JP3527558B2 - Maximum deformation detection sensor - Google Patents

Maximum deformation detection sensor

Info

Publication number
JP3527558B2
JP3527558B2 JP32323694A JP32323694A JP3527558B2 JP 3527558 B2 JP3527558 B2 JP 3527558B2 JP 32323694 A JP32323694 A JP 32323694A JP 32323694 A JP32323694 A JP 32323694A JP 3527558 B2 JP3527558 B2 JP 3527558B2
Authority
JP
Japan
Prior art keywords
conductor
deformation amount
detection sensor
maximum deformation
cutting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32323694A
Other languages
Japanese (ja)
Other versions
JPH08178765A (en
Inventor
博明 柳田
純一 吉池
正人 市川
博一 中曾根
郁也 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kogyo Co Ltd
Nagano Keiki Co Ltd
Original Assignee
Taiyo Kogyo Co Ltd
Nagano Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kogyo Co Ltd, Nagano Keiki Co Ltd filed Critical Taiyo Kogyo Co Ltd
Priority to JP32323694A priority Critical patent/JP3527558B2/en
Publication of JPH08178765A publication Critical patent/JPH08178765A/en
Application granted granted Critical
Publication of JP3527558B2 publication Critical patent/JP3527558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば建物、橋梁、膜
構造物などの地上構造物、あるいは航空機や船舶のよう
な非地上構造物等の各種構造物における構造材や膜材等
の構成部材に地震などの外力の経時的負荷で生じている
強度変化を非破壊的に検出して構造物の破壊可能性の予
知的診断を行なう技術に関し、特にそのために構成部材
に過去に掛かった最大負荷に対応する最大変形量を検出
するのに用いる最大変形量検出センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure material, a film material, etc. in various structures such as ground structures such as buildings, bridges and membrane structures, or non-ground structures such as aircraft and ships. A technology for non-destructively detecting changes in strength caused by the load of external forces such as earthquakes on members over time to make a predictive diagnosis of the possibility of structural damage. The present invention relates to a maximum deformation amount detection sensor used to detect a maximum deformation amount corresponding to a load.

【0002】[0002]

【従来の技術】最大変形量検出センサとしては、特願平
5−138977号や特願平5−297609号として
提案されたものがある。これらは、例えば炭素繊維のよ
うに適当な電気抵抗値を持った複数の導電性要素をそれ
ぞれの弛み程度を僅かずつ変化させて一対の端子間に並
列的に接続した構造を有し、構造物における検出対象の
構成部材に対し当該構成部材に生じる変形に応じて各導
電性要素に張力が加わるように取り付けて用いる。そし
て張力が加わるとその程度に応じてそれぞれ弛み程度が
異なっている導電性要素が弛みの小さい順に順次破断
し、この結果を両端子間での電気抵抗の変化として検出
する。つまり両端子間での電気抵抗値がどの導電性要素
までが破断したかを示し、どの導電性要素までが破断し
たかにより、構成部材に生じた変形における最大値を知
ることができるようになっている。
2. Description of the Related Art As a maximum deformation amount detecting sensor, there are sensors proposed in Japanese Patent Application No. 5-138977 and Japanese Patent Application No. 5-297609. These have a structure in which a plurality of conductive elements having an appropriate electric resistance value, such as carbon fiber, are connected in parallel between a pair of terminals while slightly changing the degree of slack of each, The conductive member is attached and used so that tension is applied to each of the conductive elements in accordance with the deformation of the component to be detected. Then, when tension is applied, the conductive elements having different degrees of slack are sequentially broken in the order of increasing slack, and the result is detected as a change in electric resistance between the terminals. In other words, the electrical resistance value between both terminals indicates which conductive element has been broken, and it is possible to know the maximum value in the deformation that has occurred in the component member, depending on which conductive element is broken. ing.

【0003】これらの最大変形量検出センサは、各種の
構造物について汎用的に用いることができるし、その検
出精度もかなり高いものを期待でき、しかもその構造が
簡単であるなどの多くの利点を持っている。しかし、そ
の基本として導電性要素に僅かずつ異なる弛みを与え、
この弛み程度の相違を利用して検出対象の構成部材にお
ける変形量に応じた順次的な自己破断を生じさせること
で最大変形量を検出する、という原理を用いているた
め、検出精度の安定性を必ずしも十分に保ち得ないとい
う短所を持っている。即ちこれらの最大変形量検出セン
サでは、各導電性要素の弛み程度の設定が検出精度の安
定化の上で重要な要素となり、また各導電性要素の引張
強度のバラツキにより検出精度に影響を受け易いが、微
妙に異なる弛み程度を各導電性要素に設定することは比
較的難しく、そのために検出対象の構成部材における変
形量に応じた各導電性要素の順次的な破断が必ずしも確
実に生じない場合があり得るし、また各導電性要素の引
張強度の均一性を保つことが意外と難しく、検出精度の
安定性を十分に保ち得なくなる。
These maximum deformation amount detection sensors can be used universally for various types of structures, can be expected to have considerably high detection accuracy, and have many advantages such as a simple structure. have. However, as its basis, it gives the conductive element a slightly different slack,
Since the maximum deformation amount is detected by using this difference in the degree of slack to generate sequential self-breaking in accordance with the deformation amount of the component to be detected, the stability of detection accuracy is improved. Has the disadvantage that it cannot always hold enough. That is, in these maximum deformation amount detection sensors, the setting of the degree of slack in each conductive element is an important factor in stabilizing the detection accuracy, and the variation in the tensile strength of each conductive element affects the detection accuracy. It is easy, but it is relatively difficult to set a slightly different degree of slack in each conductive element, and therefore sequential breakage of each conductive element according to the amount of deformation in the constituent member to be detected does not necessarily occur reliably. In some cases, it is unexpectedly difficult to maintain the uniformity of the tensile strength of each conductive element, and the stability of detection accuracy cannot be sufficiently maintained.

【0004】[0004]

【発明が解決しようとする課題】このような事情を背景
になされたのが本発明で、上記のような複数の導電性要
素を持つ導電体に検出対象物における変形量と相関的な
電気抵抗変化を固定的に生じさせて最大変形量の検出を
行なう最大変形量検出センサについて、より安定して高
い検出精度を得られるようにすることを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made against such a background by the present invention. In the present invention, the electric resistance having a plurality of conductive elements as described above is correlated with the deformation amount of the object to be detected. It is an object of the present invention to make it possible to more stably obtain high detection accuracy with respect to a maximum deformation amount detection sensor that performs a fixed change to detect the maximum deformation amount.

【0005】[0005]

【課題を解決するための手段】このような目的のために
本発明では、それぞれ所定の電気抵抗値を持つ複数の導
電性要素を横並び状態に配列させ、且つ各導電性要素の
順次的な切断に応じて相関的な抵抗値の変化を与える回
路をなすように形成した導電体と、この導電体の導電性
要素を切断可能とする切断手段とを備え、これら導電体
と切断手段とを一方に対し相対的に移動可能とした構造
で最大変形量検出センサを形成し、そしてこれを構造物
における検出対象の構成部材に対し当該構成部材に生じ
る変形に応じて導電体と切断手段との相対移動を生じる
ように取り付けて用い、この相対移動の移動量に応じて
導電体の導電性要素を切断手段にて順次切断させること
で、検出対象の構成部材における最大変形量を検出する
ようにしている。
To this end, according to the present invention, a plurality of conductive elements each having a predetermined electric resistance value are arranged side by side, and the conductive elements are sequentially cut. A conductor formed so as to form a circuit that changes the resistance value in a correlated manner, and a cutting means capable of cutting the conductive element of the conductor. A maximum deformation amount detection sensor is formed with a structure that is relatively movable with respect to the structure, and the maximum deformation amount detection sensor is formed relative to the constituent member of the structure to be detected according to the deformation of the constituent member. It is attached so as to cause movement, and by sequentially cutting the conductive element of the conductor by the cutting means according to the movement amount of this relative movement, it is possible to detect the maximum deformation amount in the component member to be detected. There is.

【0006】このような最大変形量検出センサの好まし
い態様の一つ(以下第1の態様)は、図1に模式化して
示すように、例えば炭素繊維のような線状体で形成した
複数の導電性要素1、1、……を横並び状態にして一対
の端子2、2の間に接続すると共に、各導電性要素に中
間部で折り返して折曲げ部3を設け、この折曲げ部を横
一線に並ぶ状態とした構造で導電体4を形成し、また導
電体との矢印Xの如き相対移動に際してその刃部5が各
導電性要素に上記横一線並びの折曲げ部で相対移動の移
動量に応じて順次押接することにより当該押接の導電性
要素を順次切断する構造で切断手段6を形成する構造が
挙げられる。
One of the preferred embodiments of such a maximum deformation amount detection sensor (hereinafter referred to as the first embodiment) is, as schematically shown in FIG. 1, a plurality of linear bodies such as carbon fibers. The conductive elements 1, 1, ... Are arranged side by side and connected between a pair of terminals 2, 2, and each conductive element is folded back at an intermediate portion to provide a bent portion 3, and the bent portion is laterally bent. The conductor 4 is formed in a structure in which the conductors 4 are arranged in a line, and when the relative movement with the conductor as indicated by the arrow X is performed, the blade portion 5 moves relative to each conductive element at the bent portions arranged in a horizontal line as described above. An example is a structure in which the cutting means 6 is formed by sequentially pressing the conductive elements in contact with each other according to the amount.

【0007】また他の好ましい態様の他の一つ(以下第
2の態様)では、図11に模式化して示すように、その
導電体10は、例えば印刷あるいは適当な導電材を貼り
付けるなどして、シート状の基板11に線状の導電性要
素12、12、……を所定の間隔で横並びで形成すると
共に、同じく基板11に形成した端子13、13に各導
電性要素12、12、……の両端を接続した構造とされ
る。そしてこの導電体に対し切断手段14を矢印Yの如
く相対移動させるか、あるいは導電体10を切断手段1
4に対し相対移動させるかして各導電性要素を端から順
に基板ごとあるいは基板上で切断するようにす。
In another one of the other preferred embodiments (second embodiment below), the conductor 10 is, for example, printed or attached with a suitable conductive material, as schematically shown in FIG. , The linear conductive elements 12, 12, ... Are formed side by side at a predetermined interval on the sheet-shaped substrate 11, and the conductive elements 12, 12, are formed on the terminals 13, 13 formed on the substrate 11 in the same manner. The structure is such that both ends of ... are connected. Then, the cutting means 14 is moved relative to this conductor as indicated by an arrow Y, or the conductor 10 is cut.
4 is moved relative to 4 so that each conductive element is cut sequentially from the end with the substrate or on the substrate.

【0008】本発明による上記のような最大変形量検出
センサにおける検出精度は、主に導電性要素の配列精度
と切断手段の精度で決まることになるが、上記の各態様
からも分かるように、導電性要素に必要な配列を高精度
で与えることは容易であり、また切断手段を構成するに
ついても特に精度的に困難な要素はない。
The detection accuracy of the above-described maximum deformation amount detection sensor according to the present invention is mainly determined by the accuracy of arrangement of the conductive elements and the accuracy of the cutting means. It is easy to give the necessary arrangement to the conductive elements with high accuracy, and there is no particular difficulty in configuring the cutting means in terms of accuracy.

【0009】例えば第1の態様の場合、その導電性要素
の配列は、各導電性要素の折曲げ部を横一線に並べるだ
けでよいので、それに高い精度を与えることは容易であ
る。特に本構成の場合には、導電性要素を折り返してい
るため折曲げ部の横一線並びに誤差を生じたとしてもそ
の影響を半分にすることができ、より高い精度を保つこ
とができる。また各導電性要素の長さが均一であっても
よく、均一長さである方が好ましいので、各導電性要素
の長さを一律にすることにより、その加工をさらに容易
なものとすることができる。またその切断手段も例えば
その刃部が階段状に並んだ構造を与えるだけでよく、そ
の加工も精度的な困難は特にない。
For example, in the case of the first aspect, since the arrangement of the conductive elements only needs to arrange the bent portions of the conductive elements in a horizontal line, it is easy to give high precision to it. In particular, in the case of this configuration, since the conductive element is folded back, even if a lateral straight line of the bent portion and an error occur, the influence can be halved and higher accuracy can be maintained. Further, the length of each conductive element may be uniform, and it is preferable that the length is uniform. Therefore, by uniformly setting the length of each conductive element, the processing can be further facilitated. You can Further, the cutting means only needs to be provided with, for example, a structure in which the blade portions are arranged in a stepwise manner, and the processing thereof is not particularly difficult in terms of accuracy.

【0010】また第2の態様の場合、その導電性要素の
配列は、単に所定の間隔で横並びにするだけでよく、例
えばプリント配線の技術を利用することにより、高精度
な加工を簡単に行なうことができる。またその切断手段
も一般によくあるカッターのような構造のもので十分足
り、精度的な困難要素はない。
Further, in the case of the second aspect, the arrangement of the conductive elements may be simply arranged side by side at a predetermined interval, and high precision processing can be easily performed by utilizing, for example, a technique of printed wiring. be able to. Further, the cutting means may be of a structure like a general cutter, which is generally sufficient, and there is no difficult element in terms of accuracy.

【0011】以上の精度要素の他に、導電体と切断手段
との相対移動の精度も本発明による最大変形量検出セン
サの検出精度に影響するが、導電体と切断手段との相対
移動を与える構造は、移動する要素を適当な支持構造で
移動可能に支持するだけで足り、これにも精度的に困難
な要素はない。
In addition to the above accuracy factors, the relative movement accuracy between the conductor and the cutting means also affects the detection accuracy of the maximum deformation amount detecting sensor according to the present invention, but the relative movement between the conductor and the cutting means is given. The structure only needs to movably support the moving element with a suitable support structure, and this is not a difficult element in terms of accuracy.

【0012】以上のように、本発明による最大変形量検
出センサは、何れも高精度な加工が容易である要素によ
り検出精度の安定性が与えられるようになっているの
で、高い検出精度を安定的に得ることが可能である。
As described above, in the maximum deformation amount detection sensor according to the present invention, since the stability of the detection accuracy is given by the element which is easily processed with high accuracy, the high detection accuracy is stable. It is possible to obtain it.

【0013】以上のような最大変形量検出センサ、特に
第1の態様の最大変形量検出センサについては、複数の
導電体をそれぞれの導電性要素の折曲げ部が切断手段と
の相対移動の方向で所定の間隔を置いて重なって並ぶ状
態で設ける構造が可能である。この構造によると、より
多くの本数の導電性要素をコンパクトな構造に納めるこ
とができ、したがってより大きな変形量まで検出するこ
とができ、コンパクトな構造でありながら検出範囲を広
くとることができる。
In the above-described maximum deformation amount detection sensor, particularly in the maximum deformation amount detection sensor of the first aspect, the bending portions of the conductive elements of the plurality of conductors are moved in the direction of relative movement with the cutting means. It is possible to provide a structure in which they are provided in a state of being lined up with each other at a predetermined interval. According to this structure, a larger number of conductive elements can be accommodated in a compact structure, and thus even a large amount of deformation can be detected, and the detection range can be widened despite the compact structure.

【0014】また第1の態様の最大変形量検出センサに
ついては、導電性要素に炭素繊維を用いることで、より
高精度な検出が可能となる。即ち、第1の態様の最大変
形量検出センサでは、上記のように折曲げ部に切断手段
の刃部を押接させて導電性要素を切断するようにしてい
るが、これは主に“折れ”として切断を生じさせている
ものである。したがって引っ張り強度が高くて伸びにく
いが折れによる切断に比較的弱いという特性を持つ炭素
繊維を用いることで、この折れ切断を敏感に生じさせる
ことができ、検出精度を高めることができる。
Further, in the maximum deformation amount detection sensor of the first aspect, by using carbon fiber for the conductive element, it is possible to perform detection with higher accuracy. That is, in the maximum deformation amount detection sensor of the first aspect, as described above, the blade of the cutting means is pressed against the bent portion to cut the conductive element. ", Which causes disconnection. Therefore, by using the carbon fiber which has a high tensile strength and is difficult to stretch but is relatively weak against cutting due to breakage, this breaking breakage can be caused sensitively and detection accuracy can be improved.

【0015】また第1の態様の最大変形量検出センサに
ついては、各導電性要素にダミー抵抗を付加するように
すると、端子における抵抗変化のリニア性がよくなり、
出力の処理が容易となる。
Further, in the maximum deformation amount detection sensor of the first aspect, if a dummy resistance is added to each conductive element, the linearity of resistance change at the terminal is improved,
Output processing becomes easy.

【0016】さらに第1の態様及び上記第2の態様の最
大変形量検出センサ、特に第2の態様の最大変形量検出
センサについては、適当な抵抗値を持つ素材を用いて導
電性要素を形成することの他に、例えば銅やアルミのよ
うな良導体で切断対象部分を形成し、これに抵抗要素を
接続することで全体として必要な抵抗を持った導電性要
素とする構成も可能である。
Further, in the maximum deformation amount detection sensor of the first aspect and the second aspect, particularly the maximum deformation amount detection sensor of the second aspect, the conductive element is formed by using a material having an appropriate resistance value. In addition to this, it is also possible to form a conductive element having a necessary resistance as a whole by forming a portion to be cut with a good conductor such as copper or aluminum and connecting a resistance element to this.

【0017】またさらに第1及び第2の各態様の最大変
形量検出センサについては、初期設定用の導電性要素を
設け、これを切断手段で切断することで切断手段と導電
体との初期位置関係の設定を行なえるようにすると、実
際に使用する際の初期設定を正確に行なう上で便利であ
る。
Furthermore, regarding the maximum deformation amount detection sensor of each of the first and second aspects, a conductive element for initial setting is provided, and by cutting this with the cutting means, the initial position between the cutting means and the conductor is set. Being able to set the relationship is convenient for making accurate initial settings when actually using it.

【0018】そしてさらに第1及び第2の各態様の最大
変形量検出センサについては、切断手段による切断を受
けない導電性要素を検査用として設け、この検査用導電
性要素で出力回路の断線の有無を検査することができる
ようにすることで、信頼性を一層高めることができる。
Further, in the maximum deformation amount detecting sensor of each of the first and second aspects, a conductive element which is not cut by the cutting means is provided for inspection, and the conductive element for inspection is used for disconnection of the output circuit. By making it possible to inspect the presence or absence, the reliability can be further enhanced.

【0019】[0019]

【実施例】以下、本発明の実施例を説明する。第1の実
施例は上記第1の態様に対応する例で、図2及び図3に
本実施例による最大変形量検出センサ20を示す。図に
見られるように、本実施例の最大変形量検出センサ20
は、平べったく形成したプラスチック製の透明なケース
21の内部に、導電体22、切断手段23、スライダー
24、及び一対の出力ピン25、25を納め、これらを
同じくプラスチック製の透明なカバー26で覆った構造
となっている。
EXAMPLES Examples of the present invention will be described below. The first embodiment is an example corresponding to the first aspect described above, and FIGS. 2 and 3 show a maximum deformation amount detection sensor 20 according to the present embodiment. As shown in the figure, the maximum deformation amount detection sensor 20 of this embodiment is
Accommodates a conductor 22, a cutting means 23, a slider 24, and a pair of output pins 25, 25 inside a flat transparent plastic case 21. These are also covered by a transparent plastic cover. The structure is covered with 26.

【0020】導電体22は、基本的には図1に関して上
述した原理構造に基づいており、200μΩ/cm程度
の電気抵抗を持つ炭素繊維束を用いた導電性要素27、
27、……を図3に見られるように所定の間隔で横並び
にして一対の端子28、28(図3に一方のみが現れて
いる)の間に接続し、またその中間部で折り返して折曲
げ部29(図2)をそれぞれが横一線で並ぶようにして
与えた構造としてあり、このような各導電性要素27の
配列状態を保つために、折曲げ部29の両側で保持シー
ト30に保持させている。保持シート30は、2枚の透
明な絶縁性のシートを接着剤の介在のもとに導電性要素
27の両側からサンドイッチ状に挟むように形成されて
おり、したがって導電性要素27は、2枚の絶縁性のシ
ートの間で接着剤に包まれた状態となっている。また端
子28、28からは図中に現れないリード線が延設され
ており、出力ピン25、25に接続されている。
The conductor 22 is basically based on the principle structure described above with reference to FIG. 1, and is a conductive element 27 using a carbon fiber bundle having an electric resistance of about 200 μΩ / cm,
27 are connected side by side at a predetermined interval as shown in FIG. 3 between a pair of terminals 28, 28 (only one of which is shown in FIG. 3), and folded back at the middle portion. The bent portions 29 (FIG. 2) are provided such that they are aligned in a horizontal line, and in order to maintain such an arrangement state of the conductive elements 27, the holding sheets 30 are provided on both sides of the bent portions 29. Hold it. The holding sheet 30 is formed by sandwiching two transparent insulating sheets from both sides of the conductive element 27 with the interposition of an adhesive, so that the conductive element 27 has two sheets. It is in a state of being wrapped in an adhesive between the insulating sheets. Lead wires not shown in the figure extend from the terminals 28, 28 and are connected to the output pins 25, 25.

【0021】切断手段23は、プラスチック製の薄板を
用いて形成されており、その先端部に後述のスライダー
24と係合する係合受け部31を設け、またこの係合受
け部31から後端側に向けて櫛歯状にガイド溝32を形
成し(図3)、このガイド溝32の奥端に刃部を設けた
構造とされている。各ガイド溝32は、導電性要素27
の上記配列間隔に対応した間隔とされ、またその先端側
からの長さが順に異なるようにされている。より具体的
には、図3で見て上端が最も短く、これに比べて下端、
上から2番目、下から2番目、上から3番目、下から3
番目という順番で徐々に長くなるようにしてある。
The cutting means 23 is formed by using a thin plastic plate, and an engaging receiving portion 31 which engages with a slider 24 described later is provided at a front end portion of the cutting means 23. A guide groove 32 is formed in a comb shape toward the side (FIG. 3), and a blade portion is provided at the back end of the guide groove 32. Each guide groove 32 has a conductive element 27.
The intervals are set to correspond to the above array intervals, and the lengths from the tip end side are made different in order. More specifically, the upper end is the shortest as seen in FIG.
2nd from top, 2nd from bottom, 3rd from top, 3 from bottom
The length is gradually increased in the order of th.

【0022】この切断手段23は、そのガイド溝32に
導電性要素27が1本ずつ入り込むようにして導電体2
2に組み合わされており、後述のスライダー24を介し
て図3中の矢印Zの如く移動させられた際にその移動量
に応じてガイド溝32の奥端の刃部が上記のガイド溝長
さ順で順番に対応の導電性要素27に押接してこれを切
断するようになっている。このように本例では切断手段
23が移動するようにしてあるが、構造を若干変えるこ
とで導電体22を移動させるようにすることも可能であ
る。
The cutting means 23 has a structure in which the conductive elements 27 are inserted into the guide grooves 32 one by one so that the conductive material 2 is formed.
When the slider is moved as shown by an arrow Z in FIG. 3 via a slider 24, which will be described later, the blade portion at the back end of the guide groove 32 has the above guide groove length in accordance with the amount of movement. The conductive elements 27 are pressed in order and cut in order. As described above, the cutting means 23 is moved in this example, but the conductor 22 can be moved by slightly changing the structure.

【0023】スライダー24は、アルミ製で、後端部に
前記切断手段23の係合受け部31と係合する係合部3
3とブレーキ部34を、また中間部に開口部35を、そ
して先端部に接続部36を有する構造で平板状に形成さ
れている。このスライダー24は、ブレーキ部34が与
える適度な摩擦抵抗をもってケース21の側壁の内側に
摺接しながら前述の移動を行なえるようになっている。
またケース21の先端部に設けてある係止突起37が開
口部35に入り込む状態とされ、移動に際して開口部3
5の後端面が係止突起37に当たることでケース21か
ら抜け落ちるのを防止できるようにされている。
The slider 24 is made of aluminum and has a rear end portion which engages with the engagement receiving portion 31 of the cutting means 23.
3 and the brake portion 34, an opening portion 35 in the middle portion, and a connection portion 36 at the tip end portion are formed in a flat plate shape. The slider 24 can move while slidingly contacting the inside of the side wall of the case 21 with an appropriate frictional resistance provided by the brake portion 34.
In addition, the locking projection 37 provided at the tip of the case 21 enters the opening 35, and the opening 3 is moved during the movement.
The rear end surface of the plate 5 contacts the locking projection 37 so that it can be prevented from falling out of the case 21.

【0024】ここでその他の要素について簡単に説明す
ると、ブレーキ部34にはブレーキ部材38が組み込ま
れ、これが図示せぬ付勢手段による付勢力でケース21
の内側壁に押接してブレーキ力を発生する。またスライ
ダー24は、ロックピン39で不使用時にその移動をロ
ックできるようにされている。さらに導電体22は、保
持シート30、30の間に介在するスペーサ40と共に
係止ピン41でケース21に係止されている。
The other elements will be briefly described. A brake member 38 is incorporated in the brake portion 34, and the case 21 is urged by an urging means (not shown).
Brake force is generated by pressing against the inner wall of the. Further, the slider 24 can be locked by a lock pin 39 when it is not used. Further, the conductor 22 is locked to the case 21 by a locking pin 41 together with the spacer 40 interposed between the holding sheets 30 and 30.

【0025】以上の最大変形量検出センサ20は図4に
模式化して示すようにして用いられる。即ちケース21
に形成してある固定部42を介して一端を検出対象の構
造物の構成部材Pの一方側の端近くに固定すると共に、
スライダー24の接続部36に適当な長さのワイヤWな
どを接続し、このワイヤWの端を構成部材Pの他方のの
端近くに固定する。ワイヤWの張り向きは、構成部材P
に発生が予想される変形の主な発生方向と平行にする。
この状態で構成部材Pに変形が生じると、これに応じて
ワイヤWに張力が掛かり、その結果スライダー24が移
動し、この移動量に応じて上記のように導電性要素27
が順次切断する。そしてこれに応じて導電体22におけ
る抵抗値が徐々に大きくなり、定期的に、あるいは必要
な時期に抵抗値を測ることで過去に生じた変形について
の最大変形量の程度を知ることができる。
The maximum deformation amount detection sensor 20 described above is used as schematically shown in FIG. That is, case 21
One end is fixed near one end of the constituent member P of the structure to be detected through the fixing portion 42 formed in
A wire W or the like having an appropriate length is connected to the connecting portion 36 of the slider 24, and the end of the wire W is fixed near the other end of the component P. The tension of the wire W depends on the component P.
Parallel to the main direction of deformation that is expected to occur.
When the component P is deformed in this state, the wire W is correspondingly tensioned, and as a result, the slider 24 moves, and the conductive element 27 is moved as described above according to the amount of movement.
Cut off in sequence. Then, in response to this, the resistance value of the conductor 22 gradually increases, and by measuring the resistance value periodically or at a necessary time, it is possible to know the degree of the maximum deformation amount of the deformation that has occurred in the past.

【0026】図5に示すのは、第1実施例の最大変形量
検出センサに用いることのできる導電体の他の例で、こ
の導電体は、各導電性要素27、27、……に導電性要
素27と同じ炭素繊維束がバイパス的にダミー抵抗43
として接続されている。この場合の等価回路は図6のよ
うになり、×印の部分が切断対象となる。このようにダ
ミー抵抗を用いると出力における抵抗変化のリニア性が
よくなり、出力の処理が容易となる。
FIG. 5 shows another example of a conductor that can be used in the maximum deformation amount detecting sensor of the first embodiment. This conductor is electrically conductive to each conductive element 27, 27, .... The same carbon fiber bundle as the sex element 27 bypasses the dummy resistor 43.
Connected as. The equivalent circuit in this case is as shown in FIG. 6, and the portion marked with X is to be cut. When the dummy resistor is used in this way, the linearity of the resistance change in the output is improved, and the output processing is facilitated.

【0027】図7に示すのは、複数、この例では3個の
導電体44a、44b、44cを組み合わせて複合的に
用いる例で、同じく第1実施例の最大変形量検出センサ
に用いることができる。この複合構造では、切断手段2
3により、先ず導電体44aの各導電性要素27が順次
切断され、次に導電体44bの各導電性要素27が順次
切断され、最後に導電体44cの各導電性要素27が順
次切断される。この結果、切断手段23の移動幅、つま
り検出可能な最大変形量の範囲を大きくすることができ
る。
FIG. 7 shows an example in which a plurality of, in this example, three conductors 44a, 44b, and 44c are used in combination, and can be used in the maximum deformation amount detection sensor of the first embodiment as well. it can. In this composite structure, the cutting means 2
3, first, the conductive elements 27 of the conductor 44a are sequentially cut, then the conductive elements 27 of the conductor 44b are sequentially cut, and finally the conductive elements 27 of the conductor 44c are sequentially cut. . As a result, the moving width of the cutting means 23, that is, the range of the maximum detectable deformation amount can be increased.

【0028】図8に示すのは、各導電性要素27の間に
絶縁スペーサ45を介在させて形成した導電体の例であ
り、また図9に示すのは、上記の保持シート30に相当
するものに保持溝46を設け、この保持溝46に導電性
要素27を納めるようにした例で、これらは同じく第1
実施例の最大変形量検出センサに用いることができる。
FIG. 8 shows an example of a conductor formed by interposing an insulating spacer 45 between each conductive element 27, and FIG. 9 corresponds to the holding sheet 30 described above. In the example in which the holding groove 46 is provided in the object and the conductive element 27 is housed in the holding groove 46, these are also the first
It can be used for the maximum deformation amount detection sensor of the embodiment.

【0029】図10に示すのは、第1実施例の最大変形
量検出センサに用いることのできる導電体のさらに他の
例で、この導電体は、線状の導電性要素(図示を省略)
をフレキシブルな保持シート47で全体的に覆った構造
となっており、その切断には、所定の角度で連続傾斜し
た刃部48を有する切断手段49を用いることになる。
FIG. 10 shows still another example of a conductor that can be used in the maximum deformation amount detection sensor of the first embodiment. This conductor is a linear conductive element (not shown).
Is entirely covered with a flexible holding sheet 47, and a cutting means 49 having a blade portion 48 continuously inclined at a predetermined angle is used for cutting.

【0030】図12〜図14に示すのは、第2の実施例
による最大変形量検出センサ50で、上記第2の態様に
対応している。図に見られるように、本実施例の最大変
形量検出センサ50は、横長の筒状に形成したケース5
1の内部に導電体52、切断手段53、及びスライダー
54を組み込んだ構造となっている。この第2の実施例
による最大変形量検出センサ50も上記最大変形量検出
センサ20と同様にして用いられる。
12 to 14 show a maximum deformation amount detection sensor 50 according to the second embodiment, which corresponds to the second mode. As shown in the figure, the maximum deformation amount detection sensor 50 of the present embodiment is a case 5 formed in a horizontally long cylindrical shape.
1 has a structure in which a conductor 52, a cutting means 53, and a slider 54 are incorporated. The maximum deformation amount detection sensor 50 according to the second embodiment is also used in the same manner as the maximum deformation amount detection sensor 20.

【0031】導電体52は、図15に示すように、フレ
キシブルプリント基板の方式で形成されている。具体的
には、プラスチックフィルムの基板55に導電性要素用
の銅線パターン56を所定の間隔で横並びに、また端子
用の銅線パターン57、58を銅線パターン56の各端
に接続させてそれぞれ印刷で形成すると共に、各銅線パ
ターン56にチップ抵抗59を接続して形成されてい
る。この導電体52の等価回路は図16のようになる
が、図17に示す等価回路のように形成することも可能
である。
As shown in FIG. 15, the conductor 52 is formed by the method of a flexible printed circuit board. Specifically, the copper wire patterns 56 for conductive elements are horizontally arranged at a predetermined interval on the plastic film substrate 55, and the copper wire patterns 57 and 58 for terminals are connected to the respective ends of the copper wire pattern 56. Each of them is formed by printing, and a chip resistor 59 is connected to each copper wire pattern 56. The equivalent circuit of the conductor 52 is as shown in FIG. 16, but it is also possible to form it as the equivalent circuit shown in FIG.

【0032】切断手段53は、ナイフ状とされ、細長い
棒状に形成されたスライダー54の後端部にビス止めで
保持させてある。
The cutting means 53 is knife-shaped, and is held by screws at the rear end of the slider 54 formed in the shape of an elongated rod.

【0033】切断手段53を保持したスライダー54
は、ケース51に形成してあるスライドガイド部(図中
には現れない)に摺接ガイドされて図12中で右方に移
動できるようにされており、この移動に応じて切断手段
53が導電体51の銅パターン56、56、……を基板
55ごと切断するようになっている。
A slider 54 holding a cutting means 53
Is slidably guided by a slide guide portion (not shown in the drawing) formed on the case 51 so that it can be moved to the right in FIG. 12, and the cutting means 53 is moved according to this movement. The copper patterns 56, 56, ... Of the conductor 51 are cut together with the substrate 55.

【0034】[0034]

【発明の効果】以上説明したように本発明による最大変
形量検出センサは、導電体における各導電性要素を導電
体に対する切断手段の相対移動で切断する構造になって
おり、何れも高精度な加工が容易である要素により検出
精度の安定性が与えられることができるので、高い検出
精度を安定的に発揮することができる。
As described above, the maximum deformation amount detection sensor according to the present invention has a structure in which each conductive element in the conductor is cut by the relative movement of the cutting means with respect to the conductor, and both are highly accurate. Since the stability of the detection accuracy can be provided by the element that is easily processed, the high detection accuracy can be stably exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による最大変形量検出センサの一形態に
ついての原理図。
FIG. 1 is a principle diagram of an embodiment of a maximum deformation amount detection sensor according to the present invention.

【図2】本発明の第1実施例による最大変形量検出セン
サの分解図。
FIG. 2 is an exploded view of the maximum deformation amount detection sensor according to the first embodiment of the present invention.

【図3】図2の最大変形量検出センサのカバーを除いた
状態の平面図。
FIG. 3 is a plan view of the maximum deformation amount detection sensor of FIG. 2 excluding a cover.

【図4】図2の最大変形量検出センサの使用状態の模式
図。
FIG. 4 is a schematic diagram of a usage state of the maximum deformation amount detection sensor of FIG.

【図5】他の例による導電体の斜視図。FIG. 5 is a perspective view of a conductor according to another example.

【図6】図5の導電体についての等価回路図。FIG. 6 is an equivalent circuit diagram of the conductor of FIG.

【図7】複数の導電体を複合的に用いる状態を示す斜視
図。
FIG. 7 is a perspective view showing a state in which a plurality of conductors are used in combination.

【図8】絶縁スペーサを各導電性要素間に介在させる構
造の導電体の展開平面図。
FIG. 8 is a developed plan view of a conductor having a structure in which an insulating spacer is interposed between the conductive elements.

【図9】導電性要素のための保持溝を形成する構造の導
電体の部分斜視図。
FIG. 9 is a partial perspective view of a conductor having a structure forming a holding groove for a conductive element.

【図10】導電性要素をフレキシブルな保持シートで全
体的に覆った構造の導電体とこれを切断するための切断
手段を簡略化して示す斜視図。
FIG. 10 is a perspective view schematically showing a conductor having a structure in which the conductive element is entirely covered with a flexible holding sheet and a cutting means for cutting the conductor.

【図11】本発明による最大変形量検出センサの他の形
態についての原理図。
FIG. 11 is a principle view of another form of the maximum deformation amount detection sensor according to the present invention.

【図12】本発明の第2実施例による最大変形量検出セ
ンサの内部構造を示す側面図。
FIG. 12 is a side view showing the internal structure of the maximum deformation amount detection sensor according to the second embodiment of the present invention.

【図13】図12中の矢示DA方向から見た平面図。FIG. 13 is a plan view seen from the direction of the arrow DA in FIG.

【図14】図12の矢示DB方向から見た状態を簡略化
して示す断面図。
FIG. 14 is a cross-sectional view that simplifies the state viewed from the arrow DB direction in FIG. 12;

【図15】図12の最大変形量検出センサの導電体の斜
視図。
15 is a perspective view of a conductor of the maximum deformation amount detection sensor of FIG.

【図16】図15の導電体についての等価回路図。16 is an equivalent circuit diagram of the conductor of FIG.

【図17】他の導電体についての等価回路図。FIG. 17 is an equivalent circuit diagram of another conductor.

【符号の説明】[Explanation of symbols]

1、12、27、56 導電性要素 4、10、22、52 導電体 3、29 折曲げ部 6、14、23、53 切断手段 20 、50 最大変形量検出センサ 55 基板 P 構成部材 1, 12, 27, 56 Conductive element 4, 10, 22, 52 conductor 3, 29 fold 6, 14, 23, 53 Cutting means 20, 50 Maximum deformation amount detection sensor 55 substrate P component

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉池 純一 長野県小県郡丸子町御岳堂2480株式会社 長野計器製作所丸子工場内 (72)発明者 市川 正人 長野県小県郡丸子町御岳堂2480株式会社 長野計器製作所丸子工場内 (72)発明者 中曾根 博一 長野県小県郡丸子町御岳堂2480株式会社 長野計器製作所丸子工場内 (72)発明者 戸田 郁也 東京都目黒区東山3−22−1太陽工業株 式会社東京支店内 (56)参考文献 特開 平7−128156(JP,A) 特開 平6−331581(JP,A) 特開 平4−109102(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01L 1/00 G01L 1/20 G01N 27/00 G01B 5/30 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Yoshiike 2480 Mitakedo, Maruko-cho, Oka-gun, Nagano Nagano Keiki Seisakusho Co., Ltd. Maruko factory (72) Inventor Masato Ichikawa 2480, Mitakedo, Maruko-cho, Ogo-gun, Nagano Nagano Co., Ltd. Keiki Mfg. Co., Ltd.Maruko Plant (72) Inventor Hirokazu Nakasone 2480 Mitakedo Maruko-cho, Ogata-gun, Nagano Nagano Keiki Co., Ltd. Maruko Plant (72) Inventor Ikuya Toda 3-22-1 Higashiyama, Meguro-ku, Tokyo (56) References JP-A-7-128156 (JP, A) JP-A-6-331581 (JP, A) JP-A-4-109102 (JP, A) (58) Fields investigated (58) Int.Cl. 7 , DB name) G01L 1/00 G01L 1/20 G01N 27/00 G01B 5/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 構造物の構成部材の変形における最大変
形量を検出するための最大変形量検出センサにおいて、 それぞれ所定の電気抵抗値を持つ複数の導電性要素を横
並び状態に配列させ、且つ各導電性要素の順次的な切断
に応じて相関的な抵抗値の変化を与える回路をなすよう
に形成されており、構造物の変形によって変形しないよ
うにされた導電体と、 この導電体の導電性要素に当接して、当接した導電性要
素を切断する切断手段とを備え、 これら導電体と切断手段とが一方に対し相対的に移動可
能とされ、そして構造物における検出対象の構成部材に
対し当該構成部材に生じる変形に応じて前記導電体と切
断手段との相対移動を生じるように取り付けて用いら
れ、この相対移動の移動量に応じて導電体の導電性要素
を切断手段にて順次切断するようになっていることを特
徴とする最大変形量検出センサ。
1. A maximum deformation amount detection sensor for detecting the maximum deformation amount of deformation of a structural member of a structure, wherein a plurality of conductive elements each having a predetermined electric resistance value are arranged side by side. It is formed so as to form a circuit that gives a relative change in resistance value in accordance with the sequential cutting of the conductive element, so that it does not deform due to the deformation of the structure.
And a cutting means for abutting the conductive element of the conductor to cut the abutting conductive element. The conductor and the cutting means are movable relative to one another. And is attached so as to cause relative movement between the electric conductor and the cutting means in response to a deformation of the constituent member to be detected in the structure according to a deformation amount of the constituent member. The maximum deformation amount detection sensor is characterized in that the conductive element of the conductor is sequentially cut by the cutting means.
【請求項2】 導電体は、線状体で形成した各導電性要
素に中間部で折り返して折曲げ部を設けると共に、各導
電性要素の折曲げ部を横一線に並べた構造とされ、また
切断手段は、導電体との相対移動に際してその刃部が各
導電性要素に上記横一線並びの折曲げ部で相対移動量に
応じて順次押接することにより各導電性要素を順次切断
する構造とされている請求項1に記載の最大変形量検出
センサ。
2. The conductor has a structure in which each conductive element formed of a linear body is folded back at an intermediate portion to provide a bent portion, and the bent portions of each conductive element are arranged in a horizontal line. Further, the cutting means has a structure in which the blade portion sequentially cuts the conductive elements by pressing the conductive elements at the bent portions arranged in a line in the horizontal direction in accordance with the relative movement amount when the cutting means moves relative to the conductor. The maximum deformation amount detection sensor according to claim 1.
【請求項3】 導電体は、シート状の基板に線状の導電
性要素を所定の間隔で横並びで形成した構造とされ、こ
の導電体に対する切断手段の相対移動に応じて各導電性
要素を横並びの端から順次切断する構造とされている請
求項1に記載の最大変形量検出センサ。
3. The conductor has a structure in which linear conductive elements are formed side by side on a sheet-shaped substrate at predetermined intervals, and the conductive elements are formed in accordance with relative movement of the cutting means with respect to the conductor. The maximum deformation amount detection sensor according to claim 1, wherein the maximum deformation amount detection sensor has a structure in which the ends are sequentially cut.
JP32323694A 1994-12-26 1994-12-26 Maximum deformation detection sensor Expired - Lifetime JP3527558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32323694A JP3527558B2 (en) 1994-12-26 1994-12-26 Maximum deformation detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32323694A JP3527558B2 (en) 1994-12-26 1994-12-26 Maximum deformation detection sensor

Publications (2)

Publication Number Publication Date
JPH08178765A JPH08178765A (en) 1996-07-12
JP3527558B2 true JP3527558B2 (en) 2004-05-17

Family

ID=18152530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32323694A Expired - Lifetime JP3527558B2 (en) 1994-12-26 1994-12-26 Maximum deformation detection sensor

Country Status (1)

Country Link
JP (1) JP3527558B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198756A (en) * 2006-01-23 2007-08-09 Univ Nagoya Maximum value memory type optical fiber sensor, unit of same, and system of same
JP5952641B2 (en) * 2012-05-24 2016-07-13 アンリツ株式会社 Strain sensor and strain sensor system

Also Published As

Publication number Publication date
JPH08178765A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
US5489900A (en) Force sensitive transducer for use in a computer keyboard
US3812311A (en) Miniature type switch probe for testing integrated circuit assemblies or the like
WO1994029683A1 (en) Supported strain gauge and joy stick assembly and method of making
JP3527558B2 (en) Maximum deformation detection sensor
JPH08220130A (en) Piezoelectric acceleration sensor
WO1998016795A2 (en) Extensometer structure
US4345301A (en) Capacitive humidity transducer
KR101028319B1 (en) Liquid level detector
JP3403840B2 (en) Maximum deformation detection sensor
JP4765508B2 (en) Measuring jig for high frequency devices
JPH065320A (en) Circuit connection checking device
JP3665952B2 (en) ZIF socket connector
JP3190874B2 (en) Detachable high-frequency probe
JP3530651B2 (en) Maximum value storage type sensor
JPH0750138B2 (en) Defect inspection method for transparent conductive circuit board
JP2835300B2 (en) Dimension measuring device
JP2531261Y2 (en) Chip network electronic component inspection equipment
JP3471500B2 (en) Output circuit of detection sensor
JP2003315089A (en) Strain gauge
KR900000980B1 (en) Angle measure apparatus using for magnetic resistor factor
KR0177224B1 (en) A test pattern structure for optical projection system
JPH11233177A (en) Connecting structure
JP4413373B2 (en) Probe unit for four-terminal measurement
JP3477646B2 (en) Contact type meandering meter
JPS581834Y2 (en) Keyboard device for electronic musical instruments

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150227

Year of fee payment: 11

EXPY Cancellation because of completion of term