JP3524997B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3524997B2
JP3524997B2 JP23833695A JP23833695A JP3524997B2 JP 3524997 B2 JP3524997 B2 JP 3524997B2 JP 23833695 A JP23833695 A JP 23833695A JP 23833695 A JP23833695 A JP 23833695A JP 3524997 B2 JP3524997 B2 JP 3524997B2
Authority
JP
Japan
Prior art keywords
frequency
operating frequency
refrigerant
compressor
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23833695A
Other languages
Japanese (ja)
Other versions
JPH0979671A (en
Inventor
岳 福田
哲夫 佐野
誠 早野
秀明 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP23833695A priority Critical patent/JP3524997B2/en
Publication of JPH0979671A publication Critical patent/JPH0979671A/en
Application granted granted Critical
Publication of JP3524997B2 publication Critical patent/JP3524997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、塩素を含まない
冷媒に好適な空気調和機に関する。
TECHNICAL FIELD The present invention relates to an air conditioner suitable for a chlorine-free refrigerant.

【0002】[0002]

【従来の技術】一般に空気調和機や冷凍機等に用いられ
る冷媒には、HCFC系の冷媒、R22が広く用いられ
ている。R22は、分子中に塩素を含むために、オゾン
層を破壊するといわれ、地球環境に悪影響を及ぼすとこ
ろから、R22等の冷媒の使用は世界的に削減の方向に
あり、将来的には全面使用禁止となる。このために、R
22に替わる代替冷媒と、この代替冷媒に対応した機器
の開発が急務となっている。
2. Description of the Related Art HCFC type refrigerant R22 is widely used as a refrigerant generally used in air conditioners, refrigerators and the like. R22 is said to destroy the ozone layer because it contains chlorine in the molecule, and since it adversely affects the global environment, the use of refrigerants such as R22 is in the direction of worldwide reduction, and in the future it will be fully used. It is prohibited. For this reason, R
There is an urgent need to develop alternative refrigerants that can replace No. 22 and devices that support these alternative refrigerants.

【0003】代替冷媒としては、塩素を含まないHFC
系の物質を単一又は複数混合したものが現在有力候補と
なっており、一例を挙げるとR32/125の二種混合
冷媒、R32/125/134aの三種混合冷媒等があ
る。
HFC containing no chlorine as an alternative refrigerant
A single or a mixture of a plurality of substances is currently a promising candidate, and examples thereof include a R32 / 125 two-type mixed refrigerant and an R32 / 125 / 134a three-type mixed refrigerant.

【0004】[0004]

【発明が解決しようとする課題】ところで、現在使用さ
れているHCFC系の冷媒、R22は、分子中に塩素が
あるため、冷媒中の塩素が圧縮機の摺動部材と反応し、
それが、極圧添加剤として作用していた。このために、
圧縮機の運転中に油膜切れが発生し摺動部材が直接接触
する等潤滑が不完全な場合でも比較的摺動部分の摩耗の
進行は緩やかであった。
By the way, since R22, an HCFC-based refrigerant currently used, has chlorine in its molecule, chlorine in the refrigerant reacts with the sliding member of the compressor,
It was acting as an extreme pressure additive. For this,
Even when the lubrication was incomplete such as the oil film running out during the operation of the compressor and the sliding member was in direct contact, the progress of wear in the sliding part was relatively gradual.

【0005】しかしながら、HFC系の冷媒は、分子中
に塩素を含まないため、冷媒の極圧添加剤としての作用
が期待できない。したがって、潤滑が不完全となり油膜
切れが起き摺動部材が直接接触すると、激しい摩耗が生
じるようになり、摺動部材の直接接触を防ぐ対策を確実
にとることが信頼性向上のために不可欠となる。
However, since the HFC type refrigerant does not contain chlorine in its molecule, it cannot be expected to act as an extreme pressure additive for the refrigerant. Therefore, if lubrication is incomplete and the oil film runs out and the sliding members come into direct contact, severe wear will occur, and it is essential to take measures to prevent direct contact of the sliding members in order to improve reliability. Become.

【0006】特に、摺動部材の油膜形成性は、高運転周
波数で油膜形成が良いほど、また、吐出圧力が低く負荷
が小さいほど良好となるが、反面、運転周波数の下降時
に、油膜切れが起きて摺動部材の接触量が多くなること
が知られている。この原因は元々油膜が出来にくい低い
運転周波数となる条件に加えて、運転周波数の下降時
に、吐出圧力の降下が運転周波数の下降に遅れ、負荷が
大きいままの状態が一時的に発生し、油膜形成性が悪化
し接触を引き起こすためと考えられる。
In particular, the oil film forming property of the sliding member is better as the oil film is better formed at a high operating frequency, and the discharge pressure is lower and the load is smaller. On the other hand, however, the oil film runs out when the operating frequency is lowered. It is known that the amount of contact of the sliding member increases after waking up. This is due to the fact that the oil film does not easily form a low operating frequency, and when the operating frequency falls, the drop in discharge pressure lags behind the decrease in operating frequency, causing a temporary heavy load condition. It is considered that the formability deteriorates and causes contact.

【0007】そこで、この発明は、運転周波数の下降時
に、油膜破壊の起きにくい運転制御とすることで、安定
した潤滑を確保し、信頼性の向上を図るようにした空気
調和機を提供することを目的としている。
Therefore, the present invention provides an air conditioner that ensures stable lubrication and improves reliability by controlling the operation so that the oil film is unlikely to be destroyed when the operating frequency decreases. It is an object.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、圧縮機、室内熱交換器、室外熱交換
器、絞り機構、四方弁が設けられ冷媒に塩素の含まない
HFC冷媒が用いられた冷媒回路と、出力周波数を変え
前記圧縮機を低速回転から高速回転まで可変に制御する
周波数変換器と、センサで検出される室温と温度設定器
の温度設定値の差に応じ周波数変換器に周波数設定信号
を与える変換器制御装置と、を備えた空気調和機におい
て、前記変換器制御装置は、前記周波数変換器を高い運
転周波数から低い運転周波数に変化させる時、前記運転
周波数の下降速度を、1/9Hz/sec以下で制御す
る。
To achieve the above object, the present invention provides a compressor, an indoor heat exchanger, and an outdoor heat exchange.
Refrigerant does not contain chlorine as it is equipped with a vessel, throttle mechanism and four-way valve
Change the output frequency with the refrigerant circuit that uses HFC refrigerant
Variable control of the compressor from low speed rotation to high speed rotation
Room temperature and temperature setter detected by frequency converter and sensor
Depending on the difference between the temperature setting values of the
And a converter control device for providing the frequency converter.
When the operating frequency is changed to a low operating frequency, the descending speed of the operating frequency is controlled at 1/9 Hz / sec or less.

【0009】あるいは、前記変換器制御装置は、前記周
波数変換器を高い運転周波数から低い運転周波数に変化
させる時、前記運転周波数の下降速度を、圧縮機の定格
運転周波数の55%以下の範囲に入ると、定格運転周波
数の55%までの下降速度より遅い下降速度で制御す
る。
Alternatively, the converter controller is configured to
Change the wave number converter from high operating frequency to low operating frequency
At this time, when the lowering speed of the operating frequency falls within the range of 55% or less of the rated operating frequency of the compressor, the lowering speed is controlled to be slower than the lowering speed up to 55% of the rated operating frequency.

【0010】あるいは、前記冷媒回路に、運転周波数の
下降時にその下降に移る前段で圧縮機の吐出圧力を下げ
る制御回路を備える。
Alternatively, the operating frequency of the refrigerant circuit is
A control circuit for lowering the discharge pressure of the compressor is provided at the stage before the descent .

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】かかる空気調和機によれば、圧縮機は、空
調負荷による運転周波数に対応して低速回転から高速回
転まで制御される。
According to such an air conditioner, the compressor is controlled from low speed rotation to high speed rotation in accordance with the operating frequency due to the air conditioning load.

【0019】この運転時において、運転周波数の下降時
に、圧縮機、運転周波数の下降速度に追随して吐出圧力
が降下する結果、油膜ができにくいのに負荷が大きいま
まの状態は発生せず、油膜破壊という潤滑の厳しい条件
が回避される。このために、安定した潤滑状態が確保さ
れるようになる。
During this operation, when the operating frequency drops, the discharge pressure drops as the compressor and the operating frequency drop speed drop, and as a result, an oil film is hard to form but a heavy load does not occur. The severe lubrication condition of oil film destruction is avoided. For this reason, a stable lubrication state is ensured.

【0020】[0020]

【発明の実施の形態】以下、図1乃至図11の図面を参
照しながらこの発明の実施形態を説明する。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described below with reference to the drawings of FIGS.

【0021】図1において、1は冷媒回路3内に設けら
れた圧縮機を示しており、圧縮機1の外に冷媒回路3内
には、冷房時に蒸発器、暖房時に凝縮器となる室内熱交
換器5と、冷房時に凝縮器、暖房時に蒸発器となる室外
熱交換器7と、絞り機構として膨張弁9、及び四方弁1
1がそれぞれ設けられている。四方弁11、室外熱交換
器7、周波数変換器13、室外ファン15及び変換器制
御装置17は室外機(図示していない)に配置されてい
る。一方、表示操作部19、室内ファン21、室内熱交
換器5は室内機(図示していない)に配置され、四方弁
11を切り換えることで、暖房運転モード時にあって
は、圧縮機1から吐出された冷媒は、実線矢印で示す如
く室内熱交換器5→膨張弁9→室外熱交換器7を通り、
四方弁11を介して再び圧縮機1に戻る循環サイクルを
繰返すようになる。
In FIG. 1, reference numeral 1 denotes a compressor provided in the refrigerant circuit 3. Inside the refrigerant circuit 3 outside the compressor 1, indoor heat is used as an evaporator during cooling and a condenser during heating. An exchanger 5, an outdoor heat exchanger 7 that serves as a condenser during cooling and an evaporator during heating, an expansion valve 9 as a throttle mechanism, and a four-way valve 1.
1 are provided respectively. The four-way valve 11, the outdoor heat exchanger 7, the frequency converter 13, the outdoor fan 15, and the converter control device 17 are arranged in an outdoor unit (not shown). On the other hand, the display operation unit 19, the indoor fan 21, and the indoor heat exchanger 5 are arranged in an indoor unit (not shown), and by switching the four-way valve 11, the compressor 1 discharges during the heating operation mode. The generated refrigerant passes through the indoor heat exchanger 5 → the expansion valve 9 → the outdoor heat exchanger 7 as shown by the solid arrow,
The circulation cycle of returning to the compressor 1 again via the four-way valve 11 is repeated.

【0022】また、冷房運転モード時にあっては、四方
弁11を切り換えることで、圧縮機1から吐出された冷
媒は、室外熱交換器7→膨張弁9→室内熱交換器5を通
り、四方弁11を介して再び圧縮機1に戻る循環サイク
ルを繰返すようになる。
Further, in the cooling operation mode, by switching the four-way valve 11, the refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger 7 → the expansion valve 9 → the indoor heat exchanger 5 and flows in the four-way direction. The circulation cycle of returning to the compressor 1 again via the valve 11 is repeated.

【0023】冷媒は、塩素の含まないHFC冷媒すなわ
ち、R32/R125の混合冷媒が用いられている。こ
の場合、冷媒は上記混合冷媒に特定されず他のHFC冷
媒を用いてもよい。他のHFC冷媒としては、単冷媒と
してR22冷媒より吐出圧力の高いジフルオロメタン
(R32)、ペンタフルオロエタン(R125)、1,
1,2,2−テトラフルオロエタン(R134)、1,
1,2−トリフルオロエタン(R143)、1,1,1
−トリフルオロエタン(R143a)1,1−ジフルオ
ロエタン(R152a)等がある。
As the refrigerant, an HFC refrigerant containing no chlorine, that is, a mixed refrigerant of R32 / R125 is used. In this case, the refrigerant is not limited to the above mixed refrigerant and other HFC refrigerant may be used. Other HFC refrigerants include difluoromethane (R32), pentafluoroethane (R125), and 1, which have a higher discharge pressure than the R22 refrigerant as a single refrigerant.
1,2,2-tetrafluoroethane (R134), 1,
1,2-trifluoroethane (R143), 1,1,1
-Trifluoroethane (R143a) 1,1-difluoroethane (R152a) and the like.

【0024】また、HFC冷媒は単冷媒として用いられ
るだけでなく、HFC冷媒を2種以上混合させた混合物
であってもよい。HFC混合冷媒としては、R125/
R143a/R134aの混合冷媒、R32/R134
aの混合冷媒、R32/R125の混合冷媒、R32/
R125/R134aの混合冷媒、さらにはR125/
R143aの混合冷媒が考えられる。
The HFC refrigerant is not only used as a single refrigerant, but may be a mixture of two or more HFC refrigerants. As an HFC mixed refrigerant, R125 /
R143a / R134a mixed refrigerant, R32 / R134
a mixed refrigerant, R32 / R125 mixed refrigerant, R32 /
R125 / R134a mixed refrigerant, further R125 /
A mixed refrigerant of R143a is considered.

【0025】なお、R32,R125,R134aのよ
うな非共沸混合冷媒を用いた場合、凝縮温度に温度勾配
が発生するが、凝縮器(室外熱交換器7)の中間で温度
を検出することにより、温度と圧力の相対誤差を極力抑
えることができる。
When a non-azeotropic mixed refrigerant such as R32, R125, R134a is used, a temperature gradient occurs in the condensation temperature, but the temperature should be detected in the middle of the condenser (outdoor heat exchanger 7). Thereby, the relative error between temperature and pressure can be suppressed as much as possible.

【0026】さらに、HFC冷媒に非共沸混合冷媒を用
いることにより、凝縮温度が凝縮圧力に一対一に対応せ
ず、凝縮器(室外熱交換器7)の入口と出口で温度が変
化するため、凝縮温度の検出位置によっては誤検出の幅
が大きくなりうるが、そのような問題に対しても凝縮器
の中間部の温度に基づいて凝縮圧力を検知することによ
り、誤検出の幅を小さくすることができ、安定した凝縮
温度の検出が可能となる。
Further, since the non-azeotropic mixed refrigerant is used as the HFC refrigerant, the condensing temperature does not correspond to the condensing pressure on a one-to-one basis, and the temperature changes at the inlet and outlet of the condenser (outdoor heat exchanger 7). The range of erroneous detection may increase depending on the condensing temperature detection position.However, the erroneous detection range can be reduced by detecting the condensing pressure based on the temperature of the middle part of the condenser even for such a problem. Therefore, the stable condensation temperature can be detected.

【0027】一方、周波数変換器13は、電源14の交
流電圧が整流回路18によって直流電圧が与えられると
共に、デジタル制御信号によって出力周波数を約27〜
83Hzの範囲で連続的に変え得るもので、これによ
り、圧縮機1は、低速回転から高速回転まで可変に制御
される。
On the other hand, in the frequency converter 13, the AC voltage of the power supply 14 is supplied with the DC voltage by the rectifier circuit 18, and the output frequency is about 27-by the digital control signal.
It can be continuously changed in the range of 83 Hz, whereby the compressor 1 is variably controlled from low speed rotation to high speed rotation.

【0028】周波数変換器13に加えられるデジタル制
御信号、すなわち、周波数設定信号は変換器制御装置1
7の出力である。変換器制御装置17は、表示操作部1
9の操作信号、温度センサ22および23の温度データ
等をマイクロプロセッサの入力として導き、予め設定さ
れたプログラムに従って論理演算処理して、四方弁1
1、ファンモータ等の負荷を作動せしめるとともに周波
数変換器13に周波数設定信号を与え、同時に、圧縮機
1の運転状態を表示操作部19の表示部(LED)に表
示させる。
The digital control signal applied to the frequency converter 13, that is, the frequency setting signal, is transferred to the converter control device 1.
7 is the output. The converter control device 17 includes the display operation unit 1
The operation signal of 9 and the temperature data of the temperature sensors 22 and 23 are input as inputs to the microprocessor, and the four-way valve 1 is subjected to logical operation processing according to a preset program.
1. A load such as a fan motor is operated and a frequency setting signal is given to the frequency converter 13, and at the same time, the operating state of the compressor 1 is displayed on the display section (LED) of the display operation section 19.

【0029】図2は表示操作部19のパネルの正面図
で、25は圧縮機1の回転数を能力レベルとして表示す
るバーデイスプレー(LED)、27は室温を設定する
温度設定器、29は室内ファン21の強度を切換える切
換スイッチ、31,32,33は空気調和装置を冷房ま
たは暖房の何れかに選択したり、あるいは、これを停止
させる運転停止スイッチ、35,37は運転状態を表示
する表示器(LED)をそれぞれ示す。しかして、表示
操作部19からは温度設定器27の温度設定信号、切換
スイッチ29のファン強度指定信号、運転停止スイッチ
31,32,33の運転指令信号が出力され、これらの
信号が全て変換器制御装置17に加えられる。同時に、
変換器制御装置17はバーデイスプレー25および表示
器35,37を点灯する信号を表示操作部19に与え
る。
FIG. 2 is a front view of the panel of the display / operation unit 19, 25 is a body spray (LED) for displaying the number of revolutions of the compressor 1 as a performance level, 27 is a temperature setting device for setting room temperature, and 29 is indoors. Changeover switches for changing the strength of the fan 21, reference numerals 31, 32, 33 select an air conditioner for either cooling or heating, or an operation stop switch for stopping the air conditioner, and 35, 37 display for displaying the operating state. The respective devices (LEDs) are shown. Then, the temperature setting signal of the temperature setting device 27, the fan strength designating signal of the changeover switch 29, and the operation command signals of the operation stop switches 31, 32, 33 are output from the display operation unit 19, and all these signals are converted. It is added to the controller 17. at the same time,
The converter control device 17 gives a signal to turn on the display 25 and the indicators 35 and 37 to the display operation unit 19.

【0030】次に、温度センサ23は室温を検出するも
ので、温度センサ22は冷媒の凝縮温度を検出し、この
検出温度情報によって、変換器制御装置17が冷凍サイ
クル系統の圧力が許容値を越えることがないように最高
周波数を制限するためのものである。
Next, the temperature sensor 23 detects the room temperature, the temperature sensor 22 detects the condensing temperature of the refrigerant, and the converter controller 17 determines the allowable value of the pressure of the refrigeration cycle based on the detected temperature information. This is to limit the maximum frequency so that it will not be exceeded.

【0031】ここで、変換器制御装置17はマイクロコ
ンピュータ(以下マイコンと言う)が主体となり、その
制御仕様もマイコンプログラムに対応させてあるので、
複雑な制御が可能である。したがって、センサ23によ
って検出される室温と、温度設定器27の温度設定値と
の差に応じた周波数設定信号を容易に出力することがで
き、これにより、空気調和負荷(空調負荷)に応じた圧
縮機1の回転速度制御が可能となる。
Here, the converter control device 17 is mainly composed of a microcomputer (hereinafter referred to as a microcomputer), and its control specification is made to correspond to the microcomputer program.
Complex control is possible. Therefore, it is possible to easily output the frequency setting signal corresponding to the difference between the room temperature detected by the sensor 23 and the temperature setting value of the temperature setting device 27, which allows the air conditioning load (air conditioning load) to be met. The rotation speed of the compressor 1 can be controlled.

【0032】図3に室温と温度設定値(Ts)の差を、
ある温度間隔、例えば、0.5℃間隔で複数のゾーン
(A〜I)に分け、それぞれのゾーンに対応する圧縮機
1の運転周波数(Hz)の一例を示している。この図に
おいて、温度差が大きい場合には、高い運転周波数Hz
となり、圧縮機1を高速回転させる運転制御を意味す
る。また、温度差が小さくなるにつれて低い運転周波数
Hzとなり、圧縮機1を低速回転とする運転制御を意味
する。
FIG. 3 shows the difference between room temperature and temperature set value (Ts).
An example of the operating frequency (Hz) of the compressor 1 corresponding to each zone is shown by dividing the zone into a plurality of zones (A to I) at certain temperature intervals, for example, at intervals of 0.5 ° C. In this figure, when the temperature difference is large, the high operating frequency Hz
Therefore, it means the operation control for rotating the compressor 1 at a high speed. Further, as the temperature difference becomes smaller, the operating frequency becomes lower, which means operating control in which the compressor 1 is rotated at a low speed.

【0033】また、変換器制御装置17は、同一ゾーン
内での運転時間が所定値を越えた時点で、室温と設定値
との差が入っているゾーンを判定し、そのゾーンに割り
当てられた運転周波数Hzでの運転制御になると共に、
特に、運転周波数の下降時の下降速度を1/9Hz/s
ec以下で制御する制御機能を有する。
Further, the converter control device 17 determines a zone having a difference between the room temperature and the set value when the operating time in the same zone exceeds a predetermined value, and the zone is assigned to the zone. With the operation control at the operating frequency Hz,
Especially, the descending speed when the operating frequency falls is 1/9 Hz / s
It has a control function of controlling below ec.

【0034】また、運転周波数の下降に、定格運転周波
数の55%以下の範囲に入ると、定格運転周波数の55
%までの下降速度より遅い下降速度で制御する制御機能
を有する。
When the operating frequency falls to 55% or less of the rated operating frequency, the operating frequency drops to 55% of the rated operating frequency.
It has a control function to control the descending speed slower than the descending speed up to%.

【0035】下降速度は、図4に示す如く縦軸に運転周
波数Hz、横軸に時間tをとった時に、下降領域の運転
周波数をΔHz、その時の時間をΔtとした時に、ΔH
z/Δt[Hz/sec]の式によって設定されてい
る。
As shown in FIG. 4, when the vertical axis represents the operating frequency Hz and the horizontal axis represents the time t, the descending speed is ΔH when the operating frequency in the descending region is ΔHz and the time at that time is Δt.
It is set by the formula of z / Δt [Hz / sec].

【0036】このような制御仕様の空気調和機を運転し
た場合の室温と圧縮機1の回転数の変化の一例を図5に
基づき説明する。図面は暖房運転モード時のものを示し
ており、始めのうちは、室温が温度設定値Tsと大きく
なるため、圧縮機1は一番高い運転周波数で運転され
る。やがて、室温が上昇し、温度設定値Tsとの差がセ
ンサ22,23を介して変換器制御装置17によって管
理され、差が小さくなると一つ下の回転数で運転すべき
ゾーンに入り、この時点T1で圧縮機1の回転数はダウ
ンする。以下、室温がさらに上昇し、温度設定値Tsと
の差がさらに小さくなると、一つ下の回転数で運転すべ
きゾーンに入り、この時点T2で圧縮機1の回転数はダ
ウンし、以下、階段状にダウンを繰返し、室温が温度設
定値Tsに達して、差が0になると圧縮機1は停止す
る。この運転周波数の下降時の状態を、圧縮機1の軸受
け部に電極を埋め込み、軸受け部の油膜切れによる摺動
部材の直接接触量を測定した所、以下の結果を得た。
An example of changes in the room temperature and the rotation speed of the compressor 1 when the air conditioner having such control specifications is operated will be described with reference to FIG. The drawing shows the one in the heating operation mode. At the beginning, since the room temperature becomes as large as the temperature set value Ts, the compressor 1 is operated at the highest operation frequency. Eventually, the room temperature rises, the difference from the temperature set value Ts is managed by the converter control device 17 via the sensors 22 and 23, and when the difference becomes small, the zone where the engine should be operated at a lower rotation speed is entered. At time T1, the rotation speed of the compressor 1 decreases. Thereafter, when the room temperature further rises and the difference from the temperature set value Ts becomes smaller, the zone to be operated at the lower rotation speed is entered, and at this time T2, the rotation speed of the compressor 1 is reduced, When the room temperature reaches the temperature set value Ts and the difference becomes zero, the compressor 1 is stopped by repeating the stepwise down. When the operating frequency was lowered, electrodes were embedded in the bearing of the compressor 1 and the amount of direct contact of the sliding member due to the oil film breakage of the bearing was measured, and the following results were obtained.

【0037】即ち、図6,7はa領域の下降速度を1/
3Hz/secで、図8は1/6Hz/secで行った
測定結果である。この測定結果をみると、特に、図7,
図8に示す如く定格運転周波数Hzの55%以下の範囲
に少なくとも一部がかかる条件の時に接触量が多いこと
がわかる。
That is, in FIGS. 6 and 7, the descending speed of the area a is 1 /
3 Hz / sec, and FIG. 8 shows measurement results performed at 1/6 Hz / sec. Looking at this measurement result, in particular,
As shown in FIG. 8, it can be seen that the contact amount is large under the condition that at least a part of the range is 55% or less of the rated operating frequency Hz.

【0038】同時に、吐出圧力Pdが降下するまで遅れ
が認められ、この遅れにより、油膜ができにくく、かつ
負荷の大きいままの状態が一時的に発生して油膜切れが
起こり、接触量が多くなるものと考えられる。
At the same time, a delay is recognized until the discharge pressure Pd drops. Due to this delay, it is difficult to form an oil film, and a state where the load remains large temporarily occurs and the oil film runs out, resulting in a large amount of contact. It is considered to be a thing.

【0039】それに対して、図9に示す如く、a領域の
運転周波数の下降速度を1/9Hz/sec以下と緩や
かにすることにより、吐出圧力Pdの降下が、運転周波
数の下降と追随し、油膜切れという厳しい条件が回避さ
れ、接触量が小さく抑えられた。
On the other hand, as shown in FIG. 9, the decrease of the discharge pressure Pd follows the decrease of the operating frequency by making the decrease rate of the operating frequency in the region a slower to 1/9 Hz / sec or less. The severe condition of running out of oil film was avoided, and the amount of contact was kept small.

【0040】図10と図11は、定格運転周波数の55
%以下の範囲に降下の一部がかかる場合、及び入った時
に、55%までの下降速度より遅い下降速度とした時の
測定結果を示したものである。
10 and 11 show the rated operating frequency of 55.
FIG. 6 shows the measurement results when the descending speed is slower than the descending speed up to 55% when a part of the descending is applied to the range of less than or equal to%, and when entering.

【0041】この測定結果によれば、吐出圧力Pdの降
下が、運転周波数の下降とほぼ追随し、油膜切れという
厳しい条件が回避され、接触量が小さく抑えられた。
According to this measurement result, the drop in the discharge pressure Pd almost follows the drop in the operating frequency, the severe condition of oil film breakage was avoided, and the contact amount was suppressed to a small level.

【0042】図12は、別の実施形態を示したもので、
運転周波数の下降時に、その下降に移る前段で一定時
間、凝縮器となる室外熱交換器7の室外ファン15の風
量を上昇させる制御回路39を備えたものである。
FIG. 12 shows another embodiment.
When the operating frequency is lowered, the control circuit 39 is provided to increase the air volume of the outdoor fan 15 of the outdoor heat exchanger 7 serving as the condenser for a certain period of time before shifting to the lowering.

【0043】制御回路39には、変換器制御装置17か
ら、周波数変換器13へ降下信号を送る前に、風量アッ
プ信号がタイムラグを有して送られるようになってい
る。
An air volume up signal is sent to the control circuit 39 from the converter control device 17 with a time lag before the down signal is sent to the frequency converter 13.

【0044】なお、他の構成要件は前記実施形態と同一
のため同一符号を符して詳細な説明を省略する。
Since the other constituent elements are the same as those in the above-mentioned embodiment, the same reference numerals are given and detailed description thereof will be omitted.

【0045】したがって、この実施形態によれば、運転
周波数の下降前に、室内ファン15の上昇で、熱交換率
のアップ→凝縮温度Te低下→吐出圧力Pdが低下し、
油膜形成性が悪くなる運転周波数の下降時に、負荷の大
きい状態を生じさせることが回避でき、図13の測定結
果に示す如く、摺動部材の接触量が小さく抑えられるよ
うになる。
Therefore, according to this embodiment, before the operating frequency is lowered, the indoor fan 15 is raised and the heat exchange rate is increased → the condensation temperature Te decreases → the discharge pressure Pd decreases,
It is possible to avoid the occurrence of a large load when the operating frequency is lowered, which deteriorates the oil film forming property, and as shown in the measurement result of FIG. 13, the contact amount of the sliding member can be suppressed to be small.

【0046】図14は、別の実施形態を示したもので、
運転周波数の下降時に、その下降に移る前段で、一定時
間、膨張弁9を絞る制御回路43を備えたものである。
FIG. 14 shows another embodiment.
When the operating frequency is decreased, the control circuit 43 for restricting the expansion valve 9 for a certain period of time is provided before the operation is started.

【0047】制御回路43には、変換器制御装置17か
ら周波数変換器13へ降下信号を送る前に、一定時間、
膨張弁9を絞る信号がタイムラグを有して送られるよう
になっている。
To the control circuit 43, before sending the down signal from the converter control device 17 to the frequency converter 13,
A signal for squeezing the expansion valve 9 is sent with a time lag.

【0048】なお、他の構成要件は前記実施形態と同一
のため同一符号を符して詳細な説明を省略する。
Since the other constituents are the same as those in the above-mentioned embodiment, the same reference numerals are given and detailed description thereof will be omitted.

【0049】したがって、この実施形態によれば、運転
周波数の下降前に、膨張弁9が一定時間絞られると、一
時的に吐出圧力Pdは上昇するものの、冷媒流量減→吸
込圧力低下→吐出圧力Pdが低下し、油膜形成性が悪く
なる運転周波数の下降時に、負荷の大きい状態を生じさ
せることが回避でき、図15の測定結果に示す如く、摺
動部材の接触量が小さく抑えられるようになる。
Therefore, according to this embodiment, when the expansion valve 9 is throttled for a certain period of time before the operating frequency is lowered, the discharge pressure Pd is temporarily increased, but the refrigerant flow rate decreases → the suction pressure decreases → the discharge pressure. It is possible to avoid the occurrence of a heavy load when the operating frequency is lowered such that Pd decreases and the oil film forming property deteriorates, and the contact amount of the sliding member can be suppressed to be small as shown in the measurement result of FIG. Become.

【0050】この場合、膨張弁9を開き、続いて運転周
波数の下降に移る運転制御とすることも可能である。
In this case, it is also possible to open the expansion valve 9 and then carry out operation control in which the operation frequency is lowered.

【0051】この実施形態の場合には、膨張弁9を開く
と一時的に吐出圧力Pdが低下する。その結果、油膜形
成性が悪くなる運転周波数の下降時に、負荷の大きい状
態を生じさせることが回避でき、図16の測定結果に示
す如く摺動部材の接触量が小さく抑えられるようにな
る。
In the case of this embodiment, when the expansion valve 9 is opened, the discharge pressure Pd temporarily drops. As a result, it is possible to avoid the occurrence of a heavy load when the operating frequency is lowered, which deteriorates the oil film forming property, and the contact amount of the sliding member can be suppressed to be small as shown in the measurement result of FIG.

【0052】特に、この実施形態の場合には、液冷媒が
圧縮機1内に戻り易くなるが、アキュームレータを圧縮
機1の手前に取付けることで対応が可能となる。
In particular, in the case of this embodiment, the liquid refrigerant easily returns to the compressor 1, but it can be dealt with by mounting the accumulator in front of the compressor 1.

【0053】図17は、別の実施形態を示したもので、
冷媒回路3に暖房運転モード時において、運転周波数の
下降に移るその前段で、一定時間除霜運転モードに切換
える制御回路45を備えるものである。
FIG. 17 shows another embodiment.
In the heating operation mode, the refrigerant circuit 3 is provided with a control circuit 45 that switches to the defrosting operation mode for a certain period of time before the operation frequency is lowered.

【0054】制御回路45はホットガスバイパス回路と
なっている。制御回路45の一端は圧縮機1の吐出側
に、他端は、室外熱交換器7の入口側にそれぞれ接続さ
れると共に、開閉弁47を有している。開閉弁47に
は、変換器制御装置17から周波数変換器13へ降下信
号を送る前に、一定時間、開とする信号がタイムラグを
有して送られるようになっている。
The control circuit 45 is a hot gas bypass circuit. One end of the control circuit 45 is connected to the discharge side of the compressor 1 and the other end is connected to the inlet side of the outdoor heat exchanger 7, and has an opening / closing valve 47. To the on-off valve 47, a signal for opening for a certain time is sent with a time lag before the down signal is sent from the converter control device 17 to the frequency converter 13.

【0055】なお、他の構成要件は、前記実施形態と同
一のため同一符号を符して詳細な説明は省略する。
Since the other constituents are the same as those in the above-described embodiment, the same reference numerals are given and detailed description thereof will be omitted.

【0056】したがって、この実施形態によれば、暖房
運転モード時において、開閉弁47が開となることで、
高温のガスは、蒸発器として機能する室外熱交換器7の
入口側に送り込まれ除霜が行われるが、この開閉弁47
の開で、吐出圧力Pdが低下し、続いて油膜形成性が悪
くなる運転周波数の下降に移る結果、この下降時に負荷
の大きい状態を生じさせることが回避でき、図18の測
定結果に示す如く摺動部材の接触量が小さく抑えられる
ようになる。
Therefore, according to this embodiment, since the on-off valve 47 is opened in the heating operation mode,
The hot gas is sent to the inlet side of the outdoor heat exchanger 7 functioning as an evaporator for defrosting.
The discharge pressure Pd decreases when the valve is opened, and then the operating frequency decreases, which deteriorates the oil film forming property. As a result, it is possible to avoid the occurrence of a heavy load during the decrease, and as shown in the measurement results of FIG. The contact amount of the sliding member can be kept small.

【0057】この場合、図19に示す如く変換器制御装
置17からの信号49によって四方弁11を切り換える
ことで、暖房運転モード時に、高温のガスを室内側とな
る熱交換器5の入口側へ送るリバース除霜とすることで
も、図20の測定結果に示す如く摺動部材の接触量が小
さく抑えられるようになる。
In this case, by switching the four-way valve 11 by the signal 49 from the converter control device 17 as shown in FIG. 19, in the heating operation mode, high temperature gas is directed to the inlet side of the heat exchanger 5 which is the indoor side. Even when the reverse defrosting is performed, the contact amount of the sliding member can be suppressed to be small as shown in the measurement result of FIG.

【0058】図21は、別の実施形態を示したもので、
冷媒回路3に、運転周波数の下降時に、圧縮機1の吐出
圧力を逃がすレリース回路51を備えたものである。
FIG. 21 shows another embodiment.
The refrigerant circuit 3 is provided with a release circuit 51 that releases the discharge pressure of the compressor 1 when the operating frequency decreases.

【0059】レリース回路51の一端は、圧縮機1の吐
出側に、他端は、圧縮機1の取入側にそれぞれ接続さ
れ、レリース回路51にはレリース弁53が設けられて
いる。
One end of the release circuit 51 is connected to the discharge side of the compressor 1, and the other end is connected to the intake side of the compressor 1. The release circuit 51 is provided with a release valve 53.

【0060】レリース弁53には、変換器制御装置17
から周波数変換器13へ降下信号を送る前に、一定時
間、開とする信号がタイムラグを有して送られるように
なっている。
The release valve 53 includes a converter control device 17
Before sending the down signal from the frequency converter 13 to the frequency converter 13, the signal to be opened is sent with a time lag for a certain period of time.

【0061】なお、他の構成要件は、前記実施形態と同
一のため同一符号を符して詳細な説明は省略する。
Since the other constituents are the same as those in the above-described embodiment, the same reference numerals are given and detailed description thereof will be omitted.

【0062】したがって、この実施形態によれば、運転
周波数の下降時に、レリース弁53が開となるため、吐
出圧力Pdが低下し、運転周波数下降時の負荷の大きい
状態を生じさせることが回避でき、図22の測定結果に
示す如く摺動部材の接触量が小さく抑えられるようにな
る。
Therefore, according to this embodiment, since the release valve 53 is opened when the operating frequency is lowered, it is possible to prevent the discharge pressure Pd from being lowered and to cause a heavy load when the operating frequency is lowered. As shown in the measurement results of FIG. 22, the contact amount of the sliding member can be suppressed to be small.

【0063】図23は別の実施形態を示したもので、冷
媒回路3に、膨張弁9と並列に冷媒タンク65を設けた
ものである。
FIG. 23 shows another embodiment, in which the refrigerant circuit 3 is provided with a refrigerant tank 65 in parallel with the expansion valve 9.

【0064】冷媒タンク55の前後には、第1開閉弁5
7と第2開閉弁59がそれぞれ設けられている。第1,
第2開閉弁57,59の開閉タイミングは、常時は閉状
態にあって、変換器制御装置17から周波数変換器13
に降下信号を送る前に、第1開閉弁57を開とする信号
が送られ、液冷媒が一時的に冷媒タンク55内へ溜めら
れ吐出圧力Pdが降下した時点で、次に、第1開閉弁5
7の閉と同時に第2開閉弁59が開となる信号が送ら
れ、液冷媒が吐出された後、続いて第2開閉弁59が閉
となる信号が送られるようになっている。
The first opening / closing valve 5 is provided before and after the refrigerant tank 55.
7 and a second on-off valve 59 are provided respectively. First,
The opening / closing timing of the second opening / closing valves 57 and 59 is normally in the closed state, and the converter control device 17 causes the frequency converter 13 to open.
A signal for opening the first opening / closing valve 57 is sent before the drop signal is sent to, and the liquid refrigerant is temporarily stored in the refrigerant tank 55 and the discharge pressure Pd drops. Valve 5
A signal that the second opening / closing valve 59 is opened is sent at the same time as 7 is closed, and after the liquid refrigerant is discharged, a signal that the second opening / closing valve 59 is closed is subsequently sent.

【0065】なお、他の構成要件は、前記実施形態と同
一のため、同一符号を符して詳細な説明を省略する。
Since the other constituents are the same as those of the above-mentioned embodiment, the same reference numerals are given and detailed description thereof will be omitted.

【0066】したがって、この実施形態によれば、運転
周波数の下降時に、吐出圧力Pdが低下し、運転周波数
下降時の負荷の大きい状態を生じさせることが回避で
き、図24の測定結果を示す如く摺動部材の接触量が小
さく抑えられるようになる。
Therefore, according to this embodiment, it is possible to prevent the discharge pressure Pd from decreasing when the operating frequency decreases, and to cause a large load when the operating frequency decreases, as shown in the measurement results of FIG. The contact amount of the sliding member can be kept small.

【0067】[0067]

【発明の効果】以上、説明したように、この発明によれ
ば、運転周波数の下降時に、油膜切れの起きにくい運転
制御とすることができるため、安定した潤滑状態が確保
され、信頼性の向上が図れる。
As described above, according to the present invention, it is possible to perform operation control in which the oil film is unlikely to run out when the operating frequency is lowered, so that a stable lubrication state is secured and reliability is improved. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる空気調和機全体の構成を示す
ブロック図。
FIG. 1 is a block diagram showing the overall configuration of an air conditioner according to the present invention.

【図2】表示操作部の説明図。FIG. 2 is an explanatory diagram of a display operation unit.

【図3】温度設定値と室温の温度差と、圧縮機運転周波
数の関係の一例を示した説明図。
FIG. 3 is an explanatory diagram showing an example of a relationship between a temperature difference between a temperature setting value and room temperature and a compressor operating frequency.

【図4】運転周波数の下降速度の説明図。FIG. 4 is an explanatory diagram of a descending speed of an operating frequency.

【図5】温度設定値と室温との温度差に対する圧縮機回
転数及び吐出圧力並びに吸込圧力の関係を示した説明
図。
FIG. 5 is an explanatory diagram showing a relationship between a compressor rotation speed, a discharge pressure, and a suction pressure with respect to a temperature difference between a temperature set value and room temperature.

【図6】運転周波数の下降速度を1/3Hz/secと
した時の接触量の測定結果を示した従来例の説明図。
FIG. 6 is an explanatory diagram of a conventional example showing the measurement result of the contact amount when the decreasing rate of the operating frequency is 1/3 Hz / sec.

【図7】運転周波数の下降速度が定格運転周波数の55
%以下の範囲にかかる時において、その下降速度を1/
3Hz/secとした時の接触量の測定結果を示した従
来例の説明図。
FIG. 7: The descending speed of the operating frequency is 55 of the rated operating frequency.
When falling in the range of% or less, the descending speed is 1 /
Explanatory drawing of the prior art example which showed the measurement result of the amount of contact when it was 3 Hz / sec.

【図8】運転周波数の下降速度が定格運転周波数の55
%以下の範囲において、その下降速度を1/6Hz/s
ecとした時の接触量の測定結果を示した従来例の説明
図。
FIG. 8: The descending speed of the operating frequency is 55 of the rated operating frequency.
In the range of% or less, the descending speed is 1/6 Hz / s
Explanatory drawing of the prior art example which showed the measurement result of the amount of contact when it was set to ec.

【図9】運転周波数の下降速度を1/9Hz/sec以
下とした時の本発明の接触量の測定結果を示した説明
図。
FIG. 9 is an explanatory diagram showing the measurement result of the contact amount of the present invention when the decreasing rate of the operating frequency is 1/9 Hz / sec or less.

【図10】運転周波数の下降速度が定格運転周波数の5
5%以下の範囲にかかる時において、その下降速度を、
55%までの下降速度より遅くした時の接触量の測定結
果を示した説明図。
FIG. 10: The descending speed of the operating frequency is 5 of the rated operating frequency
When it falls within the range of 5% or less, the descending speed is
Explanatory drawing which showed the measurement result of the contact amount at the time of making it slower than the descending speed to 55%.

【図11】運転周波数の下降速度が定格運転周波数の5
5%以下の範囲内において、その下降速度を、55%ま
での下降速度より遅くした時の接触量の測定結果を示し
た説明図。
[Fig. 11] The descending speed of the operating frequency is 5 of the rated operating frequency.
Explanatory drawing which showed the measurement result of the contact amount at the time of making the descending speed slower than the descending speed to 55% within the range of 5% or less.

【図12】運転周波数の下降時に、一定時間、凝縮器の
ファン風量を上昇させる制御回路を設けた図1と同様の
ブロック図。
FIG. 12 is a block diagram similar to FIG. 1, in which a control circuit for increasing the fan air volume of the condenser is provided for a certain period of time when the operating frequency is decreased.

【図13】凝縮器のファン風量を上昇させた運転時の接
触量の測定結果を示した説明図。
FIG. 13 is an explanatory diagram showing the measurement result of the contact amount during the operation in which the fan air flow rate of the condenser is increased.

【図14】運転周波数の下降時に、一定時間、膨張弁を
絞る制御回路を設けた図1と同様のブロック図。
FIG. 14 is a block diagram similar to FIG. 1 in which a control circuit that throttles the expansion valve is provided for a certain period of time when the operating frequency is decreased.

【図15】運転周波数の下降時に、一定時間、膨張弁を
絞った運転時の接触量の測定結果を示した説明図。
FIG. 15 is an explanatory diagram showing a measurement result of a contact amount during operation in which the expansion valve is throttled for a certain period of time when the operation frequency is decreased.

【図16】運転周波数の下降時に、膨張弁を開とした運
転時に接触量の測定結果を示した説明図。
FIG. 16 is an explanatory diagram showing a measurement result of a contact amount during operation in which the expansion valve is opened when the operation frequency is decreased.

【図17】冷媒回路にホットガスバイパス回路を設けた
図1と同様のブロック図。
FIG. 17 is a block diagram similar to FIG. 1 in which a hot gas bypass circuit is provided in the refrigerant circuit.

【図18】ホットガスバイパス回路を使用した運転時の
接触量の測定結果を示した説明図。
FIG. 18 is an explanatory diagram showing a measurement result of a contact amount during operation using a hot gas bypass circuit.

【図19】運転周波数の下降時に、四方弁にてリバース
除霜運転を可能とする回路を備えた図1と同様のブロッ
ク図。
FIG. 19 is a block diagram similar to FIG. 1, which includes a circuit that enables reverse defrosting operation with a four-way valve when the operating frequency decreases.

【図20】運転周波数の下降時に、リバース除霜運転時
の接触量の測定結果を示した説明図。
FIG. 20 is an explanatory diagram showing the measurement result of the contact amount during the reverse defrosting operation when the operating frequency decreases.

【図21】冷媒回路に、吐出圧を逃がすレリース回路を
設けた図1と同様のブロック図。
FIG. 21 is a block diagram similar to FIG. 1 in which a release circuit for releasing discharge pressure is provided in the refrigerant circuit.

【図22】レリース回路を使用した運転時の接触量の測
定結果を示した説明図。
FIG. 22 is an explanatory diagram showing the measurement result of the contact amount during operation using the release circuit.

【図23】冷媒回路に吐出圧力を降下させる冷媒タンク
を設けた図1と同様のブロック図。
23 is a block diagram similar to FIG. 1, in which a refrigerant tank for reducing the discharge pressure is provided in the refrigerant circuit.

【図24】冷媒タンクを使用した時の接触量の測定結果
を示す説明図。
FIG. 24 is an explanatory diagram showing a measurement result of a contact amount when a refrigerant tank is used.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 冷媒回路 1 compressor 3 Refrigerant circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早野 誠 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 住空間システム技術研究 所内 (72)発明者 本橋 秀明 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝 住空間システム技術研究 所内 (56)参考文献 特開 平7−190517(JP,A) 特開 昭60−181550(JP,A) 特開 平7−120081(JP,A) 特開 昭63−123957(JP,A) 特開 平4−9553(JP,A) 実開 昭63−181768(JP,U) 実開 昭62−173668(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 F24F 11/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Hayano 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Inside the Research Center for Living Space Systems, Toshiba Corporation (72) Hideaki Motohashi 8th Shin-Sugita-cho, Isogo-ku, Yokohama, Kanagawa TOSHIBA CORPORATION (56) References JP-A-7-190517 (JP, A) JP-A-60-181550 (JP, A) JP-A-7-120081 (JP, A) JP-A 63-123957 (JP, A) JP-A-4-9553 (JP, A) Actually developed 63-181768 (JP, U) Actually developed 62-173668 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 1/00 F24F 11/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、室内熱交換器、室外熱交換器、
絞り機構、四方弁が設けられ冷媒に塩素の含まないHF
C冷媒が用いられた冷媒回路と、出力周波数を変え前記
圧縮機を低速回転から高速回転まで可変に制御する周波
数変換器と、センサで検出される室温と温度設定器の温
度設定値の差に応じ周波数変換器に周波数設定信号を与
える変換器制御装置と、を備えた空気調和機において、前記変換器制御装置は、前記周波数変換器を高い運転周
波数から低い運転周波数に変化させる時、 前記運転周波数の下降速度を、1/9Hz/sec以下
で制御することを特徴とする空気調和機。
1. A compressor, an indoor heat exchanger, an outdoor heat exchanger,
HF that does not contain chlorine in the refrigerant with a throttle mechanism and a four-way valve
The refrigerant circuit in which C refrigerant is used and the output frequency is changed to
Frequency that variably controls the compressor from low speed to high speed
Number converter and room temperature and temperature of temperature setter detected by the sensor
Frequency setting signal to the frequency converter according to the difference
And a converter control device for controlling the frequency converter.
An air conditioner characterized in that when the wave number is changed to a low operating frequency, the descending speed of the operating frequency is controlled at 1/9 Hz / sec or less.
【請求項2】 圧縮機、室内熱交換器、室外熱交換器、
絞り機構、四方弁が設けられ冷媒に塩素の含まないHF
C冷媒が用いられた冷媒回路と、出力周波数を変え前記
圧縮機を低速回転から高速回転まで可変に制御する周波
数変換器と、センサで検出される室温と温度設定器の温
度設定値の差に応じ周波数変換器に周波数設定信号を与
える変換器制御装置と、を備えた空気調和機において、前記変換器制御装置は、前記周波数変換器を高い運転周
波数から低い運転周波数に変化させる時、 前記運転周波数の下降速度を、圧縮機の定格運転周波数
の55%以下の範囲に入ると、定格運転周波数の55%
までの下降速度より遅い下降速度で制御することを特徴
とする空気調和機。
2. A compressor, an indoor heat exchanger, an outdoor heat exchanger,
HF that does not contain chlorine in the refrigerant with a throttle mechanism and a four-way valve
The refrigerant circuit in which C refrigerant is used and the output frequency is changed to
Frequency that variably controls the compressor from low speed to high speed
Number converter and room temperature and temperature of temperature setter detected by the sensor
Frequency setting signal to the frequency converter according to the difference
And a converter control device for controlling the frequency converter.
When changing from a wave number to a low operating frequency, if the falling speed of the operating frequency falls within the range of 55% or less of the rated operating frequency of the compressor , 55% of the rated operating frequency
An air conditioner characterized by being controlled at a descending speed slower than the descending speed up to.
【請求項3】 前記冷媒回路に、運転周波数の下降時に
その下降に移る前段で圧縮機の吐出圧力を下げる制御回
路を備えていることを特徴とする請求項1または2記載
空気調和機。
3. In the refrigerant circuit, when the operating frequency decreases
According to claim 1 or 2, characterized in that it comprises a control circuit to lower the discharge pressure of the compressor at the previous stage to move to its lowered
Air conditioner.
JP23833695A 1995-09-18 1995-09-18 Air conditioner Expired - Fee Related JP3524997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23833695A JP3524997B2 (en) 1995-09-18 1995-09-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23833695A JP3524997B2 (en) 1995-09-18 1995-09-18 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0979671A JPH0979671A (en) 1997-03-28
JP3524997B2 true JP3524997B2 (en) 2004-05-10

Family

ID=17028694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23833695A Expired - Fee Related JP3524997B2 (en) 1995-09-18 1995-09-18 Air conditioner

Country Status (1)

Country Link
JP (1) JP3524997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155824B2 (en) * 2013-05-08 2017-07-05 ダイキン工業株式会社 Air conditioner
JP6508066B2 (en) * 2016-01-07 2019-05-08 株式会社デンソー Water heater

Also Published As

Publication number Publication date
JPH0979671A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
JP3598809B2 (en) Refrigeration cycle device
KR100521620B1 (en) Air conditioner
JPH0327249Y2 (en)
JP4167196B2 (en) Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
JPH10185337A (en) Refrigerating cycle of air conditioner
JP4475655B2 (en) Air conditioner
US5499508A (en) Air conditioner
JP4315585B2 (en) Air conditioner
US4604872A (en) Heat pump type air conditioning apparatus having a controlled variable capacity compressor
JPH03175230A (en) Operation controller of air conditioner
JP3524997B2 (en) Air conditioner
JP2003240310A (en) Air conditioner and outdoor machine used in the same
JP5517891B2 (en) Air conditioner
JPH10227533A (en) Air-conditioner
JPH10325624A (en) Refrigerating cycle device
JP2000283568A (en) Refrigerating device and control method therefor
JP3853550B2 (en) Air conditioner
JPH11132575A (en) Air conditioner
JPH07208835A (en) Freezing air conditioner
JP3601134B2 (en) Refrigeration equipment
JPH02290471A (en) Air-conditioner
JPH11351683A (en) Refrigerating cycle apparatus
JPH08121888A (en) Refrigerating machine
JP3838267B2 (en) Air conditioner
JP3443442B2 (en) Air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees