JP3524728B2 - Fracture surface analysis method by spatial frequency analysis - Google Patents

Fracture surface analysis method by spatial frequency analysis

Info

Publication number
JP3524728B2
JP3524728B2 JP25992097A JP25992097A JP3524728B2 JP 3524728 B2 JP3524728 B2 JP 3524728B2 JP 25992097 A JP25992097 A JP 25992097A JP 25992097 A JP25992097 A JP 25992097A JP 3524728 B2 JP3524728 B2 JP 3524728B2
Authority
JP
Japan
Prior art keywords
spatial frequency
fracture
fracture surface
test
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25992097A
Other languages
Japanese (ja)
Other versions
JPH11101625A (en
Inventor
康晴 中馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25992097A priority Critical patent/JP3524728B2/en
Publication of JPH11101625A publication Critical patent/JPH11101625A/en
Application granted granted Critical
Publication of JP3524728B2 publication Critical patent/JP3524728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はき裂の破面解析方法
に関する。
TECHNICAL FIELD The present invention relates to a crack surface analysis method.

【0002】[0002]

【従来の技術】損傷事故の際には、損傷モード(疲労、
脆性・延性破壊、腐食、材料欠陥の有無等)及びき裂起
点を特定するために、破面解析が実施されている。従来
の破面解析方法は、破面を光学顕微鏡や電子顕微鏡によ
り観察を行い、定性的な判断を下すというものである。
また、ストライエーションと呼ばれる疲労によって生じ
る縞模様の間隔から、き裂進展速度や作用応力の推定を
行っている。
2. Description of the Related Art A damage mode (fatigue,
Fracture surface analysis is performed to identify brittleness / ductile fracture, corrosion, presence of material defects, etc.) and crack initiation points. The conventional fracture surface analysis method is to observe the fracture surface with an optical microscope or an electron microscope to make a qualitative judgment.
In addition, the crack growth rate and working stress are estimated from the interval of the stripe pattern caused by fatigue called striation.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の技術に
は、次のような問題がある。 (1)実機の損傷破面にはストライエーションなどの特
徴的な模様が見られない場合が多い。 (2)そのため、損傷モードさえも判断を下すことが困
難となるケースが多々生じている。本発明は、これらの
問題を解決することができる装置を提供することを目的
とする。
However, the conventional techniques have the following problems. (1) Characteristic patterns such as striations are often not seen on the damaged surface of the actual machine. (2) Therefore, there are many cases in which it is difficult to judge even the damage mode. The present invention aims to provide a device capable of solving these problems.

【0004】[0004]

【課題を解決するための手段】発明に係る空間周波数
分析による破面解析方法は、き裂破面を共焦点レーザ
顕微鏡により計測し、計測されたき裂破面形状の空間周
波数を分析して、その空間周波数特性を見いだし、前
空間周波数特性を、実機と同一材料による疲労試験、引
張試験、破壊靭性試験、き裂伝播試験、クリープ試験か
ら得られる試験片破面の空間周波数特性と比較し、き裂
面の損傷モードを特定する。
How fracture surface analysis by spatial frequency analysis according to the present invention According to an aspect of the can裂破surface was measured by a confocal laser over <br/> microscope, the spatial frequency of the total measured by Taki裂破surface shape to analyze, found the spatial frequency characteristics, before Symbol spatial frequency characteristics, fatigue test that by the actual and the same material, tensile test, fracture toughness test, crack propagation test, creep test or <br/> compared with the spatial frequency characteristics of the al resulting test piece fracture, crack
That identifies the damage mode of fracture surface.

【0005】この場合、空間周波数特性は、共焦点レ
ザー顕微鏡により数値化されたき裂破面形状を、空間周
波数分析することにより、損傷モードによって異なる破
面の微視的凹凸を、その大きさ毎に抽出したものであ
る。そして、得られた空間分析周波数特性を、荷重や損
傷モードが既知な試験片の破面の周波数特性と比較する
ことにより、損傷モードや荷重(ΔK)などを推定す
る。
[0005] In this case, the spatial frequency characteristics, the裂破surface shape Taki be more digitized confocal les over <br/> Heather microscope, by spatial frequency analysis, microscopic different fracture by damage mode Unevenness is extracted by size.
It Its to the resulting spatial analysis frequency characteristic, by the load and failure mode are compared with the frequency characteristics of the fracture surface of the known specimens, to estimate and failure mode and load ([Delta] K)
It

【0006】[0006]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

(第1の実施の形態)本発明の第1の実施の形態を図1
〜図3に示す。図1は、空間周波数分析による破面解析
法のフローチャートを示す図。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
~ Shown in FIG. FIG. 1 is a diagram showing a flowchart of a fracture surface analysis method by spatial frequency analysis.

【0007】図2は、破面形状の空間周波数特性の説明
図。図3は、本発明方法による破面解析の具体例を示す
図である。図1に基づき、本発明による破面解析方法
説明する。
FIG. 2 is an explanatory view of the spatial frequency characteristic of the fracture surface shape. Figure 3 is a diagram showing a specific example of a fracture surface analysis by the onset bright method. A fracture surface analysis method according to the present invention will be described with reference to FIG.

【0008】まず、き裂破面の微視的凹凸形状を共焦点
型レーザー顕微鏡により計測する。そして、数値化され
た破面形状を高速フーリェ変換法(以下FFT法とい
う。FFTとはFast Fourier Trans
form、のことをいう)等により空間周波数分析し、
その形状の空間周波数特性を見いだす。
First, the microscopic concavo-convex shape of the cracked surface is measured with a confocal laser microscope. Then, the digitized fracture surface shape is referred to as a fast Fourier transform method (hereinafter, referred to as FFT method. FFT is Fast Fourier Trans).
form frequency), etc.
Find the spatial frequency characteristics of the shape.

【0009】次に、実機と同一材料による標準的な試験
(疲労試験、引張試験、破壊靭性試験、き裂伝播試験、
クリープ試験等)から得られる試験片破面の空間周波数
特性と比較することにより、最も実機破面に近い空間周
波数特性を有する試験片破面を選別する。
Next, standard tests using the same material as the actual machine (fatigue test, tensile test, fracture toughness test, crack propagation test,
By comparing with the spatial frequency characteristics of the fracture surface of the test piece obtained from the creep test, etc., the fracture surface of the test piece having the spatial frequency characteristic closest to that of the actual machine is selected.

【0010】これより実機のき裂破面が、脆性・延性、
高・低サイクル疲労、クリープなどのどの損傷モードに
よるものかを特定することができる。また、対応する試
験片の試験条件(荷重、環境)から、実機のき裂の荷重
・環境も推定することも可能である。
From this, the crack surface of the actual machine is brittle and ductile,
It is possible to specify which damage mode such as high / low cycle fatigue and creep is caused. It is also possible to estimate the load / environment of the crack of the actual machine from the test conditions (load, environment) of the corresponding test piece.

【0011】したがって、次のように作用する。き裂が
伝播する場合、き裂先端部には必ず非弾性変形域を形成
しつつ伝播するため面には損傷プロセスに対応したミ
クロな凹凸の痕跡が残されているものと考えられる。
Therefore, it operates as follows. If the crack propagates, believed to be the fracture surface to propagate while forming a non-elastic deformation zone always the crack tip portion that have been left traces of micro uneven corresponding to the damage process of.

【0012】図2に破面形状を空間周波数分析して得ら
れる空間周波数特性の模式図を示す。グラフの横軸は、
空間周波数(1/波長)であり、大きくなるに従い(波
長の)小さな凹凸を示している。
FIG. 2 shows a schematic diagram of the spatial frequency characteristics obtained by spatial frequency analysis of the fracture surface shape. The horizontal axis of the graph is
It is a spatial frequency (1 / wavelength), and shows smaller irregularities (of wavelength) as the frequency increases.

【0013】グラフの縦軸は、パワースペクトル密度で
あり、凹凸の高さ(波の振幅)を示している。図2か
ら、分析した破面がどのような凹凸から成るのか知るこ
とができる。
The vertical axis of the graph is the power spectral density, which indicates the height of the irregularities (wave amplitude). From FIG. 2, it is possible to know what unevenness the analyzed fracture surface is made of.

【0014】具体的には、空間周波数の小さな領域は破
面のマクロ的な凹凸や結晶粒を示し、空間周波数が大き
くなるに従い、ディンプルやストラエーションといっ
た破面模様、さらには定性的には識別不可能な、微視的
な凹凸形状を示している。
[0014] Specifically, a small region of spatial frequencies shows a macroscopic unevenness and grain fracture, in accordance with the spatial frequency increases, fracture patterns such as dimples and Stora Lee ation, more qualitatively It shows a microscopic uneven shape that cannot be identified.

【0015】図3に本発明方法による破面解析の具体例
を示す。実機のき裂破面の空間周波数分析結果と、き裂
伝播試験片および高サイクル疲労試験片の破面の空間周
波数特性を比較した場合、き裂伝播試験片に近い事が分
かる。また、最も近い空間周波数特性を示すき裂伝播試
験片の試験条件から、荷重(応力拡大係数範囲ΔK)を
推定することもできる。
FIG. 3 shows a concrete example of fracture surface analysis by the method of the present invention. Comparing the spatial frequency analysis result of the crack surface of the actual machine and the spatial frequency characteristics of the crack surface of the crack propagation test piece and the high cycle fatigue test piece, it is found that it is close to the crack propagation test piece. Further, the load (stress intensity factor range ΔK) can be estimated from the test conditions of the crack propagation test piece showing the closest spatial frequency characteristic.

【0016】[0016]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)共焦点レーザー顕微鏡により数値化されたき裂破
面形状を、空間周波数分析することにより、損傷モード
によって異なる破面の微視的凹凸を、その大きさ毎に抽
出し、 (2)得られた空間周波数特性を、荷重や損傷モードが
既知な試験片の破面の空間周波数特性と比較することに
より、損傷モードや荷重(ΔK)などを推定することが
出来る。
Since the present invention is constructed as described above, it has the following effects. (1) a more quantified Taki裂破surface shape confocal laser microscope, by spatial frequency analysis, microscopic irregularities of different fracture by damage mode, and extracted for respective sizes, (2) The damage mode, load (ΔK), etc. can be estimated by comparing the obtained spatial frequency characteristics with the spatial frequency characteristics of the fracture surface of the test piece whose load and damage mode are known.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係る空間周波数分
析方法による破面解析法のフローチャート。
FIG. 1 is a flowchart of a fracture surface analysis method by a spatial frequency analysis method according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態に係る方法による破
面形状の空間周波数特性の説明図。
FIG. 2 is an explanatory diagram of a spatial frequency characteristic of a fracture surface shape by the method according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態に係る方法による破
面解析の具体例を示す図。
FIG. 3 is a diagram showing a specific example of fracture surface analysis by the method according to the first embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−238759(JP,A) 特開 平7−294451(JP,A) 特開 平9−178634(JP,A) 特開 平7−27635(JP,A) 特開 平3−221831(JP,A) 特開 昭63−96536(JP,A) 特開 昭64−91002(JP,A) 特開 平8−21799(JP,A) 特公 昭60−34318(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 G01B 21/30 G01N 33/20 G01N 3/00 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-60-238759 (JP, A) JP-A-7-294451 (JP, A) JP-A-9-178634 (JP, A) JP-A-7- 27635 (JP, A) JP 3-221831 (JP, A) JP 63-96536 (JP, A) JP 64-91002 (JP, A) JP 8-21799 (JP, A) Japanese Patent Publication No. 60-34318 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) G01B 11/00-11/30 G01B 21/30 G01N 33/20 G01N 3/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】裂破面を共焦点レーザ顕微鏡により計
測し、 測されたき裂破面形状の空間周波数を分析して、その
空間周波数特性を見いだし、 記空間周波数特性を、実機と同一材料による疲労試
験、引張試験、破壊靭性試験、き裂伝播試験、クリープ
験から得られる試験片破面の空間周波数特性と比較
し、き裂破面の損傷モードを特定することを特徴とする
空間周波数分析による破面解析方法。
1. A-out measured裂破surface by confocal laser over microscopy analyzes the spatial frequency of the total measured by Taki裂破surface shape, finding the spatial frequency characteristic, the pre-Symbol spatial frequency characteristic, identical to the actual fatigue tests that by the material, a tensile test, fracture toughness test, cracks propagation test, compared to the spatial frequency characteristic of creep <br/> test whether we obtained test piece fracture, before Symbol crack fracture A fracture surface analysis method by spatial frequency analysis characterized by specifying a damage mode.
【請求項2】前記空間周波数特性は、共焦点レーザー顕
微鏡により数値化されたき裂破面形状を、空間周波数分
析することにより、損傷モードによって異なる破面の微
視的凹凸を、その大きさ毎に抽出したものであり、 得られた前記空間周波数特性を、荷重と損傷モードが既
知な試験片の破面の空間周波数特性と比較することを特
徴とする請求項1に記載の空間周波数分析による破面解
析方法。
2. The confocal laser microscope has the spatial frequency characteristic.
The shape of the crack fracture surface quantified by a microscope is analyzed for the spatial frequency.
By analyzing the fracture surface,
Visual irregularities are extracted for each size, and the obtained spatial frequency characteristics are used for the load and damage modes.
It is special to compare with the spatial frequency characteristics of the fracture surface of a known test piece.
Fracture solution by spatial frequency analysis according to claim 1
Analysis method.
JP25992097A 1997-09-25 1997-09-25 Fracture surface analysis method by spatial frequency analysis Expired - Fee Related JP3524728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25992097A JP3524728B2 (en) 1997-09-25 1997-09-25 Fracture surface analysis method by spatial frequency analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25992097A JP3524728B2 (en) 1997-09-25 1997-09-25 Fracture surface analysis method by spatial frequency analysis

Publications (2)

Publication Number Publication Date
JPH11101625A JPH11101625A (en) 1999-04-13
JP3524728B2 true JP3524728B2 (en) 2004-05-10

Family

ID=17340776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25992097A Expired - Fee Related JP3524728B2 (en) 1997-09-25 1997-09-25 Fracture surface analysis method by spatial frequency analysis

Country Status (1)

Country Link
JP (1) JP3524728B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099270A1 (en) 2010-02-15 2011-08-18 株式会社 日立製作所 Fracture surface analysis system and method of fracture surface analysis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660751B2 (en) * 2005-03-02 2011-03-30 国立大学法人三重大学 Method and apparatus for inspecting material containing magnetic material
JP4686522B2 (en) * 2007-09-28 2011-05-25 株式会社日立製作所 Fracture surface analysis method and apparatus
FR3026843B1 (en) * 2014-10-03 2016-11-18 Univ Pierre Et Marie Curie (Paris 6) METHOD OF CHARACTERIZING THE CRACKING MECHANISM OF A MATERIAL FROM ITS BREAKING SURFACE

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034318B2 (en) * 1980-11-28 1985-08-08 アンリツ株式会社 image spatial frequency analyzer
JPS60238759A (en) * 1984-05-14 1985-11-27 Mitsubishi Heavy Ind Ltd Method for discriminating fracture surface
JPS6396536A (en) * 1986-10-14 1988-04-27 Nkk Corp Measuring instrument for fracture rate of charpy test piece
JPS6491002A (en) * 1987-10-02 1989-04-10 Chiyoda Chem Eng Construct Co Three-dimensional scanning microscope
JPH03221831A (en) * 1990-01-29 1991-09-30 Mitsubishi Heavy Ind Ltd Analysis of fatigue fracture surface
JPH0727635A (en) * 1993-07-08 1995-01-31 Mitsubishi Heavy Ind Ltd Method for estimating acting stress from fractured surface of intergranular stress corrosion cracking
JPH07294451A (en) * 1994-04-25 1995-11-10 Mitsubishi Paper Mills Ltd Application defect detecting method
JPH0821799A (en) * 1994-07-08 1996-01-23 Sharp Corp Apparatus for inspecting defect
JPH09178634A (en) * 1995-12-26 1997-07-11 Akashi:Kk Method and apparatus for measuring evaluating material hardness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099270A1 (en) 2010-02-15 2011-08-18 株式会社 日立製作所 Fracture surface analysis system and method of fracture surface analysis

Also Published As

Publication number Publication date
JPH11101625A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US11639915B2 (en) Identifying structural defect geometric features from acoustic emission waveforms
Kumar et al. In situ characterization of fatigue damage evolution in a cast Al alloy via nonlinear ultrasonic measurements
WO2020057270A1 (en) Ultrasonic nondestructive detection method for expanded size of micro crack of material
JP5155566B2 (en) Inspection of non-planar parts using multifrequency eddy currents by phase analysis
CN109115605A (en) Based on corrosion-fatigue drawing sling steel wire residue lifetime estimation method and system
Lin et al. Feature extraction of AE characteristics in offshore structure model using Hilbert–Huang transform
JP3524728B2 (en) Fracture surface analysis method by spatial frequency analysis
EP2090886A2 (en) Method for optimising the voltage distribution in acoustic thermography applications
CN113916629B (en) Test piece design and test method for hole edge surface defect detection probability test
Pan et al. Experimental and numerical study of crack damage under variable amplitude thermal fatigue for compacted graphite iron EN-GJV-450
CN109883826A (en) Heterogene structure&#39;s thick plate welded joint low cycle fatigue property test method
CN112945769B (en) Evaluation method for weak micro-area of low cycle fatigue crack propagation performance of welded joint
JP2000275164A (en) Stress corrosion crack test method
JPS62293151A (en) Method and device for diagnosing deterioration of article
Franceschini et al. An assessment of cleanliness techniques for low alloyed steel grades
Gołaski et al. Acoustic emission behavior of prestressed concrete girders during proof loading
Weiher et al. Laser Sensing System for Contactless Detection of Subsurface Defects in Concrete Tunnel Lining
CN108845025A (en) A kind of eddy detection system and method for the pin hole with copper sheathing
JPH05340857A (en) Method for diagnosing deterioration of inservice metal material
CN208283327U (en) It is a kind of to judge whether steel generate the device of fatigue crack using conductive paint
Gourdin et al. Fatigue crack growth from handling surface anomalies in a nickel based superalloy at high temperature
SU1747957A1 (en) Method of detecting tensile stresses
Skalskyi et al. Energy Criterion for Identification of the Types of Material Macrofracture
CN117890182A (en) Method for analyzing horizontal strain evolution process of asphalt mixture indirect tensile test
CN114994187A (en) Babbit metal coated surfacing welding thin-wall layer defect detection reference block and detection method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

LAPS Cancellation because of no payment of annual fees