JP2000275164A - Stress corrosion crack test method - Google Patents

Stress corrosion crack test method

Info

Publication number
JP2000275164A
JP2000275164A JP11079149A JP7914999A JP2000275164A JP 2000275164 A JP2000275164 A JP 2000275164A JP 11079149 A JP11079149 A JP 11079149A JP 7914999 A JP7914999 A JP 7914999A JP 2000275164 A JP2000275164 A JP 2000275164A
Authority
JP
Japan
Prior art keywords
stress corrosion
corrosion cracking
stress
test
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11079149A
Other languages
Japanese (ja)
Inventor
Shinobu Okido
忍 大城戸
Satoshi Sugano
智 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11079149A priority Critical patent/JP2000275164A/en
Publication of JP2000275164A publication Critical patent/JP2000275164A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To evaluate the limitation value of factors for causing a stress corrosion crack by executing a low-distortion speed tensile testing in an atmosphere where the inside of an actual machine usage environment is simulated and correlating the stress level to the crack length and depth. SOLUTION: A test piece-gripping part 20 fixes a test piece 1 to a testing device, an actuator 11 applies a low distortion tensile load, and a sensor 14 measures the distortion of the test piece 1. Then, a stress corrosion crack is generated by an evaluation test part 21, and a stress level is correlated to crack length and depth to evaluate the limitation value of factors for causing the stress corrosion crack. In this case, an environment sensor 13 measures the environment (temperature, water quality, or the like) of the evaluation test part 21 formed by a loop 12. Further, the evaluation test part 21 machines its sectional shape so that it has a different sectional area for the direction of an applied load to achieve a stress gradient. In this manner, by using the test piece 1 with the stress gradient, the progress of cracks with different stress levels can be evaluated simultaneously.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属材料の応力腐
食割れ特性を簡便に評価する応力腐食割れ試験方法に関
する。
The present invention relates to a stress corrosion cracking test method for easily evaluating stress corrosion cracking characteristics of a metal material.

【0002】[0002]

【従来の技術】応力腐食割れ評価試験として、JISに
おいては規格されていないが、ASTMのG30−94にお
いてU曲げ試験,G38−73においてCリング試験,
G39−90において曲げビーム試験,G49−85に
おいて引張型試験、またNACEにおいてはSCC試験方法
について勧告を出している。その他に、直接応力腐食割
れによるき裂進展を評価するのではなく、材料の鋭敏化
(応力腐食割れ感受性)を評価する方法として、特開平
10−26598号,特開平7−248305号に腐食電位,腐食電流
の変化から鋭敏化度を評価する方法、特開平8−193942
号に粒界の硬さと粒内の硬さを比較することにより材料
の鋭敏化を評価する方法、特開平7−113801号に粒界近
傍にトラップされた水素を脱離させその量から鋭敏化度
を評価する方法、特開平8−86740号に表面原子の結合エ
ネルギーの大小を基に溶解の有無を計算し、材料の鋭敏
化を評価する方法がある。その他の応力腐食割れ評価手
法として、特開平9−189790 号に実機に切り込みをいれ
リガメント部を用いて引張り試験を実施し、その破面か
ら応力腐食割れ感受性を評価する方法、また特開平8−2
01270 号に表面に形成された孔食の分布形状から応力腐
食割れ感受性及びき裂進展を予測,評価する手法があ
る。
2. Description of the Related Art As a stress corrosion cracking evaluation test, although not specified in JIS, a U-bending test in G30-94 of ASTM, a C-ring test in G38-73,
G39-90 makes recommendations for bending beam tests, G49-85 makes tensile tests, and NACE makes recommendations for SCC test methods. In addition, as a method for evaluating the sensitization (susceptibility to stress corrosion cracking) of a material instead of directly evaluating crack growth due to stress corrosion cracking, Japanese Patent Application Laid-Open No.
10-26598 and JP-A-7-248305, a method for evaluating sensitization from changes in corrosion potential and corrosion current, and JP-A-8-193942.
A method for evaluating the sensitization of a material by comparing the hardness of the grain boundary with the hardness of the grain within the grain, as disclosed in JP-A-7-113801. JP-A-8-86740 discloses a method for evaluating the degree of sensitization of a material by calculating the presence or absence of dissolution based on the magnitude of the binding energy of surface atoms. As another stress corrosion cracking evaluation method, a method is used in which a cut is made in an actual machine in Japanese Patent Application Laid-Open No. 9-189790, a tensile test is performed using a ligament portion, and the stress corrosion cracking susceptibility is evaluated from the fracture surface. Two
There is a method of predicting and evaluating stress corrosion cracking susceptibility and crack growth from the distribution of pitting corrosion formed on the surface in No. 01270.

【0003】[0003]

【発明が解決しようとする課題】応力腐食割れの主原因
は、環境,残留応力,材料の経年変化である。応力腐食
試験の目的の一つに、応力腐食割れが発生するこの要因
の限界値を知ることがある。ASTM,NACEにて規
格化された従来の手法では、応力腐食割れの発生限界を
求める場合、それぞれの要因についてパラメータを振
り、各条件における応力腐食割れによるき裂進展を評価
するため、試験に要する試験材が多くなること、また評
価に時間を要する等の問題があった。特開平10−26598
号、特開平7−-248305号,特開平8−193942号,特開平7
−113801号,特開平8−86740 号の方法では、材料の鋭
敏化については評価可能であるが、応力腐食割れによる
き裂進展評価に関しては従来データベースを用いなけれ
ばならず、腐食環境等において同一条件のデータベース
が存在しない場合、類似データベースを用いるなどの対
応をとってきた。特開平9−189790 号の場合、腐食環
境,材料の劣化状態に関しては全く問題ないが、応力レ
ベルが変化するような条件下で使用されているような場
合には、評価試験片の不足のため評価困難である。また
特開平8−201270 号では材料の鋭敏化に関しては評価可
能であるが、応力腐食割れによるき裂進展に関しては評
価できない。
The main causes of stress corrosion cracking are environmental, residual stress and aging of the material. One of the purposes of the stress corrosion test is to know the limit of this factor that causes stress corrosion cracking. In the conventional method standardized by ASTM and NACE, when determining the occurrence limit of stress corrosion cracking, parameters are required for each of the factors, and the crack growth due to stress corrosion cracking under each condition is evaluated. There were problems such as an increase in the number of test materials and a time required for evaluation. JP-A-10-26598
JP-A-7-248305, JP-A 8-193942, JP-A-7-248305
In the methods of JP-113801 and JP-A-8-86740, it is possible to evaluate the sensitization of the material, but the conventional database must be used for the evaluation of crack growth due to stress corrosion cracking, and the same When a database of conditions does not exist, measures such as using a similar database have been taken. In the case of JP-A-9-189790, there is no problem with respect to the corrosive environment and the deterioration state of the material. However, when used under conditions where the stress level changes, there is a shortage of evaluation test pieces. Evaluation is difficult. JP-A-8-201270 can evaluate the sensitization of the material, but cannot evaluate the crack growth due to stress corrosion cracking.

【0004】[0004]

【課題を解決するための手段】上記課題のうち、鋭敏化
度だけではなく、応力腐食割れによるき裂進展量を評価
する問題は、実機使用環境中を模擬した雰囲気中で低ひ
ずみ速度引張り試験を実施し、その応力レベルとき裂長
さ及び深さの相関を取ることにより解決できる。また、
上記課題のうち、応力腐食割れ試験によるき裂進展曲線
に関しては、応力腐食割れ評価試験部に応力勾配を持つ
試験片を用いることにより、一本の試験片で同時に応力
レベルの異なるき裂進展評価が可能になる。
Among the above-mentioned problems, the problem of evaluating not only the degree of sensitization but also the amount of crack propagation due to stress corrosion cracking is a low strain rate tensile test in an atmosphere simulating the actual use environment. And by correlating the stress level with the crack length and depth. Also,
Of the above problems, regarding the crack growth curve by the stress corrosion cracking test, by using a test piece with a stress gradient in the stress corrosion cracking evaluation test part, the crack growth evaluation with different stress levels simultaneously in one test piece Becomes possible.

【0005】[0005]

【発明の実施の形態】図1に中空円筒型の試験片を用い
る応力腐食割れ試験装置及び試験片形状の例を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a stress corrosion cracking test apparatus using a hollow cylindrical test piece and an example of the shape of the test piece.

【0006】応力腐食割れ試験装置の基本構成は荷重測
定用のロードセル10,荷重負荷用のアクチュエータ1
1,応力腐食割れ環境を形成するためのループ12,応
力腐食割れ評価部の環境、例えば温度,腐食電位,水質
等を測定する環境センサ13,ひずみ測定用のセンサ1
4である。その他に、例えば高温中における応力腐食割
れ試験の場合はロードセル10,アクチュエータ11を
中空円筒試験片1からの熱を遮断するための断熱材1
5,冷却水16、また高圧下での試験の場合には中空円
筒試験片1を固定するためのスプリットフランジ17等
が基本構成部に付加される。
The basic structure of the stress corrosion cracking test apparatus is a load cell 10 for measuring a load and an actuator 1 for applying a load.
1, a loop 12 for forming a stress corrosion cracking environment, an environment sensor 13 for measuring the environment of a stress corrosion cracking evaluation unit, for example, temperature, corrosion potential, water quality, etc., a sensor 1 for strain measurement
4. In addition, for example, in the case of a stress corrosion cracking test at a high temperature, the heat insulating material 1 for cutting off the heat from the hollow cylindrical test piece 1 with the load cell 10 and the actuator 11
5, a cooling water 16, and a split flange 17 for fixing the hollow cylindrical test piece 1 in the case of a test under high pressure are added to the basic components.

【0007】また中空円筒試験片1は、少なくとも、応
力腐食割れ試験装置に固定される試験片掴み部20,応
力腐食割れを発生させ評価する部分である評価試験部2
1から構成される。試験片掴み部20は応力腐食割れ試
験機の形状に合わせて加工される。例えば、図1に示す
ように、スプリットフランジ17で固定される場合には
試験片掴み部20を評価試験部21より大きい同心円の
鉤を取付る。また、別の例として、試験片掴み部20の
外周にネジを加工することも考えられる。評価試験部2
1は応力勾配を持つように加工する。例えば、図1に示
したように評価試験部21の断面形状を荷重負荷方向に
対して断面積が異なるように加工する。その際の荷重負
荷方向の応力勾配の例を図1に併せて示す。応力分布
は、試験片中心が最大応力値22になるような分布にな
る。幅広い範囲の応力レベルの影響を検討するために、
最大応力値22から最小応力値24になるまでの勾配2
3を出来るだけ小さくなるよう加工する必要がある。そ
の他の試験片形状の場合についても同様なことが言え
る。
The hollow cylindrical test piece 1 has at least a test piece gripping part 20 fixed to a stress corrosion cracking test apparatus and an evaluation test part 2 which is a part for generating and evaluating stress corrosion cracking.
1 The test piece gripping part 20 is processed according to the shape of the stress corrosion cracking tester. For example, as shown in FIG. 1, when fixed by the split flange 17, the test piece gripping part 20 is attached with a concentric hook larger than the evaluation test part 21. As another example, it is also conceivable to machine a screw on the outer periphery of the test piece gripping section 20. Evaluation test section 2
1 is processed so as to have a stress gradient. For example, as shown in FIG. 1, the cross-sectional shape of the evaluation test section 21 is processed so that the cross-sectional area is different from the load application direction. FIG. 1 also shows an example of a stress gradient in the load application direction at that time. The stress distribution is such that the center of the test piece has a maximum stress value of 22. To consider the effects of a wide range of stress levels,
Gradient 2 from maximum stress value 22 to minimum stress value 24
It is necessary to process No. 3 as small as possible. The same can be said for other test piece shapes.

【0008】図2に砂時計型、または平板型の試験片を
用いる応力腐食割れ試験装置及び試験片形状の例を示
す。
FIG. 2 shows an example of a stress corrosion cracking test apparatus using an hourglass type or flat type test piece and an example of the shape of the test piece.

【0009】応力腐食割れ試験装置の基本的構成は、荷
重測定用のロードセル10,応力腐食割れ環境を模擬す
る環境容器30,応力腐食割れ環境をモニタリングする
ための環境センサ13から構成される。その他に、例え
ば温度を制御下の塩素を含む水雰囲気中における応力腐
食割れ試験を実施する場合は、環境容器30の温度を制
御するための保熱ヒータ31,環境容器30を腐食環境
から保護するための環境容器保護膜32が付加される。
The basic structure of the stress corrosion cracking test apparatus includes a load cell 10 for measuring a load, an environment container 30 simulating the stress corrosion cracking environment, and an environment sensor 13 for monitoring the stress corrosion cracking environment. In addition, for example, when performing a stress corrosion cracking test in a water atmosphere containing chlorine under controlled temperature, the heat retention heater 31 for controlling the temperature of the environmental container 30 and the environmental container 30 are protected from a corrosive environment. Environmental protection film 32 is added.

【0010】また砂時計型試験片2及び平型試験片3
は、中空試験片1と同様、少なくとも、応力腐食割れ試
験装置に固定される試験片掴み部20,応力腐食割れを
発生させ評価する部分である評価試験部21から構成さ
れる。砂時計型試験片3の場合は、試験片掴み部20の
外周にネジを加工し、試験装置に固定する方法が簡便な
試験方法の一つである。評価試験部21は中空試験片1
同様、応力勾配を持つように加工する。例えば、図2に
示したように評価試験部21の断面形状を荷重負荷方向
に対して断面積が異なるように加工する。
The hourglass type test piece 2 and the flat type test piece 3
As in the case of the hollow test piece 1, the test piece comprises at least a test piece gripping part 20 fixed to the stress corrosion cracking test apparatus and an evaluation test part 21 which is a part for generating and evaluating stress corrosion cracking. In the case of the hourglass type test piece 3, one of the simple test methods is to process a screw on the outer periphery of the test piece gripping portion 20 and fix the screw to a test device. The evaluation test part 21 is a hollow test piece 1
Similarly, processing is performed so as to have a stress gradient. For example, as shown in FIG. 2, the cross-sectional shape of the evaluation test section 21 is processed so that the cross-sectional area is different from the load application direction.

【0011】応力腐食割れ試験方法及び結果のまとめ方
の一例として高温高圧水中でのステンレス鋼の応力腐食
割れ試験の結果例を図3に示す。(a)は試験片の切り
だし例、(b)は破面の形態、(c)はき裂分布、
(d)はき裂長さ分布である。代表例として中空円筒型
の試験片を用いた試験について説明する。中空円筒型試
験片1の中央部に応力腐食割れ評価部がくるように外観
形状を砂時計型にし、内面は内径一定の鏡面仕上げとす
る。目的とする環境中で一定のひずみ速度を負荷しなが
ら引張り試験する。試験終了後、試験片評価部2を図3
(a)に示すように、最初に試験片評価部2のみ切り出
し、次に切り出した試験片評価部2を縦方向に四つ切り
にし、内面の表面が観察できるようにする。試験片評価
部2を切り出し後、評価試験部2の表面をSEMまたは
光学顕微鏡を用いて観察する。き裂の進展が応力腐食割
れによるものかそうでないかは、き裂内部の形態を走査
型電子顕微鏡または光学顕微鏡を用いて観察し、その破
面形態が応力腐食割れ特有の形態かどうかから判断す
る。例えば、鋭敏化したオーステナイトステンレス鋼が
純水中において応力腐食割れを起こした場合、応力腐食
割れによる破面の形態はブロック状40になる。一方、
同材料,同環境に於いて引張りにより割れが生じた場合
には破面は延性引裂き破面41になる。全ての割れに対
して、応力腐食割れによる割れ40か、引張りによる割
れ41かどうか判断した後、応力腐食割れによるき裂4
0に関しては、ある特定の位置(図3では基準となる位
置を試験片評価部中心位置)からの距離,き裂の大き
さ,頻度を調べる。
FIG. 3 shows an example of the results of a stress corrosion cracking test of stainless steel in high-temperature and high-pressure water as an example of the stress corrosion cracking test method and a method of summarizing the results. (A) is an example of cutting out a test piece, (b) is a fracture surface, (c) is a crack distribution,
(D) is a crack length distribution. A test using a hollow cylindrical test piece will be described as a representative example. The external shape is an hourglass shape so that the stress corrosion cracking evaluation part is located at the center of the hollow cylindrical test piece 1, and the inner surface is mirror-finished with a constant inner diameter. The tensile test is performed while applying a constant strain rate in the target environment. After the test, the test piece evaluation unit 2 is
As shown in (a), first, only the test piece evaluation part 2 is cut out, and then the cut out test piece evaluation part 2 is cut into four pieces in the vertical direction so that the inner surface can be observed. After cutting out the test piece evaluation part 2, the surface of the evaluation test part 2 is observed using an SEM or an optical microscope. Whether the crack propagation is due to stress corrosion cracking or not is determined by observing the morphology inside the crack using a scanning electron microscope or optical microscope and determining whether the fracture surface is a form peculiar to stress corrosion cracking. I do. For example, when a sensitized austenitic stainless steel undergoes stress corrosion cracking in pure water, the form of the fracture surface due to the stress corrosion cracking becomes a block shape 40. on the other hand,
If a crack occurs due to tension in the same material and the same environment, the fracture surface becomes a ductile tear fracture surface 41. After determining whether all cracks are cracks 40 due to stress corrosion cracking or cracks 41 due to tension, cracks 4 due to stress corrosion cracking are determined.
For 0, the distance from a specific position (in FIG. 3, the reference position is the center position of the test piece evaluation unit), the size and frequency of the crack are examined.

【0012】図4に実験結果から応力腐食割れき裂進展
特性を評価する方法について示す。応力腐食割れが発生
する下限界応力値はき裂頻度分布から評価する。走査型
電子顕微鏡で観察された最も標準点より遠くにあるき裂
の位置を求める。図3(c)に示したように、き裂分布と
標準点からの距離の関係は、殆どの場合、標準点からの
距離が長い領域では指数分布則である。したがって、最
小き裂長さが存在する標準点からの距離を近似式から評
価することも可能である。図4(a)に示す標準点から
の距離と応力値の関係図から、き裂が見られる位置での
応力値を評価し、最も小さい値の応力値が実験環境、及
びその材料におけるSCC発生の下限界応力値となる。
FIG. 4 shows a method for evaluating the stress corrosion crack growth characteristics from the experimental results. The lower limit stress value at which stress corrosion cracking occurs is evaluated from the crack frequency distribution. The position of the crack farthest from the standard point observed by the scanning electron microscope is determined. As shown in FIG. 3C, in most cases, the relationship between the crack distribution and the distance from the standard point is an exponential distribution rule in a region where the distance from the standard point is long. Therefore, it is also possible to evaluate the distance from the standard point where the minimum crack length exists from the approximate expression. Based on the relationship between the distance from the standard point and the stress value shown in FIG. 4 (a), the stress value at the position where the crack is found was evaluated. Is the lower limit stress value.

【0013】応力腐食割れによるき裂進展速度はき裂長
さから求める。き裂の発生,進展の開始は、暫定的に決
定する方法としては試験開始時間、または各き裂位置に
おける応力値が降伏応力の二分の一になった時の時間、
または各き裂位置における応力値が降伏応力を越えた時
間等考えられるが、正確にき裂発生の時間を評価したい
場合には、試験片表面に電極を取り付け、一定電流下の
電圧値をモニタリングすることにより可能になる。き裂
発生時間を試験開始時間とすると、き裂長さを試験時間
で除し、単位時間当たりのき裂進展量を求める。また板
厚方向へのき裂進展量は、き裂長さにアスペクト比を乗
ずる事によって求まる。ここでアスペクト比は予めデー
タベースを構築しておくことが望ましいが、不明瞭な場
合は一般的に0.5 を用いる。き裂と応力の関係を示す
応力拡大係数Kは、き裂の板厚方向への深さaとその位
置における応力値σとの間に(1)式が成立する。
The crack growth rate due to stress corrosion cracking is determined from the crack length. The onset of crack initiation and propagation can be tentatively determined by the test start time, or the time when the stress value at each crack location is one half of the yield stress,
Alternatively, it is conceivable that the stress value at each crack location exceeds the yield stress, but if you want to accurately evaluate the crack initiation time, attach an electrode to the specimen surface and monitor the voltage value under a constant current. It becomes possible by doing. Assuming that the crack initiation time is the test start time, the crack length is divided by the test time to determine the amount of crack propagation per unit time. The amount of crack propagation in the thickness direction is determined by multiplying the crack length by the aspect ratio. Here, it is desirable to construct a database for the aspect ratio in advance, but if it is unclear, generally 0.5 is used. As for the stress intensity factor K indicating the relationship between the crack and the stress, Equation (1) is established between the depth a of the crack in the thickness direction and the stress value σ at that position.

【0014】[0014]

【数1】 K=Fσ√(πa) …(1) ここでFは形状に起因する係数である。最終的には図4
(c)に示す、き裂進展速度と応力拡大係数の関係を求
める。
K = Fσ√ (πa) (1) where F is a coefficient due to the shape. Finally Figure 4
The relationship between the crack growth rate and the stress intensity factor shown in FIG.

【0015】また、材料の鋭敏化されていない材料と同
じ試験条件下でのき裂進展速度の比較から、試験に供し
た材料の鋭敏化度を評価可能である。
Further, the degree of sensitization of the material subjected to the test can be evaluated by comparing the crack growth rate under the same test conditions as that of the unsensitized material.

【0016】[0016]

【発明の効果】応力腐食割れの主原因は、環境,残留応
力,材料の経年変化である。応力腐食試験の目的の一つ
に、応力腐食割れが発生するこの要因の限界値を知るこ
とがある。ASTM,NACEにて規格化された従来の
手法では、応力腐食割れの発生限界を求める場合、それ
ぞれの要因についてパラメータを振り、各条件における
応力腐食割れによるき裂進展を評価するため、試験に要
する試験材が多くなること、また評価に時間を要する等
の問題があった。しかし、応力腐食割れが発生する各因
子の限界値は、実機使用環境中を模擬した雰囲気中で低
ひずみ速度引張り試験を実施し、その応力レベルとき裂
長さ及び深さの相関を取ることにより評価することが可
能になる。また、応力腐食割れ試験によるき裂進展曲線
に関しては、応力腐食割れ試験に用いる試験片が応力勾
配を持つ構造にすることにより、一本の試験片で同時に
応力レベルの異なるき裂進展評価が可能になる。
The main causes of stress corrosion cracking are environmental, residual stress and aging of the material. One of the purposes of the stress corrosion test is to know the limit of this factor that causes stress corrosion cracking. In the conventional method standardized by ASTM and NACE, when determining the occurrence limit of stress corrosion cracking, parameters are required for each of the factors, and the crack growth due to stress corrosion cracking under each condition is evaluated. There were problems such as an increase in the number of test materials and a time required for evaluation. However, the limit value of each factor that causes stress corrosion cracking is evaluated by conducting a low strain rate tensile test in an atmosphere simulating the environment in which the actual machine is used, and correlating the stress level with the crack length and depth. It becomes possible to do. In addition, regarding the crack growth curve by the stress corrosion cracking test, the structure used for the stress corrosion cracking test has a stress gradient so that it is possible to evaluate crack growth at different stress levels simultaneously on a single test piece. become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】応力腐食割れ試験装置及び試験片(中空円筒
型)を示す図である。
FIG. 1 is a view showing a stress corrosion cracking test apparatus and a test piece (hollow cylindrical type).

【図2】応力腐食割れ試験装置及び試験片(砂時計型,
平板型)を示す図である。
FIG. 2 shows a stress corrosion cracking test apparatus and test pieces (hourglass type,
FIG.

【図3】応力腐食割れ試験結果を示す図である。FIG. 3 is a view showing the results of a stress corrosion cracking test.

【図4】応力腐食割れ試験結果評価方法を説明する図で
ある。
FIG. 4 is a diagram illustrating a method for evaluating a stress corrosion cracking test result.

【符号の説明】[Explanation of symbols]

1…中空円筒試験片、2…砂時計型試験片、3…平型試
験片、10…ロードセル、11…アクチュエータ、12
…ループ、13…環境センサ、14…ひずみ測定用セン
サ、15…断熱材、16…スプリットフランジ、20…
試験片掴み部、21…評価試験部、22…試験片最大応
力値、23…試験片応力勾配、24…試験片最小応力
値、25…応力分布曲線、30…環境容器、31…保熱
ヒータ、32…環境容器保護膜、40…応力腐食割れ破
面、41…延性引裂き破面、42…き裂頻度曲線、43
…き裂長さ分布曲線、50…き裂最大距離位置、51…
下限界応力値、52…下限界応力拡大係数、53…鋭敏
化材応力腐食割れき裂進展曲線、54…非鋭敏化材応力
腐食割れき裂進展曲線、55…鋭敏化度。
DESCRIPTION OF SYMBOLS 1 ... hollow cylindrical test piece, 2 ... hourglass type test piece, 3 ... flat type test piece, 10 ... load cell, 11 ... actuator, 12
... Loop, 13 ... Environment sensor, 14 ... Strain measurement sensor, 15 ... Insulation material, 16 ... Split flange, 20 ...
Test piece gripping part, 21 ... Evaluation test part, 22 ... Test piece maximum stress value, 23 ... Test piece stress gradient, 24 ... Test piece minimum stress value, 25 ... Stress distribution curve, 30 ... Environment container, 31 ... Heat keeping heater , 32: Environmental container protective film, 40: Stress corrosion cracking fracture surface, 41: Ductile tear fracture surface, 42: Crack frequency curve, 43
... crack length distribution curve, 50 ... crack maximum distance position, 51 ...
Lower limit stress value, 52: lower limit stress intensity factor, 53: sensitized material stress corrosion cracking crack growth curve, 54: non-sensitized material stress corrosion cracking crack growth curve, 55: sensitization degree.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属材料の応力腐食割れに対する感受性を
評価する応力腐食割れ試験方法において、実機の使用環
境を模擬した雰囲気中で、引張り試験片の一部に応力腐
食割れを評価する試験部を設け、該試験部に応力勾配を
持たせ、該引張り試験片を一定ひずみ速度で引張り試験
し、応力腐食割れを評価する試験部における割れの形
態,大きさ,深さの分布から応力腐食割れが発生する限
界の応力拡大係数,き裂進展速度、及び材料の鋭敏化度
を評価することを特徴とする応力腐食割れ試験方法。
In a stress corrosion cracking test method for evaluating the susceptibility of a metal material to stress corrosion cracking, a test section for evaluating stress corrosion cracking is provided on a part of a tensile test piece in an atmosphere simulating the use environment of an actual machine. The test section is provided with a stress gradient, the tensile test piece is subjected to a tensile test at a constant strain rate, and stress corrosion cracking is determined from the distribution of the form, size, and depth of the test section to evaluate stress corrosion cracking. A stress corrosion cracking test method characterized by evaluating the critical stress intensity factor, crack growth rate, and material sensitization that occur.
【請求項2】請求項1における応力腐食割れ試験方法に
おいて、試験片の形状を中空円筒型にし、中空円筒内を
実機模擬環境にすると同時に、該評価試験片の評価試験
部の内径を一定にし、外径を荷重付加方向に変化させる
ことにより応力勾配を持たせる該試験片を実機模擬環境
中に放置する、または、試験片の形状を砂時計型にし荷
重負荷方向に応力勾配を持たせ実機模擬環境中に放置す
る、または、試験片の形状を平板型にし、試験片の断面
積を荷重負荷方向に変化させることにより応力勾配を持
たせ実機模擬環境中に放置するような、いずれかの試験
片を用いて低ひずみ速度試験することを特徴とする応力
腐食割れ試験方法。
2. The stress corrosion cracking test method according to claim 1, wherein the shape of the test piece is a hollow cylindrical shape, and the inside of the hollow cylinder is simulated in an actual machine, and at the same time, the inner diameter of the evaluation test portion of the test piece is made constant. The test piece, which has a stress gradient by changing the outer diameter in the direction in which the load is applied, is left in a real machine simulated environment, or the shape of the test piece is an hourglass type, and the stress gradient is provided in the load application direction to simulate the real machine Either leave it in the environment, or leave it in the simulated environment of a real machine by making the shape of the test piece flat and changing the cross-sectional area of the test piece in the load application direction to give a stress gradient. A stress corrosion cracking test method characterized by performing a low strain rate test using a piece.
【請求項3】請求項1における応力腐食割れ試験方法に
おいて、対象とする環境中で応力腐食割れが発生する限
界応力を、応力腐食割れ試験片評価部のき裂発生点より
評価することを特徴とする応力腐食割れ試験方法。
3. The stress corrosion cracking test method according to claim 1, wherein a critical stress at which stress corrosion cracking occurs in a target environment is evaluated from a crack initiation point of a stress corrosion cracking test piece evaluation part. Stress corrosion cracking test method.
【請求項4】請求項1における応力腐食割れ試験方法に
おいて、応力腐食割れ試験片評価部におけるき裂長さ及
びき裂の形状より応力腐食割れの進展速度を評価するこ
とを特徴とする応力腐食割れ試験方法。
4. The stress corrosion cracking test method according to claim 1, wherein the stress corrosion crack growth rate is evaluated based on the crack length and the shape of the crack in the stress corrosion crack test piece evaluation part. Test method.
【請求項5】請求項1における応力腐食割れ試験方法に
おいて、応力腐食割れ感受性の評価を試験後の応力腐食
割れ試験片評価部で実施する際に、感受性を評価する指
標がき裂発生頻度,き裂長さであることを特徴とする応
力腐食割れ試験方法。
5. The stress corrosion cracking test method according to claim 1, wherein when the stress corrosion cracking susceptibility evaluation is performed in the stress corrosion cracking test piece evaluation section after the test, the index for evaluating the susceptibility is the crack occurrence frequency, A stress corrosion cracking test method characterized by a crack length.
JP11079149A 1999-03-24 1999-03-24 Stress corrosion crack test method Pending JP2000275164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11079149A JP2000275164A (en) 1999-03-24 1999-03-24 Stress corrosion crack test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11079149A JP2000275164A (en) 1999-03-24 1999-03-24 Stress corrosion crack test method

Publications (1)

Publication Number Publication Date
JP2000275164A true JP2000275164A (en) 2000-10-06

Family

ID=13681914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11079149A Pending JP2000275164A (en) 1999-03-24 1999-03-24 Stress corrosion crack test method

Country Status (1)

Country Link
JP (1) JP2000275164A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101461A (en) * 2005-10-07 2007-04-19 Hitachi Ltd Occurrence evaluation method of scc and corrosionproof method of metal material
JP2012002639A (en) * 2010-06-16 2012-01-05 Jfe Steel Corp Tensile testing device and testing method using the same
CN103776701A (en) * 2013-12-31 2014-05-07 首钢总公司 Clamp and method for detecting humid and heat resistance of sheet material
CN104198280A (en) * 2014-09-29 2014-12-10 无锡康柏斯机械科技有限公司 Clamp for detecting humidity resistance of sheet metal
CN106769474A (en) * 2017-01-14 2017-05-31 常州大学 Loading biaxial tension stress sample Experiment in Erosive Electrochemistry device and method of testing
CN107462451A (en) * 2017-08-25 2017-12-12 中国科学院金属研究所 Ion irradiation simulates the stress corrosion tensile sample and preparation method of neutron irradiation
CN109142202A (en) * 2018-08-03 2019-01-04 苏州热工研究院有限公司 A kind of gap environmental stress corrosion susceptibility high throughput evaluating apparatus and method
CN112198057A (en) * 2020-08-31 2021-01-08 浙江南都电源动力股份有限公司 Stress evaluation clamping device and stress evaluation method for lead-acid storage battery shell material
CN113237908A (en) * 2021-04-30 2021-08-10 北京科技大学 Method for evaluating crack sensitivity of hypo-peritectic steel
CN113624671A (en) * 2021-07-30 2021-11-09 中车工业研究院有限公司 Welding joint corrosion tensile test method and test device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101461A (en) * 2005-10-07 2007-04-19 Hitachi Ltd Occurrence evaluation method of scc and corrosionproof method of metal material
JP2012002639A (en) * 2010-06-16 2012-01-05 Jfe Steel Corp Tensile testing device and testing method using the same
CN103776701A (en) * 2013-12-31 2014-05-07 首钢总公司 Clamp and method for detecting humid and heat resistance of sheet material
CN103776701B (en) * 2013-12-31 2016-08-17 首钢总公司 Sheet material wet-hot aging performance detection fixture and detection method
CN104198280A (en) * 2014-09-29 2014-12-10 无锡康柏斯机械科技有限公司 Clamp for detecting humidity resistance of sheet metal
CN106769474B (en) * 2017-01-14 2019-05-28 常州大学 Load biaxial tension stress sample Experiment in Erosive Electrochemistry device and test method
CN106769474A (en) * 2017-01-14 2017-05-31 常州大学 Loading biaxial tension stress sample Experiment in Erosive Electrochemistry device and method of testing
CN107462451A (en) * 2017-08-25 2017-12-12 中国科学院金属研究所 Ion irradiation simulates the stress corrosion tensile sample and preparation method of neutron irradiation
CN107462451B (en) * 2017-08-25 2024-01-19 中国科学院金属研究所 Stress corrosion tensile sample simulating neutron irradiation by ion irradiation and preparation method thereof
CN109142202A (en) * 2018-08-03 2019-01-04 苏州热工研究院有限公司 A kind of gap environmental stress corrosion susceptibility high throughput evaluating apparatus and method
CN109142202B (en) * 2018-08-03 2020-11-10 苏州热工研究院有限公司 High-flux evaluation device and method for stress corrosion sensitivity of slit environment
CN112198057A (en) * 2020-08-31 2021-01-08 浙江南都电源动力股份有限公司 Stress evaluation clamping device and stress evaluation method for lead-acid storage battery shell material
CN113237908A (en) * 2021-04-30 2021-08-10 北京科技大学 Method for evaluating crack sensitivity of hypo-peritectic steel
CN113237908B (en) * 2021-04-30 2022-10-11 北京科技大学 Method for evaluating crack sensitivity of hypo-peritectic steel
CN113624671A (en) * 2021-07-30 2021-11-09 中车工业研究院有限公司 Welding joint corrosion tensile test method and test device

Similar Documents

Publication Publication Date Title
Parkins et al. Stress corrosion cracking characteristics of a range of pipeline steels in carbonate-bicarbonate solution
Hinds et al. Impact of surface condition on sulphide stress corrosion cracking of 316L stainless steel
US4746858A (en) Non destructive testing for creep damage of a ferromagnetic workpiece
Guennec et al. Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior
Ruschau et al. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium
Spencer et al. The initiation and propagation of chloride-induced transgranular stress-corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions
JP5851197B2 (en) Stress corrosion cracking life evaluation method for metal materials and inspection plan formulation system for structures used in corrosive water environment
Ruggieri et al. An engineering methodology for constraint corrections of elastic–plastic fracture toughness–Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions
Arunachalam et al. Test method for corrosion pit-to-fatigue crack transition from a corner of hole in 7075-T651 aluminum alloy
RU2582911C1 (en) Method of testing pipe steels for stress corrosion cracking
JP2000275164A (en) Stress corrosion crack test method
Naoe et al. Gigacycle fatigue behaviour of austenitic stainless steels used for mercury target vessels
Cussac et al. Low-cycle fatigue crack initiation and propagation from controlled surface imperfections in nuclear steels
Pan et al. Experimental and numerical study of crack damage under variable amplitude thermal fatigue for compacted graphite iron EN-GJV-450
JP2007155540A (en) Method of measuring fracture toughness value of metal material
JP2003315251A (en) High temperature damage evaluating method for heat- resisting steel
Xu et al. Establishment of unified creep–fatigue life prediction under various temperatures and investigation of failure physical mechanism for Type 304 stainless steel
JPH1123776A (en) Composite diagnostic system of reactor internal equipment
JP2008051513A (en) Evaluation method of stress corrosion crack developing speed
Dönges et al. Fatigue mechanism and its modeling of an austenitic-ferritic duplex stainless steel under HCF and VHCF loading conditions
Touzet et al. The characterization of damage in SCC by an electrochemical impedance and statistical study of multiple cracking
JPH0635971B2 (en) Method for predicting remaining life of metallic materials
Inoue et al. Potential fluctuation during early stage of stress corrosion cracking of type-304 stainless steel in chloride solution
JP3624553B2 (en) Identification of various damages caused by plastic deformation
Plumtree et al. Damage accumulation and fatigue crack propagation in a squeeze-formed aluminium alloy