JP3527518B2 - Manufacturing method of positive electrode for non-aqueous electrolyte lithium secondary battery - Google Patents

Manufacturing method of positive electrode for non-aqueous electrolyte lithium secondary battery

Info

Publication number
JP3527518B2
JP3527518B2 JP24292192A JP24292192A JP3527518B2 JP 3527518 B2 JP3527518 B2 JP 3527518B2 JP 24292192 A JP24292192 A JP 24292192A JP 24292192 A JP24292192 A JP 24292192A JP 3527518 B2 JP3527518 B2 JP 3527518B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
aqueous electrolyte
nickel
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24292192A
Other languages
Japanese (ja)
Other versions
JPH0696769A (en
Inventor
正樹 長谷川
祐之 村井
修二 伊藤
靖彦 美藤
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24292192A priority Critical patent/JP3527518B2/en
Publication of JPH0696769A publication Critical patent/JPH0696769A/en
Application granted granted Critical
Publication of JP3527518B2 publication Critical patent/JP3527518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、非水電解質リチウム二
次電池に関するものである。 【0002】 【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、多くの研究が行われている。 【0003】これまで非水電解質二次電池の正極活物質
として、LiCoO2、LiMn2 4、LiFeO2、L
iNiO2、V25、Cr25、MnO2、TiS2、M
oS2などの遷移金属の酸化物およびカルコゲン化合物
が提案されており、これらは層状もしくはトンネル構造
を有し、リチウムイオンが出入りできる結晶構造を持
つ。特に、LiCoO2やLiNiO2、LiMn24
4V級の非水電解質リチウム二次電池用正極活物質とし
て注目されている。 【0004】しかし、これらの中で特性的に最も有望な
正極活物質であるLiCoO2は、コバルトが高価な元
素であり、高コストとなってしまう。さらには、原料の
供給面での不安もあり、世界情勢の変化による供給不
足、価格の高騰等の可能性も考えられる。また、LiM
24やLiNiO2は、特性的にはLiCoO2と比較
して若干劣っている面もあるが、その原料であるマンガ
ンやニッケルの化合物が非常に低コストで安定して供給
され、コストや原料供給の面での心配はない。さらに、
LiNiO2はLiCoO2と同様の組成、構造を有して
おり高容量、高電圧のリチウム二次電池用正極活物質と
して期待される材料である。 【0005】 【発明が解決しようとする課題】しかしながら、LiN
iO2を正極活物質として用いる場合、その合成が容易
ではない。ジャーナル・オブ・アメリカンケミカルソサ
エティー、76巻、1499頁(1954)に記載され
ているように、無水水酸化リチウムと金属ニッケルを酸
素雰囲気下で反応して合成することができるが、正極活
物質としての特性は不十分なものである。また、ケミス
トリー・エクスプレス、6巻、3号、161項(199
1)に記載されているように、水酸化ニッケルと硝酸ニ
ッケルを水溶液系で反応させて前駆体を経由して800
℃で焼成することにより、特性の良い活物質を得ること
ができるといった報告もあるが、合成方法としては非常
に複雑なものとなってしまう。なおかつ、この方法では
再現性が悪く、その特性に大きなばらつきがみられる。
そこで、前述の方法と比較しより容易な合成方法とし
て、Li源とNi源の混合物を加熱焼成することによる
直接反応が考えられる。この場合Li源としては硝酸リ
チウム、水酸化リチウム、炭酸リチウムが、Ni源とし
ては硝酸ニッケル、水酸化ニッケル、炭酸ニッケルが考
えられる。600℃から850℃の範囲の温度で焼成し
た場合には、いずれのLi源、Ni源の組合せでもLi
NiO2の合成は可能であるが、出発原料により、容量
的に劣った特性を持つ結晶相の混入がみられる場合があ
る。この特性の劣った結晶相の生成のため、充放電容量
が著しく低下する。従って、優れた特性を有するリチウ
ム二次電池用正極を得るためには、前記の特性の劣った
結晶相の混入の少ない材料を用いる必要がある。 【0006】本発明は、このような問題点を解決するも
ので、優れた特性を有するリチウム二次電池用正極を提
供するものである。 【0007】 【課題を解決するための手段】リチウムを可逆的に吸蔵
放出することのできる正極と、リチウムまたはリチウム
を主体とする化合物を含む負極、および非水電解質から
なる非水電解質リチウム二次電池に用いる正極活物質で
あるLiNiO2の製法であって、硝酸リチウムと炭酸
ニッケルとをモル比で1:1で混合したのち、600〜
850℃で焼成することで、X線回折法による前記Li
NiO2の003面の反射ピーク強度と104面の反射
ピーク強度との強度比(003/104)を1.20以
上としたことを特徴とするものである。 【0008】 【作用】ニッケルとリチウムの複合酸化物の一つとして
LiNiO2の組成で示される化合物が存在する。この
LiNiO2は同様の組成を持つLiCoO2と同じ六方
晶系の結晶構造を持ち、非水電解質リチウム二次電池用
正極活物質として優れた特性を示す可能性が大いに期待
される。しかしながら、合成が容易ではなく安定した特
性を得ることが非常に困難である。 【0009】そこでまず、出発原料として、Ni源に硝
酸ニッケル、水酸化ニッケルおよび炭酸ニッケルを、L
i源に硝酸リチウム、水酸化リチウム、炭酸リチウムを
用い焼成条件について検討した結果、600℃から85
0℃の温度範囲での焼成により特性の優れた六方晶の結
晶相の合成が可能であることが解った。600℃以下の
温度では十分に反応が進まず、また850℃以上の温度
では岩塩型の構造を持つ特性の劣った結晶相が安定に生
成してしまう。しかしながら、850℃以下の温度で焼
成した場合でも、出発原料の違いにより容量に大きな差
が見られた。前述の出発源料の組合せの中では硝酸リチ
ウムと水酸化ニッケル、炭酸ニッケルの少なくとも一方
との組合せの場合に大きな容量が得られた。 【0010】このとき、X線回折測定による各サンプル
の回折パターンを詳しく調べたところ、出発原料の違い
により各ピークの強度比が異なっており、特に003の
ピーク強度が大きく変化していた。各サンプルの003
面のピーク強度を定量的に比較するため強度変化の小さ
な104面のピークとの強度比(003/104)のを
計算したところ、容量の大きなサンプルでは003/1
04のピーク強度比は大きく、逆に容量の小さなサンプ
ルではピーク強度比も小さくなっていた。特に003/
104が1.20以上のサンプルで優れた特性を有して
いた。岩塩型の結晶構造では003に対応する反射は現
れないことから、003のピーク強度が小さくなる程岩
塩型の結晶相の混入の割合が大きく容量も小さくなって
いると考えられる。従って、003/104の値が大き
な、好ましくは1.20以上のLiNiO2を用いるこ
とにより、優れた特性を有するリチウム二次電池用正極
を得ることができる。 【0011】 【実施例】以下、本発明を実施例を用いて詳細に説明す
るがこれら実施例に限定されるものではない。 【0012】(実施例1)本実施例では、出発原料とし
てリチウム源にLiNO3(硝酸リチウム)、Li(O
H)2(水酸化リチウム)、Li2CO3(炭酸リチウ
ム)、ニッケル源にNiNO3(硝酸ニッケル)、Ni
(OH)2(水酸化ニッケル)、NiCO3(炭酸ニッケ
ル)のそれぞれを用いた場合の生成物を正極活物質に用
い、負極活物質にリチウムを用いた場合について説明す
る。 【0013】まず、Li源とNi源のそれぞれの組合せ
についてリチウムとニッケルがモル比で1:1となるよ
うにはかり取り、分散媒として少量の水を加え充分に混
合した後、乾燥させ大気中650℃で12時間焼成し黒
色の焼成物を得た。得られた焼成物について粉末X線回
折測定を行い各々のX線回折パターンを得た。焼成物の
代表的なX線回折パターンをとして硝酸リチウムと炭酸
ニッケルを出発原料とした場合のパターン図2に示す。 【0014】次に、各焼成物を活物質として用い正極を
作製した。正極の作製はまず、活物質と導電剤であるア
セチレンブラックと結着剤としてのポリフッ化エチレン
樹脂を重量比で7:2:1となるように混合し、充分に
乾燥したものを正極合剤とした。この正極合剤0.15
gを2トン/cm2で直径17.5mmのペレット状に
加圧成型し正極とした。 【0015】以上のように作製した電極を用いて製造し
た電池の断面図を図1に示す。正極1をケース2に置
き、正極1上にセパレータ3としての多孔性ポリプロピ
レンフィルムを置いた。負極4としては、厚さ0.8m
m、直径17.5mmのリチウム板をポリプロピレン製
ガスケット5及び負極集電体6を付けた封口板7に圧着
した。非水電解質として、1mol/lの過塩素酸リチ
ウムを溶解したプロピレンカーボネートを用いた。これ
をセパレータ3上、正極1上及び負極4上に加えた後、
電池を封口した。 【0016】以上の様にしてそれぞれの組合せについて
電池を作成し、その初期放電容量を調べた。 【0017】充放電の条件は、0.5mAの定電流で電
圧範囲3.0V〜4.3Vの電圧規制とした。表1にそ
れぞれの電池の初期放電容量と003/104を値を示
す。 【0018】 【表1】 【0019】表1に示すように003/104の値が
1.20以上である硝酸リチウムと炭酸ニッケル、硝酸
リチウムと水酸化ニッケルの出発原料の組合せの場合に
大きな容量が得られることが解った。その中でも特に、
硝酸リチウムと炭酸ニッケルの組合せ場合に最も容量が
大きくなり、003/104の値も1.32と最大の値
となっている。逆に、003/104の値の小さな場
合、特に、1.00以下の場合にはその容量は小さく、
初期容量が100mAh以下と正極活物質としては不充
分な特性となっている。 【0020】以上に示した結果のように、X線回折法に
より003面の反射と104面の反射のピーク強度比の
値を計算し、その003/104の値が1.20以上の
LiNiO2を正極活物質材料として用いることによ
り、優れた特性を有するリチウム二次電池用正極を容易
に得ることができる。 【0021】 【発明の効果】以上の実施例の説明からも明らかなよう
に、リチウムを可逆的に吸蔵放出することのできる正極
と、リチウムまたはリチウムを主体とする化合物を含む
負極、および非水電解質からなる非水電解質リチウム二
次電池に用いる正極であり、X線回折法による003面
の反射のピーク強度と104面の反射のピーク強度の強
度比(003/104)が1.20以上であるLiNi
2を含むことを特徴とする非水電解質リチウム二次電
池用正極を容易に得ることができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to a nonaqueous electrolyte lithium secondary battery.
The following relates to batteries. [0002] 2. Description of the Related Art Lithium or a lithium compound is used as a negative electrode.
Non-aqueous electrolyte rechargeable batteries have high voltage and high energy density
Many studies have been conducted. Until now, positive electrode active materials for non-aqueous electrolyte secondary batteries
As LiCoOTwo, LiMnTwoO Four, LiFeOTwo, L
iNiOTwo, VTwoOFive, CrTwoOFive, MnOTwo, TiSTwo, M
oSTwoOxides and chalcogen compounds of transition metals such as
Are proposed, which are layered or tunneled
With a crystal structure that allows lithium ions to enter and exit
One. In particular, LiCoOTwoAnd LiNiOTwo, LiMnTwoOFourIs
As a positive active material for 4V class non-aqueous electrolyte lithium secondary batteries
Is attracting attention. However, among these, the most promising in terms of characteristics
LiCoO as the positive electrode active materialTwoIs a source of expensive cobalt
And costly. Furthermore, the raw materials
There are concerns about supply, and supply is not
It is also possible that the price and price will rise. Also, LiM
nTwoOFourAnd LiNiOTwoIs characteristically LiCoOTwoCompare with
Is slightly inferior, but the manga
Supply of nickel and nickel compounds at very low cost
There is no need to worry about cost and raw material supply. further,
LiNiOTwoIs LiCoOTwoHas the same composition and structure as
High capacity, high voltage positive electrode active material for lithium secondary batteries
It is expected material. [0005] SUMMARY OF THE INVENTION However, LiN
iOTwoWhen using as a positive electrode active material, its synthesis is easy
is not. Journal of American Chemical Sosa
Et., 76, 1499 (1954).
As described above, anhydrous lithium hydroxide and metallic nickel
Although it can be synthesized by reacting under an elemental atmosphere,
Material properties are inadequate. Also chemis
Tree Express, Volume 6, Issue 3, Item 161 (199
As described in 1), nickel hydroxide and nitric acid
Reaction in an aqueous solution system and 800
Obtaining an active material with good properties by firing at ℃
Although there are reports that they can be produced,
Would be complicated. And in this method
The reproducibility is poor, and the characteristics vary widely.
Therefore, a simpler synthesis method than the above method was adopted.
By heating and firing a mixture of a Li source and a Ni source.
A direct reaction is possible. In this case, the source of Li
Titanium, lithium hydroxide and lithium carbonate are Ni sources
Consider nickel nitrate, nickel hydroxide and nickel carbonate.
available. Firing at a temperature in the range of 600 ° C to 850 ° C
In any case, any combination of Li source and Ni source
NiOTwoIs possible, but depending on the starting materials,
Crystal phase with inferior properties may be mixed.
You. Due to the formation of a crystal phase with inferior characteristics, the charge / discharge capacity
Is significantly reduced. Therefore, Lithium having excellent properties
In order to obtain a positive electrode for a secondary battery,
It is necessary to use a material in which a crystal phase is less mixed. The present invention solves such a problem.
Therefore, a positive electrode for lithium secondary batteries with excellent characteristics
To offer. [0007] SUMMARY OF THE INVENTION Reversible occlusion of lithium.
Positive electrode capable of release and lithium or lithium
From a negative electrode containing a compound mainly composed of
Positive electrode active material used in non-aqueous electrolyte lithium secondary batteries
A certain LiNiOTwoOf lithium nitrate and carbonic acid
With nickel1: 1 molar ratioAfter mixing, 600 ~
By firing at 850 ° C., the Li by X-ray diffraction
NiOTwo003 reflection peak intensity and 104 reflection
Intensity ratio to peak intensity (003/104) 1.20 or less
Characterized by the aboveIs the thing. [0008] [Function] As one of composite oxides of nickel and lithium
LiNiOTwoThere is a compound represented by the following composition: this
LiNiOTwoIs LiCoO having a similar compositionTwoSame as the six directions
For non-aqueous electrolyte lithium secondary batteries
High potential for excellent properties as positive electrode active material
Is done. However, it is not easy to synthesize
It is very difficult to obtain sex. [0009] First, as a starting material, Ni source is added to Ni source.
Nickel acid, nickel hydroxide and nickel carbonate are
Lithium nitrate, lithium hydroxide and lithium carbonate
As a result of studying the sintering conditions used, it was found that
Baking in the temperature range of 0 ° C forms hexagonal crystals with excellent properties.
It was found that the synthesis of the crystal phase was possible. Below 600 ° C
The reaction does not proceed sufficiently at a temperature of 850 ° C or higher.
Crystal phase with inferior properties having rock salt type structure
Will be formed. However, firing at temperatures below 850 ° C
Even if it is formed, there is a large difference in capacity due to the difference in starting materials.
It was observed. Among the combinations of starting materials mentioned above,
And / or nickel hydroxide or nickel carbonate
In the case of the combination with, a large capacity was obtained. At this time, each sample by X-ray diffraction measurement
Investigation of the diffraction pattern of
, The intensity ratio of each peak is different.
The peak intensity changed greatly. 003 for each sample
Small change in intensity to quantitatively compare the peak intensity of the surface
Of the intensity ratio (003/104) with the peak of
As a result of calculation, 003/1 was obtained for a sample having a large capacity.
04 has a large peak intensity ratio,
The peak intensity ratio was also smaller in the sample. Especially 003 /
104 has excellent properties in samples of 1.20 or more
Was. In the rock salt type crystal structure, the reflection corresponding to 003 is
Because the peak intensity of 003 becomes smaller,
The mixing ratio of salt-type crystal phase is large and the capacity is small.
It is thought that there is. Therefore, the value of 003/104 is large.
Preferably, LiNiO of 1.20 or moreTwoUsing
Positive electrode for lithium secondary battery with excellent characteristics
Can be obtained. [0011] DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments.
However, the present invention is not limited to these examples. (Example 1) In this example, the starting material
LiNO as lithium sourceThree(Lithium nitrate), Li (O
H)Two(Lithium hydroxide), LiTwoCOThree(Lithium carbonate
Ni) for the nickel sourceThree(Nickel nitrate), Ni
(OH)Two(Nickel hydroxide), NiCOThree(Nicke carbonate
) Is used as the positive electrode active material.
The case where lithium is used as the negative electrode active material will be described.
You. First, the respective combinations of the Li source and the Ni source
About 1: 1 molar ratio of lithium and nickel
Weigh in, add a small amount of water as a dispersion medium and mix thoroughly.
After drying, dry and bake at 650 ° C for 12 hours in air.
A color fired product was obtained. X-ray powder analysis of the obtained fired product
A folding measurement was performed to obtain each X-ray diffraction pattern. Fired
Lithium nitrate and carbonic acid as typical X-ray diffraction patterns
FIG. 2 shows a pattern when nickel is used as a starting material. Next, each fired product is used as an active material to form a positive electrode.
Produced. The preparation of the positive electrode begins with the active material and the conductive agent.
Cetylene black and polyfluoroethylene as binder
Mix the resins in a weight ratio of 7: 2: 1 and mix thoroughly
The dried product was used as a positive electrode mixture. This positive electrode mixture 0.15
g to 2 ton / cmTwoInto a 17.5mm diameter pellet
Pressure molding was performed to obtain a positive electrode. Using the electrodes manufactured as described above,
FIG. 1 is a cross-sectional view of the battery. Place positive electrode 1 in case 2
And a porous polypropylene as a separator 3 on the positive electrode 1.
The ren film was placed. 0.8 m thick as the negative electrode 4
m, 17.5mm diameter lithium plate made of polypropylene
Pressure bonding to sealing plate 7 with gasket 5 and negative electrode current collector 6
did. 1 mol / l lithium perchlorate as non-aqueous electrolyte
Propylene carbonate in which chromium was dissolved. this
On the separator 3, the positive electrode 1 and the negative electrode 4,
The battery was sealed. As described above, for each combination
A battery was prepared and its initial discharge capacity was examined. The charging and discharging conditions are as follows.
The voltage range was 3.0 V to 4.3 V. Table 1
The initial discharge capacity of each battery and 003/104 are shown.
You. [0018] [Table 1] As shown in Table 1, the value of 003/104 is
1.20 or more lithium nitrate and nickel carbonate, nitric acid
In the case of a combination of lithium and nickel hydroxide starting materials
It turns out that a large capacity can be obtained. Among the,
The highest capacity is obtained when combining lithium nitrate and nickel carbonate.
The value of 003/104 is also 1.32, the largest value
It has become. Conversely, if the value of 003/104 is small,
In particular, the capacity is small when it is less than 1.00,
Unsatisfactory for positive electrode active material with initial capacity of 100 mAh or less
Characteristics. As shown above, the X-ray diffraction method
The ratio of the peak intensity ratio between the reflection on the 003 surface and the reflection on the 104 surface
The value of 003/104 is 1.20 or more.
LiNiOTwoBy using as a positive electrode active material
Easy to use as a positive electrode for lithium secondary batteries with excellent characteristics
Can be obtained. [0021] As will be apparent from the above description of the embodiments.
Positive electrode capable of reversibly inserting and extracting lithium
And lithium or lithium-based compounds
A non-aqueous electrolyte comprising a negative electrode and a non-aqueous electrolyte
Positive electrode used for secondary battery, 003 surface by X-ray diffraction method
Of the peak intensity of the reflection of the surface and the peak intensity of the reflection of the 104 surface
LiNi with a degree ratio (003/104) of 1.20 or more
OTwoNon-aqueous electrolyte lithium secondary battery characterized by containing
A positive electrode for a pond can be easily obtained.

【図面の簡単な説明】 【図1】本発明の実施例における電池の縦断面図 【図2】LiNiO2のX線回折パターンを示す図 【符号の説明】 1 正極 2 ケース 3 セパレータ 4 負極 5 ガスケット 6 負極集電体 7 封口板 8 正極集電体BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a battery according to an embodiment of the present invention. FIG. 2 is a view showing an X-ray diffraction pattern of LiNiO 2 . Gasket 6 Negative electrode current collector 7 Sealing plate 8 Positive electrode current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 修二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−111822(JP,A) Tsutomu OHZUKU,et al.,“Synthesis an d Characterization of LiNiO▼下2▲(R3m) for Rechangeable N onagueous Cells”,C hemistry Express(J apan),Kinki Chemic al Society,1991,Vol. 6,No.3,p161−164   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shuji Ito               1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric               Kiki Sangyo Co., Ltd. (72) Inventor Yasuhiko Mito               1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric               Kiki Sangyo Co., Ltd. (72) Inventor Yoshinori Toyoguchi               1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric               Kiki Sangyo Co., Ltd.                (56) References JP-A-6-111822 (JP, A)                 Tsutomu OHZUKU, et                 al. , "Synthesis an               d Characterization                 of LiNiO ▼ Bottom 2 ▲ (R3m)               for Rechangeable N               onagueous Cells ", C               hemistry Express (J               apan), Kinki Chemical               al Society, 1991, Vol.               6, No. 3, p161-164

Claims (1)

(57)【特許請求の範囲】 【請求項1】 リチウムを可逆的に吸蔵放出することの
できる正極と、リチウムまたはリチウムを主体とする化
合物を含む負極、および非水電解質からなる非水電解質
リチウム二次電池に用いる正極活物質であるLiNiO
2の製法であって、硝酸リチウムと炭酸ニッケルとを
ル比で1:1で混合したのち、600〜850℃で焼成
することで、X線回折法による前記LiNiO2の00
3面の反射ピーク強度と104面の反射ピーク強度との
強度比(003/104)を1.20以上としたことを
特徴とする非水電解質リチウム二次電池用正極の製法。
(57) [Claim 1] A positive electrode capable of inserting and extracting lithium reversibly, a negative electrode containing lithium or a compound mainly composed of lithium, and a nonaqueous electrolyte lithium comprising a nonaqueous electrolyte LiNiO, a positive electrode active material used for secondary batteries
Manufacturing method 2 in which lithium nitrate and nickel carbonate are modeled.
After mixing at a mixing ratio of 1: 1 and firing at 600 to 850 ° C., the LiNiO 2
A method for producing a positive electrode for a non-aqueous electrolyte lithium secondary battery, wherein the intensity ratio (003/104) between the reflection peak intensity on the three surfaces and the reflection peak intensity on the 104 surface is 1.20 or more.
JP24292192A 1992-09-11 1992-09-11 Manufacturing method of positive electrode for non-aqueous electrolyte lithium secondary battery Expired - Fee Related JP3527518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24292192A JP3527518B2 (en) 1992-09-11 1992-09-11 Manufacturing method of positive electrode for non-aqueous electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24292192A JP3527518B2 (en) 1992-09-11 1992-09-11 Manufacturing method of positive electrode for non-aqueous electrolyte lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0696769A JPH0696769A (en) 1994-04-08
JP3527518B2 true JP3527518B2 (en) 2004-05-17

Family

ID=17096193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24292192A Expired - Fee Related JP3527518B2 (en) 1992-09-11 1992-09-11 Manufacturing method of positive electrode for non-aqueous electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3527518B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792574A (en) * 1996-03-04 1998-08-11 Sharp Kabushiki Kaisha Nonaqueous secondary battery
DE69706592T2 (en) * 1996-03-26 2002-05-29 Sharp Kk Process for the production of positive electrode active material, and non-aqueous secondary battery using the same
JP4100736B2 (en) * 1996-09-27 2008-06-11 シャープ株式会社 Method for producing positive electrode active material lithium nickelate for non-aqueous secondary battery
DE69722879T2 (en) * 1996-09-30 2004-05-13 Sharp K.K. Lithium-nickel-oxide manufacturing process and non-water secondary battery containing it
JP3482424B2 (en) 1998-10-02 2003-12-22 シャープ株式会社 Method for producing positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP3640545B2 (en) 1998-10-27 2005-04-20 シャープ株式会社 Method for producing positive electrode active material lithium nickelate for non-aqueous secondary battery
US20050142444A1 (en) * 2002-04-18 2005-06-30 Satoshi Nagashima Non-aqueous electrolyte secondary cell
WO2019117101A1 (en) 2017-12-12 2019-06-20 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using same
US20200335823A1 (en) 2017-12-12 2020-10-22 Central Glass Company, Limited Electrolyte Solution for Nonaqueous Electrolyte Batteries and Nonaqueous Electrolyte Battery Using Same
KR20230061385A (en) 2020-09-03 2023-05-08 샌트랄 글래스 컴퍼니 리미티드 Non-aqueous electrolyte and non-aqueous electrolyte battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tsutomu OHZUKU,et al.,"Synthesis and Characterization of LiNiO▼下2▲(R3m)for Rechangeable Nonagueous Cells",Chemistry Express(Japan),Kinki Chemical Society,1991,Vol.6,No.3,p161−164

Also Published As

Publication number Publication date
JPH0696769A (en) 1994-04-08

Similar Documents

Publication Publication Date Title
US5370948A (en) Process for production of positive electrode active material for nonaqueous electrolyte lithium secondary cell
EP0820113B1 (en) Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries
KR20020070495A (en) Nonaqueous electrolyte secondary cell and positive electrode active material
US20030206852A1 (en) Nickel-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP7207261B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
JP7127631B2 (en) Method for manufacturing positive electrode active material, and method for manufacturing lithium ion battery
JPH0992285A (en) Nonaqueous electrolyte lithium secondary battery
JP3527518B2 (en) Manufacturing method of positive electrode for non-aqueous electrolyte lithium secondary battery
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPH10172567A (en) Manufacture of lithium manganate
JP3229425B2 (en) Positive electrode for lithium secondary battery and method for producing the same
JP3653210B2 (en) Method for producing spinel manganese oxide for lithium secondary battery
JP2003017049A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and manufacturing method thereof
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
KR100557240B1 (en) Cathode active material for lithium secondary btteries prepared by coprecipitation method, method for preparing the same, and lithium secondary batteries using the same
JPH10324521A (en) Lithium-manganese multiple oxide, its production and its use
JP2002167220A (en) Lithium manganese compound oxide, cathode material for lithium secondary battery, cathode for lithium secondary battery, lithium secondary battery and manufacturing method for lithium manganese compound oxide
JP3339519B2 (en) Lithium battery
JP4062165B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
KR100269249B1 (en) Licoxmn2-xo4 as positive electrode material for 5v lithium secondary batteries
JP3407880B2 (en) Spinel-type positive electrode material for lithium secondary battery and manufacturing method
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery
KR100190988B1 (en) Lithium secondary battery made from lithium cobalt oxide powder
JP3052670B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and nonaqueous electrolyte lithium secondary battery using the positive electrode

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees