JP3525266B2 - Combustion method for sulfur-containing fuel - Google Patents

Combustion method for sulfur-containing fuel

Info

Publication number
JP3525266B2
JP3525266B2 JP22498694A JP22498694A JP3525266B2 JP 3525266 B2 JP3525266 B2 JP 3525266B2 JP 22498694 A JP22498694 A JP 22498694A JP 22498694 A JP22498694 A JP 22498694A JP 3525266 B2 JP3525266 B2 JP 3525266B2
Authority
JP
Japan
Prior art keywords
sulfur
partial pressure
burner
water pipe
combustion air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22498694A
Other languages
Japanese (ja)
Other versions
JPH0886408A (en
Inventor
祐治 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP22498694A priority Critical patent/JP3525266B2/en
Publication of JPH0886408A publication Critical patent/JPH0886408A/en
Application granted granted Critical
Publication of JP3525266B2 publication Critical patent/JP3525266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高濃度の硫黄を含有す
る燃料を燃焼させた場合に、排ガス中のNOxを増加さ
せることなく、水管の腐食を防止する硫黄含有燃料の燃
焼方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for burning a sulfur-containing fuel which prevents corrosion of a water pipe without increasing NOx in exhaust gas when burning a fuel containing a high concentration of sulfur.

【0002】[0002]

【従来の技術】石炭や重油等の化石燃料を使用するボイ
ラでは、燃焼によって窒素酸化物(以下、NOxとい
う)が発生することは周知である。このNOxを低減す
る方法としては、燃焼の際発生するNOx量、すなわち
NOx発生量そのものを低減する方法と、発生したNO
xを窒素に還元して大気に放出する方法に大別される。
前者は高温かつ酸素濃度の高い状態で発生するサーマル
NOxを低減する方法で、低NOxバーナによる燃焼
法、2段燃焼法が有効とされており、燃料リッチの還元
性ガスを発生させることによりNOx量の低減を図るも
のである。
2. Description of the Related Art It is well known that in a boiler using fossil fuel such as coal or heavy oil, nitrogen oxide (hereinafter referred to as NOx) is generated by combustion. As a method of reducing this NOx, there is a method of reducing the NOx amount generated during combustion, that is, the NOx generation amount itself, and the generated NOx.
It is roughly classified into a method of reducing x to nitrogen and releasing it to the atmosphere.
The former is a method of reducing thermal NOx generated at a high temperature and a high oxygen concentration, and a combustion method using a low NOx burner and a two-stage combustion method are effective, and NOx is generated by generating a fuel-rich reducing gas. It is intended to reduce the amount.

【0003】一方、化石燃料には硫黄(S)分が含まれ
ており、サーマルNOxを低減するために燃焼リッチの
還元性ガスを生成させて低NOx化を図ろうとすると、
生成した還元性ガス中にH2SやCOS等の腐食性の強
い成分が含まれるようになり、通常の酸化性ガスに比べ
て、腐食性が強くなり、例えばボイラの水管で腐食が発
生するという問題が生じる。
On the other hand, fossil fuels contain sulfur (S), and in order to reduce thermal NOx, a combustion rich reducing gas is generated to reduce NOx.
The generated reducing gas contains a highly corrosive component such as H 2 S and COS, and becomes more corrosive than a normal oxidizing gas. For example, corrosion occurs in a water pipe of a boiler. The problem arises.

【0004】一般にボイラの水管材料としては炭素鋼、
低合金Cr−Mo鋼が使用されており、水管で腐食が生
じる位置はバーナ近傍である。また、発明者のこれまで
の研究結果によると、腐食部位表面には硫化物スケール
(FeS)が形成されていることが特徴で、その表面に
はカーボンやパーライト(FeS2)を含む未燃粒子が
多数付着している。このことから、腐食機構としては燃
焼火炎の水管への直撃による還元性雰囲気の形成および
未燃分の付着による硫化の促進が挙げられる。
Generally, carbon steel is used as a water pipe material for boilers.
Low alloy Cr-Mo steel is used, and the position where corrosion occurs in the water pipe is near the burner. In addition, according to the results of the research conducted by the inventor, the characteristic feature is that sulfide scale (FeS) is formed on the surface of the corroded portion, and unburned particles containing carbon and pearlite (FeS 2 ) are formed on the surface. Are attached. From this, the corrosion mechanism includes the formation of a reducing atmosphere by direct hit of the combustion flame to the water pipe and the promotion of sulfidation by the adhesion of unburned components.

【0005】[0005]

【発明が解決しようとする課題】特に硫黄含有量の多い
燃料、例えば高硫黄石炭やオリマルジョン(オリノコタ
ールの水エマルジョン)を空気比の低い条件で燃焼する
場合には、腐食の主原因となる硫化水素(H2S)の濃
度が高くなる。従って、高硫黄を含有する燃料を燃焼す
る場合にはできるだけ空気比を高くする必要がある。し
かし、空気比を高くすると、排ガス中のNOxが高くな
るという問題点がある。
Particularly, when a fuel having a high sulfur content, for example, high-sulfur coal or orimuljeon (water emulsion of orinocotal) is burned at a low air ratio, sulfurization which is the main cause of corrosion is caused. The concentration of hydrogen (H 2 S) increases. Therefore, when burning a fuel containing high sulfur, it is necessary to increase the air ratio as much as possible. However, when the air ratio is increased, there is a problem that NOx in the exhaust gas is increased.

【0006】本発明の目的は、硫黄を含む燃料を低NO
x燃焼させるボイラにおいて、排ガス中のNOxを増加
させることなく水管の腐食を防止することにある。
It is an object of the present invention to reduce sulfur-containing fuels to low NO.
In a boiler that burns x, it is to prevent corrosion of a water pipe without increasing NOx in exhaust gas.

【0007】[0007]

【課題を解決するための手段】上記目的は、水管で炉壁
が構成されたボイラで硫黄を含む燃料を燃焼させる硫黄
含有燃料の燃焼方法において、バーナの高さで前記水管
近傍の酸素分圧と硫黄分圧及びボイラ排ガス中のNOx
濃度に基づき各バーナに供給する燃焼空気流量を制御す
ることにより達成される。
SUMMARY OF THE INVENTION The above object is to provide a method for burning a sulfur-containing fuel in which a fuel containing sulfur is burned in a boiler having a water wall as a furnace wall. And sulfur partial pressure and NOx in boiler exhaust gas
This is achieved by controlling the flow rate of combustion air supplied to each burner based on the concentration.

【0008】前記酸素分圧をバーナの高さで前記水管近
傍に設置した酸素分析計の分析値と燃焼空気流量から演
算し、前記硫黄分圧をバーナの高さで前記水管近傍に設
置した硫化水素分析計の分析値と燃焼空気流量から演算
することも出来る。
The oxygen partial pressure is calculated from the analysis value of an oxygen analyzer installed near the water pipe at the height of the burner and the flow rate of the combustion air, and the sulfur partial pressure is sulfurized installed near the water pipe at the height of the burner. It can also be calculated from the analysis value of the hydrogen analyzer and the combustion air flow rate.

【0009】前記酸素分圧をバーナの高さで前記水管近
傍に設置した酸素分析計の分析値と燃焼空気流量から演
算し、前記硫黄分圧を予め分析した燃料中の硫黄含有率
と燃料使用量及び燃焼空気流量から演算することも出来
る。
The oxygen partial pressure is calculated from the analysis value of an oxygen analyzer installed near the water pipe at the height of the burner and the flow rate of the combustion air, and the sulfur partial pressure is pre-analyzed. It can also be calculated from the amount and the combustion air flow rate.

【0010】前記各バーナに供給する燃焼空気に硫黄を
固定する物質のZnOまたはCaOを添加することが望
ましい。
It is desirable to add ZnO or CaO, which is a substance that fixes sulfur, to the combustion air supplied to each burner.

【0011】[0011]

【作用】ボイラ炉壁の水管において腐食が問題となる部
位は還元炎が接触する部位、例えば、火炎と平行な方向
の側壁のバーナの高さ中央部なので、その位置の水管表
面近傍の腐食環境、例えば硫化水素濃度、酸素濃度を測
定し、硫黄分圧と酸素分圧を求めて必要最小の空気量
を、またボイラ排ガス出口のNOx値に基づいて、必要
最大の空気量を決定し、各バーナへ供給する燃焼空気量
を制御することにより、水管の硫化腐食を防ぐととも
に、排ガス中のNOxが増加しないように燃焼させるこ
とが可能となる。
[Function] In the water pipe of the boiler furnace wall, the part where corrosion is a problem is the part where the reducing flame comes into contact, for example, the center of the burner height of the side wall in the direction parallel to the flame, so the corrosive environment near the water pipe surface at that position , For example, the hydrogen sulfide concentration and the oxygen concentration are measured, the sulfur partial pressure and the oxygen partial pressure are obtained to determine the minimum required air amount, and the required maximum air amount is determined based on the NOx value at the boiler exhaust gas outlet. By controlling the amount of combustion air supplied to the burner, it is possible to prevent sulfidation corrosion of the water pipe and to combust so that NOx in the exhaust gas does not increase.

【0012】また、燃焼空気量の制御のみで腐食が抑制
できない場合は、排ガス中の硫黄分を固定することがで
きる物質を側壁に隣接するバーナへ供給することによ
り、側壁近傍のガス中の硫黄ポテンシャルを許容できる
値以下に低下させ、腐食を防止することが可能となる。
When the corrosion cannot be suppressed only by controlling the amount of combustion air, a substance capable of fixing the sulfur content in the exhaust gas is supplied to the burner adjacent to the side wall so that the sulfur in the gas near the side wall can be suppressed. It is possible to reduce the potential below the allowable value and prevent corrosion.

【0013】[0013]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は本発明の一実施例の構成を示す線図
である。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention.

【0015】図2は図1のA−A′断面の構成を示す線
図である。
FIG. 2 is a diagram showing the structure of the AA 'cross section of FIG.

【0016】先ず、本発明の実施例の装置構成を説明す
る。
First, a device configuration of an embodiment of the present invention will be described.

【0017】図1及び図2において、側壁11の中央部
のバーナレベルに腐食センサ3が設けられている。本腐
食センサ3は例えば、酸素センサ、硫化水素センサから
構成されるもので、酸素センサは酸素濃度を分析して酸
素分圧を演算し、側壁水管近傍の雰囲気が還元雰囲気か
酸化雰囲気かを検出する。また、硫化水素センサは硫化
水素濃度を分析して硫黄分圧を演算する。本腐食センサ
3はコントローラ5の入力部に接続し、ボイラ排ガス出
口に設置されたNOx分析計4も接続している。一方、
コントローラ5の出力部は各バーナの2次空気の流量を
調節するダンパ6に接続されている。さらに、側壁に隣
接するバーナ8−1と8−4には、燃料中に含まれる硫
黄を固定して、側壁の硫黄ポテンシャルを低下させるた
めの物質を供給する配管7が接続されている。
In FIGS. 1 and 2, the corrosion sensor 3 is provided at the burner level in the center of the side wall 11. The corrosion sensor 3 is composed of, for example, an oxygen sensor and a hydrogen sulfide sensor. The oxygen sensor analyzes the oxygen concentration and calculates the oxygen partial pressure to detect whether the atmosphere near the sidewall water pipe is a reducing atmosphere or an oxidizing atmosphere. To do. Further, the hydrogen sulfide sensor analyzes the hydrogen sulfide concentration to calculate the sulfur partial pressure. The corrosion sensor 3 is connected to the input section of the controller 5, and is also connected to the NOx analyzer 4 installed at the boiler exhaust gas outlet. on the other hand,
The output part of the controller 5 is connected to a damper 6 that adjusts the flow rate of the secondary air of each burner. Further, the burners 8-1 and 8-4 adjacent to the side wall are connected to a pipe 7 for supplying a substance for fixing sulfur contained in the fuel and lowering the sulfur potential of the side wall.

【0018】次に、本発明の実施例の燃焼方法を説明す
る。
Next, the combustion method of the embodiment of the present invention will be described.

【0019】通常の低NOx燃焼においては、バーナに
より空気比0.8程度の不完全燃焼を行い、未燃分を火
炉1の上部で空気配管10により供給されアフターエア
ーポート9から吹き込まれる空気により燃焼させる。こ
のため、バーナの高さで燃焼火炎は酸素不足状態、すな
わち還元炎となる。
In normal low NOx combustion, incomplete combustion with an air ratio of about 0.8 is performed by a burner, and unburned components are supplied by an air pipe 10 at the upper part of the furnace 1 by air blown from an after air port 9. To burn. Therefore, at the height of the burner, the combustion flame becomes an oxygen deficient state, that is, a reducing flame.

【0020】図3は一般的な温度500℃におけるFe
−S−化学ポテンシャル図である。
FIG. 3 shows Fe at a general temperature of 500.degree.
-S- chemical potential diagram.

【0021】本図の横軸は酸素分圧(O2)を表し、縦
軸は硫黄分圧(S2)を表わす。
In the figure, the horizontal axis represents oxygen partial pressure (O 2 ) and the vertical axis represents sulfur partial pressure (S 2 ).

【0022】低NOx燃焼により還元炎が側壁11に接
触した場合、水管表面は還元雰囲気となる。この状態は
図3のA点で、水管の材料である鉄は硫化し、急激に減
肉する。これを防止するためには、側壁近傍の雰囲気を
酸化雰囲気に保持する必要がある。このため、本実施例
においては側壁13に設置した腐食センサ3により側壁
の雰囲気を測定し、雰囲気が硫化物が安定して存在する
領域にある場合には、側壁に隣接したバーナ8−1と8
−4に供給する2次空気量を増加させ、酸化物が安定と
なる領域、即ち図3のB点となるように雰囲気を変え
る。ただし、2次空気量を過度に増加させると、排ガス
中のNOx濃度が増加するため、本実施例においてはボ
イラ排ガス出口のNOx分析計4からの信号により、N
Oxが許容値以上となる場合には、中央部のバーナ8−
2及び8−3に供給する2次空気量を低下させるように
コントローラ5がダンパ6を制御する。。
When the reducing flame comes into contact with the side wall 11 due to low NOx combustion, the surface of the water pipe becomes a reducing atmosphere. This state is point A in FIG. 3, and iron, which is the material of the water pipe, is sulfided and the wall thickness is rapidly reduced. In order to prevent this, it is necessary to maintain the atmosphere near the side wall in an oxidizing atmosphere. Therefore, in this embodiment, the atmosphere of the side wall is measured by the corrosion sensor 3 installed on the side wall 13, and when the atmosphere is in the region where the sulfide is stably present, the burner 8-1 adjacent to the side wall is used. 8
The amount of secondary air supplied to -4 is increased, and the atmosphere is changed so as to reach a region where the oxide is stable, that is, point B in FIG. However, if the amount of secondary air is excessively increased, the NOx concentration in the exhaust gas will increase. Therefore, in this embodiment, a signal from the NOx analyzer 4 at the outlet of the boiler exhaust gas causes
If Ox exceeds the allowable value, the central burner 8
The controller 5 controls the damper 6 so as to reduce the amount of secondary air supplied to 2 and 8-3. .

【0023】腐食センサ3としては、燃焼ガス中の酸素
分圧及び硫黄分圧を出力し、図3に示したどの領域に側
壁水管の雰囲気が位置するかを認識することのできる装
置が必要である。そのためには、ジルコニア式の酸素セ
ンサに代表される酸素分析計と硫化水素分析計を併用ま
たは単独で用いる方法がある。酸素分圧は酸素濃度とバ
ーナに供給される燃焼空気量から求め、硫黄分圧は硫化
水素濃度とバーナに供給される燃焼空気量から求める。
硫黄分圧は燃料中の硫黄含有量及び燃焼空気量から推定
することが可能であり、酸素分析計による酸素濃度のみ
の測定でも制御可能である。その他には、硫化腐食でメ
タル材料の減肉した際に生じる電気抵抗値の変化量を信
号として使用してもよい。また、本実施例では腐食セン
サを側壁中央部に1つ設置しているが、特に設置位置や
個数を限定するものではなく、ボイラの大きさや使用燃
料によって、適宜決めれば良い。
As the corrosion sensor 3, a device capable of outputting the oxygen partial pressure and the sulfur partial pressure in the combustion gas and recognizing in which region shown in FIG. 3 the atmosphere of the side wall water pipe is located is required. is there. For that purpose, there is a method in which an oxygen analyzer represented by a zirconia oxygen sensor and a hydrogen sulfide analyzer are used together or alone. The oxygen partial pressure is obtained from the oxygen concentration and the combustion air amount supplied to the burner, and the sulfur partial pressure is obtained from the hydrogen sulfide concentration and the combustion air amount supplied to the burner.
The sulfur partial pressure can be estimated from the sulfur content in the fuel and the combustion air amount, and can be controlled by measuring only the oxygen concentration with an oxygen analyzer. In addition, the amount of change in electric resistance value that occurs when the metal material is thinned due to sulfide corrosion may be used as a signal. Further, in the present embodiment, one corrosion sensor is installed in the central portion of the side wall, but the installation position and number are not particularly limited, and it may be appropriately determined depending on the size of the boiler and the fuel used.

【0024】次に、硫黄固定用の物質供給方法について
説明する。
Next, a method of supplying a substance for fixing sulfur will be described.

【0025】硫黄分の比較的少ない燃料の場合には上記
した燃焼方法で、硫化腐食を効果的に防止することが出
来る。しかし、硫黄の含有量の多い燃料の場合には、雰
囲気中の硫黄ポテンシャルが高くなる。このため、側壁
に隣接したバーナ8−1と8−4に供給する2次空気の
量をかなり増加させる必要があり、排ガス中のNOx濃
度が急増する恐れがある。そこで、本実施例において
は、側壁に隣接するバーナ8−1と8−4に供給する2
次空気配管に燃焼ガス中の硫化水素と反応し、硫化水素
を固定する物質を供給することにより、水管表面の硫黄
ポテンシャル低下させるようにしている。硫化水素を固
定するに好適な物質としては、水管材料(主として鉄
鋼)よりも硫化反応が進展しやすい材料、例えば、Zn
O,CaO等が有効である。添加量は燃料中の硫黄含有
量によって異なり、モル比で1:1程度にすると良い。
本実施例では、2次空気配管に硫黄を固定する物質を供
給する構成としているが、燃料供給配管に供給すること
も出来る。
In the case of a fuel having a relatively low sulfur content, the above combustion method can effectively prevent sulfidation corrosion. However, in the case of a fuel having a high sulfur content, the sulfur potential in the atmosphere becomes high. For this reason, it is necessary to considerably increase the amount of secondary air supplied to the burners 8-1 and 8-4 adjacent to the side wall, and there is a risk that the NOx concentration in the exhaust gas will rapidly increase. Therefore, in this embodiment, 2 is supplied to the burners 8-1 and 8-4 adjacent to the side wall.
By supplying a substance that reacts with hydrogen sulfide in the combustion gas to fix the hydrogen sulfide to the next air pipe, the sulfur potential on the surface of the water pipe is lowered. As a substance suitable for fixing hydrogen sulfide, a material in which a sulfurization reaction is more likely to proceed than a water pipe material (mainly steel), for example, Zn
O, CaO, etc. are effective. The addition amount depends on the sulfur content in the fuel, and the molar ratio is preferably about 1: 1.
In this embodiment, the substance that fixes sulfur is supplied to the secondary air pipe, but it can also be supplied to the fuel supply pipe.

【0026】[0026]

【発明の効果】本発明によれば、硫黄を含有する燃料を
燃焼させても、還元炎が接触する炉壁の水管近傍の硫黄
分圧、酸素分圧及びボイラ排ガス出口のNOx値に基づ
いてバーナへ供給する燃焼空気量を制御することによ
り、排ガス中のNOx濃度を増加させることなく、水管
の硫化腐食を効果的に防止することができる。
According to the present invention, even if a fuel containing sulfur is burned, the partial pressure of sulfur in the vicinity of the water pipe of the furnace wall contacting the reducing flame, the partial pressure of oxygen, and the NOx value at the boiler exhaust gas outlet are used. By controlling the amount of combustion air supplied to the burner, it is possible to effectively prevent sulfidation corrosion of the water pipe without increasing the NOx concentration in the exhaust gas.

【0027】また、排ガス中の硫黄分を固定する物質を
バーナへ供給することにより、側壁近傍の燃焼ガス中の
硫黄ポテンシャルを低下させ、水管の腐食を防止するこ
とができる。
Further, by supplying the burner with a substance that fixes the sulfur content in the exhaust gas, the sulfur potential in the combustion gas near the side wall can be lowered and corrosion of the water pipe can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成を示す線図である。FIG. 1 is a diagram showing the configuration of an embodiment of the present invention.

【図2】図1のA−A′断面の構成を示す線図である。FIG. 2 is a diagram showing a configuration of a cross section taken along the line AA ′ of FIG.

【図3】一般的な温度500℃におけるFe−S−化学
ポテンシャル図である。
FIG. 3 is a Fe-S-chemical potential diagram at a general temperature of 500 ° C.

【符号の説明】[Explanation of symbols]

1 火炉 2 ボイラ排ガス出口 3 腐食センサ 4 NOx分析計 5 コントローラ 6 ダンパ 7 硫黄固定物質供給配管 8 バーナ 9 アフターエアーポート 10 空気配管 11 側壁 12 前壁 13 後壁 1 furnace 2 Boiler exhaust gas outlet 3 Corrosion sensor 4 NOx analyzer 5 controller 6 damper 7 Sulfur fixing substance supply pipe 8 burners 9 After Air Port 10 Air piping 11 Side wall 12 front wall 13 rear wall

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水管で炉壁が構成されたボイラで硫黄を
含む燃料を燃焼させる硫黄含有燃料の燃焼方法におい
て、バーナの高さで前記水管近傍の酸素分圧と硫黄分圧
及びボイラ排ガス中のNOx濃度に基づき各バーナに供
給する燃焼空気流量を制御することを特徴とする硫黄含
有燃料の燃焼方法。
1. A combustion method of a sulfur-containing fuel in which a fuel containing sulfur is burned in a boiler in which a furnace wall is constituted by a water pipe, wherein the oxygen partial pressure and the sulfur partial pressure in the vicinity of the water pipe at the height of a burner, and the boiler exhaust gas A method for combusting a sulfur-containing fuel, characterized in that the flow rate of combustion air supplied to each burner is controlled based on the NOx concentration.
【請求項2】 前記酸素分圧をバーナの高さで前記水管
近傍に設置した酸素分析計の分析値と燃焼空気流量から
演算し、前記硫黄分圧をバーナの高さで前記水管近傍に
設置した硫化水素分析計の分析値と燃焼空気流量から演
算することを特徴とする請求項1に記載の硫黄含有燃料
の燃焼方法。
2. The oxygen partial pressure is calculated from the analysis value of an oxygen analyzer installed near the water pipe at the height of the burner and the combustion air flow rate, and the sulfur partial pressure is installed near the water pipe at the height of the burner. 2. The method for burning a sulfur-containing fuel according to claim 1, wherein calculation is performed from an analysis value of the hydrogen sulfide analyzer and a flow rate of combustion air.
【請求項3】 前記酸素分圧をバーナの高さで前記水管
近傍に設置した酸素分析計の分析値と燃焼空気流量から
演算し、前記硫黄分圧を予め分析した燃料中の硫黄含有
率と燃料使用量及び燃焼空気流量から演算することを特
徴とする請求項1に記載の硫黄含有燃料の燃焼方法。
3. The oxygen partial pressure is calculated from the analysis value of an oxygen analyzer installed near the water pipe at the height of a burner and the flow rate of combustion air, and the sulfur partial pressure is analyzed in advance as a sulfur content in the fuel. The method for burning a sulfur-containing fuel according to claim 1, wherein it is calculated from a fuel usage amount and a combustion air flow rate.
【請求項4】 前記各バーナに供給する燃焼空気に硫黄
を固定する物質のZnOまたはCaOを添加することを
特徴とする請求項1に記載の硫黄含有燃料の燃焼方法。
4. The method for burning a sulfur-containing fuel according to claim 1, wherein ZnO or CaO, which is a substance that fixes sulfur, is added to the combustion air supplied to each of the burners.
JP22498694A 1994-09-20 1994-09-20 Combustion method for sulfur-containing fuel Expired - Fee Related JP3525266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22498694A JP3525266B2 (en) 1994-09-20 1994-09-20 Combustion method for sulfur-containing fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22498694A JP3525266B2 (en) 1994-09-20 1994-09-20 Combustion method for sulfur-containing fuel

Publications (2)

Publication Number Publication Date
JPH0886408A JPH0886408A (en) 1996-04-02
JP3525266B2 true JP3525266B2 (en) 2004-05-10

Family

ID=16822313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22498694A Expired - Fee Related JP3525266B2 (en) 1994-09-20 1994-09-20 Combustion method for sulfur-containing fuel

Country Status (1)

Country Link
JP (1) JP3525266B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103225805A (en) * 2013-04-24 2013-07-31 广东电网公司电力科学研究院 Boiler apparatus for preventing high temperature corrosion of water screen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664179B2 (en) * 2005-10-17 2011-04-06 バブコック日立株式会社 Boiler equipment, boiler equipment operation method, and boiler equipment repair method
JP5162228B2 (en) * 2007-12-21 2013-03-13 バブコック日立株式会社 Boiler equipment
JP5459712B2 (en) * 2010-06-14 2014-04-02 一般財団法人電力中央研究所 Corrosion site identification method and sulfide corrosion diagnosis method
JP5716922B2 (en) * 2012-02-22 2015-05-13 三菱日立パワーシステムズ株式会社 Waste heat recovery boiler and combined power generation facility
CN110986085B (en) * 2019-11-21 2021-07-27 东南大学 Four-corner tangential boiler combustion optimization control method based on air distribution mode optimization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103225805A (en) * 2013-04-24 2013-07-31 广东电网公司电力科学研究院 Boiler apparatus for preventing high temperature corrosion of water screen
CN103225805B (en) * 2013-04-24 2015-03-18 广东电网公司电力科学研究院 Boiler apparatus for preventing high temperature corrosion of water screen and method therefor

Also Published As

Publication number Publication date
JPH0886408A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
US6247416B1 (en) Method of operating a furnace and device for implementing the method
Kuprianov Applications of a cost-based method of excess air optimization for the improvement of thermal efficiency and environmental performance of steam boilers
JP3525266B2 (en) Combustion method for sulfur-containing fuel
JPWO2009110034A1 (en) Primary recirculation exhaust gas flow rate control method and apparatus for oxyfuel boiler
Hesselmann Optimization of combustion by fuel testing in a NOx reduction test facility
JP3030511B2 (en) Boiler device and operation method thereof
EP0683357B1 (en) Method for operating a furnace
JPH1122915A (en) Method and device therefor for burning sulfur-containing fuel
JP2000249334A (en) Combustion method of fuel containing sulfur
JPH0611277A (en) Method and device for adjusting quantity of combustion air of flue-gas recovery device for metallurgical reaction furnace and recovery device and metallurgical reaction furnace
JPS61143615A (en) Method of preventing corrosion for boiler tube using combustion exhaust gas
JP2002122302A (en) Boiler apparatus and its operation method
AU2019339092B2 (en) Boiler
JPH0449449Y2 (en)
CN221573059U (en) High-precision flow control switching device
US6085673A (en) Method for reducing waterwall corrosion in low NOx boilers
ES2201885A1 (en) Procedure for melting a charge of aluminum
CN112610945B (en) H in local environment of water-cooled wall of coal-fired boiler 2 Method and equipment for determining S content
JP3866253B2 (en) Control method of combustion air in waste incinerator
JP2612284B2 (en) Combustion equipment
JP7519049B1 (en) Flare gas combustion treatment system
JP2000234704A (en) Pulverized coal combustion device
JPH0419445B2 (en)
US20050089811A1 (en) Exhaust recirculating method and apparatus for a hydrocarbon fired burner
JPH0517444B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees