatuses
Haruni et al. Control strategy of a stand-alone variable speed wind turbine with integrated energy storage system using NPC converter
CN112152253A (en) Oil well area multi-source micro-grid power supply device system
CN211405501U (en) Hybrid power supply system for grid connection and off-grid
CN216390582U (en) Photovoltaic power generation system based on MPPT controller
CN111277028B (en) Charging system, control method and control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150305

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees