JP3523775B2 - Manufacturing method of alkaline secondary battery - Google Patents

Manufacturing method of alkaline secondary battery

Info

Publication number
JP3523775B2
JP3523775B2 JP31824597A JP31824597A JP3523775B2 JP 3523775 B2 JP3523775 B2 JP 3523775B2 JP 31824597 A JP31824597 A JP 31824597A JP 31824597 A JP31824597 A JP 31824597A JP 3523775 B2 JP3523775 B2 JP 3523775B2
Authority
JP
Japan
Prior art keywords
group
weight
electrode
positive
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31824597A
Other languages
Japanese (ja)
Other versions
JPH11154531A (en
Inventor
浩章 柳川
将紀 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP31824597A priority Critical patent/JP3523775B2/en
Publication of JPH11154531A publication Critical patent/JPH11154531A/en
Application granted granted Critical
Publication of JP3523775B2 publication Critical patent/JP3523775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電極群を作製する
工程を改良したアルカリ二次電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an alkaline secondary battery, which has an improved process of manufacturing an electrode group.

【0002】[0002]

【従来の技術】水素吸蔵合金は、これを含む負極を形成
し、アルカリ電解液中でニッケル極のような電極を対極
(正極)とすると、充電時に前記負極に水素イオンが吸
蔵され、放電時にこの吸蔵した水素イオンが前記負極か
ら放出され、放出された水素イオンは酸化されて水に戻
る反応が生じる。このため、水素吸蔵合金は二次電池の
負極材料として利用されている。このような二次電池の
一例としてニッケル水素二次電池が知られている。この
ニッケル水素二次電池は、高エネルギー密度を有するた
め、容積効率が高く、しかも安全作動が可能で、かつ高
い信頼性を有する。
2. Description of the Related Art In a hydrogen storage alloy, when a negative electrode containing the same is formed and an electrode such as a nickel electrode is used as a counter electrode (positive electrode) in an alkaline electrolyte, hydrogen ions are stored in the negative electrode during charging and discharged during discharging. The stored hydrogen ions are released from the negative electrode, and the released hydrogen ions are oxidized to return to water. Therefore, the hydrogen storage alloy is used as a negative electrode material for secondary batteries. A nickel-hydrogen secondary battery is known as an example of such a secondary battery. Since this nickel-hydrogen secondary battery has a high energy density, it has high volume efficiency, safe operation, and high reliability.

【0003】ニッケル水素二次電池に採用されている代
表的な構成の1つとして、電池外装缶(容器)内に正極
及び負極をセパレータを介して捲回した構成の起電要素
(電極群)を密封した構成を有するものが挙げられる。
具体的には、まず、水酸化ニッケル粉末などの活物質が
ニッケル繊維基板などの集電体に担持された構造の正極
と、水素吸蔵合金粉末がニッケル製ネットなどの集電体
に担持された構造の負極とをその間に、親水処理が施さ
れたポリオレフィン繊維製不織布からなるセパレータを
介装させながら捲回することにより起電要素部(電極
群)を作製する。得られた起電要素部を電池外装缶(容
器)内に収納し、アルカリ電解液を注入し、前記起電要
素部と外部端子との接続を行った後、前記外装缶の開口
部を封口することによって前記二次電池が得られる。
As one of typical constitutions adopted in nickel-hydrogen secondary batteries, an electromotive element (electrode group) having a constitution in which a positive electrode and a negative electrode are wound inside a battery outer can (container) through a separator. One having a configuration in which the above is sealed is mentioned.
Specifically, first, an active material such as nickel hydroxide powder was carried on a current collector such as a nickel fiber substrate, and a hydrogen storage alloy powder was carried on a current collector such as a nickel net. An electromotive element part (electrode group) is produced by winding a negative electrode having a structure and a separator made of a non-woven fabric made of polyolefin fiber subjected to a hydrophilic treatment between the negative electrode and the negative electrode. The obtained electromotive element part is housed in a battery outer can (container), an alkaline electrolyte is injected, and after connecting the electromotive element part and an external terminal, the opening of the outer can is sealed. By doing so, the secondary battery is obtained.

【0004】ところで、近年、ニッケル水素二次電池の
高容量化が要望されており、この高容量化に対応して起
電要素部をなす正負極の捲回数や、正負極自体の厚さが
増加している。
By the way, in recent years, there has been a demand for higher capacity of nickel-hydrogen secondary batteries, and in response to this higher capacity, the number of turns of the positive and negative electrodes forming the electromotive element and the thickness of the positive and negative electrodes themselves are increased. It has increased.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、起電要
素部の容積を増加させると、必然的にアルカリ電解液量
を減らす必要があるため、正極、負極及びセパレータの
重量の変動が電池特性に影響を及ぼし、性能の安定した
電池を提供することができないという問題点を生じる。
However, when the volume of the electromotive element is increased, it is necessary to reduce the amount of the alkaline electrolyte, so that the fluctuation of the weight of the positive electrode, the negative electrode and the separator affects the battery characteristics. And a battery with stable performance cannot be provided.

【0006】すなわち、重量の製造公差が最大の正極と
負極とセパレータとを組み合わせて起電要素部を作製す
ると、外装缶内の空間が減少するため、過充電時のガス
発生により漏液を生じる恐れがある。一方、重量の製造
公差が最小の正極と負極とセパレータとを組み合わせて
起電要素部を作製すると、得られた起電要素部の緊縛度
が低下すると共に、正負極間の電解液の液回りが悪くな
るため、電池特性、特にサイクル寿命が低下するという
問題点が生じる。なお、正負極及びセパレータのうち、
セパレータの重量が最もばらつきやすいが、セパレータ
の重量を調節することで電極群の重量ばらつきを抑制す
るのは、製造作業が大変繁雑になる。
That is, when the electromotive element portion is manufactured by combining the positive electrode, the negative electrode, and the separator, which have the largest manufacturing tolerance of weight, the space inside the outer can is reduced, so that gas leakage during overcharge causes liquid leakage. There is a fear. On the other hand, when the electromotive element part is manufactured by combining the positive electrode, the negative electrode, and the separator, which have the smallest manufacturing tolerance of weight, the binding degree of the obtained electromotive element part is reduced, and the electrolyte solution flow between the positive and negative electrodes is reduced. As a result, the battery characteristics, particularly the cycle life, are reduced. Among the positive and negative electrodes and the separator,
Although the weight of the separator is most likely to vary, controlling the weight of the separator to suppress the variation in the weight of the electrode group makes the manufacturing operation very complicated.

【0007】本発明は、正負極の組合せを規制すること
により、高容量化に伴って生じる充放電サイクル寿命の
変動及び急速充電等によるガス発生時の安全性のばらつ
きが抑制されたアルカリ二次電池の製造方法を提供しよ
うとするものである。
The present invention regulates the combination of positive and negative electrodes to suppress variations in charge / discharge cycle life that accompany high capacity and variations in safety at the time of gas generation due to rapid charging and the like. It is intended to provide a method for manufacturing a battery.

【0008】[0008]

【課題を解決するための手段】本発明に係るアルカリ二
次電池の製造方法は、正極を重量で2段階以上の群に分
けると共に、負極を重量で2段階以上の群に分け、前記
2段階以上の群から1つの群をそれぞれ選択する際、最
小段階の群に属するもの同士及び最大段階の群に属する
もの同士が組み合わさらないようにし、組み合わせた群
の正負極を用いて電極群を作製することを特徴とするも
のである。
In the method of manufacturing an alkaline secondary battery according to the present invention, the positive electrode is divided into two or more groups by weight and the negative electrode is divided into two or more groups by weight, and the two stages are When selecting one group from each of the above groups, those belonging to the minimum stage group and those belonging to the maximum stage group should not be combined, and the positive and negative electrodes of the combined group should be used to prepare the electrode group. It is characterized by doing.

【0009】[0009]

【発明の実施の形態】以下、本発明の方法で製造される
アルカリ二次電池の一例を図1を参照して説明する。有
底円筒状の容器1内には、正極2と負極4とをその間に
セパレータ3を介在させながら捲回することにより作製
された電極群5が収納されている。前記負極4は、前記
電極群5の最外周に配置されて前記容器1と電気的に接
触している。アルカリ電解液は、前記容器1内に収容さ
れている。中央に孔6を有する円形の第1の封口板7
は、前記容器1の上部開口部に配置されている。リング
状の絶縁性ガスケット8は、前記封口板7の周縁と前記
容器1の上部開口部内面の間に配置され、前記上部開口
部を内側に縮径するカシメ加工により前記容器1に前記
封口板7を前記ガスケット8を介して気密に固定してい
る。正極リード9は、一端が前記正極2に接続、他端が
前記封口板7の下面に接続されている。帽子形状をなす
正極端子10は、前記封口板7上に前記孔6を覆うよう
に取り付けられている。ゴム製の安全弁11は、前記封
口板7と前記正極端子10で囲まれた空間内に前記孔6
を塞ぐように配置されている。中央に穴を有する絶縁材
料からなる円形の押え板12は、前記正極端子10上に
前記正極端子10の突起部がその押え板12の前記穴か
ら突出されるように配置されている。外装チューブ13
は、前記押え板12の周縁、前記容器1の側面及び前記
容器1の底部周縁を被覆している。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an alkaline secondary battery manufactured by the method of the present invention will be described below with reference to FIG. An electrode group 5 produced by winding a positive electrode 2 and a negative electrode 4 with a separator 3 interposed therebetween is housed in a bottomed cylindrical container 1. The negative electrode 4 is disposed on the outermost periphery of the electrode group 5 and is in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1. Circular first sealing plate 7 having a hole 6 in the center
Are arranged in the upper opening of the container 1. The ring-shaped insulating gasket 8 is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the sealing plate is attached to the container 1 by caulking to reduce the diameter of the upper opening inward. 7 is airtightly fixed via the gasket 8. The positive electrode lead 9 has one end connected to the positive electrode 2 and the other end connected to the lower surface of the sealing plate 7. The hat-shaped positive electrode terminal 10 is mounted on the sealing plate 7 so as to cover the hole 6. The rubber safety valve 11 has the hole 6 in the space surrounded by the sealing plate 7 and the positive electrode terminal 10.
It is arranged so as to block. The circular holding plate 12 made of an insulating material having a hole in the center is arranged on the positive electrode terminal 10 such that the protruding portion of the positive electrode terminal 10 projects from the hole of the holding plate 12. Exterior tube 13
Covers the peripheral edge of the pressing plate 12, the side surface of the container 1 and the peripheral edge of the bottom portion of the container 1.

【0010】前記二次電池は、例えば、以下に説明する
方法によって製造することができる。 (第1工程)以下に説明するような構成を有し、かつ製
造公差の範囲内の重量の正極、負極、セパレータ及びア
ルカリ電解液を用意する。
The secondary battery can be manufactured, for example, by the method described below. (First Step) A positive electrode, a negative electrode, a separator and an alkaline electrolyte which have the structures described below and have weights within manufacturing tolerances are prepared.

【0011】1)正極2 この正極2は、金属酸化物を含む合剤が集電体に担持さ
れた構造を有する。前記正極は、例えば、金属酸化物粉
末、導電剤及び結着剤を水の存在下で混練してペースト
を調製し、前記ペーストを集電体に充填した後、乾燥
し、圧延成形を施すことにより製造される。
1) Positive Electrode 2 This positive electrode 2 has a structure in which a mixture containing a metal oxide is carried on a current collector. For the positive electrode, for example, a metal oxide powder, a conductive agent and a binder are kneaded in the presence of water to prepare a paste, the current collector is filled with the paste, and the paste is dried and roll-formed. Manufactured by.

【0012】前記金属酸化物としては、例えば、水酸化
ニッケルを挙げることができる。前記導電剤としては、
例えば、水酸化コバルト、一酸化コバルト、三酸化二コ
バルト、金属コバルトのようなコバルト化合物を挙げる
ことができる。
Examples of the metal oxide include nickel hydroxide. As the conductive agent,
Examples thereof include cobalt compounds such as cobalt hydroxide, cobalt monoxide, dicobalt trioxide, and metallic cobalt.

【0013】前記結着剤としては、例えばフッ素樹脂
(例えば、ポリテトラフルオロエチレン)、カルボキシ
メチルセルロース、メチルセルロース、ポリアクリル酸
塩(例えば、ポリアクリル酸ナトリウム)、ヒドロキシ
メチルセルロース、ポリビニルアルコール等を挙げるこ
とができる。
Examples of the binder include fluororesins (eg, polytetrafluoroethylene), carboxymethyl cellulose, methyl cellulose, polyacrylates (eg, sodium polyacrylate), hydroxymethyl cellulose, polyvinyl alcohol and the like. it can.

【0014】前記集電体としては、ニッケル、ステンレ
ス鋼、ニッケルメッキが施された樹脂などの耐アルカリ
性材料からなる網状、スポンジ状、繊維状、フェルト状
の導電性基板を挙げることができる。
The current collector may be a net-like, sponge-like, fibrous, or felt-like conductive substrate made of an alkali-resistant material such as nickel, stainless steel, or nickel-plated resin.

【0015】2)負極4 この負極4は、負極活物質、導電材、結着剤および水と
共に混練してペーストを調製し、前記ペーストを導電性
基板に充填し、乾燥した後、成形することにより製造さ
れる。
2) Negative Electrode 4 This negative electrode 4 is prepared by kneading a negative electrode active material, a conductive material, a binder and water to prepare a paste, filling the paste into a conductive substrate, drying and then molding. Manufactured by.

【0016】前記負極活物質としては、例えば金属カド
ミウム、水酸化カドミウムなどのカドミウム化合物、水
素等を挙げることができる。水素のホスト・マトリック
スとしては、例えば、水素吸蔵合金を挙げることができ
る。
Examples of the negative electrode active material include cadmium compounds such as metal cadmium and cadmium hydroxide, hydrogen and the like. Examples of the hydrogen host matrix include a hydrogen storage alloy.

【0017】中でも、前記水素吸蔵合金は、前記カドミ
ウム化合物を用いた場合よりも蓄電池の容量を向上でき
るため、好ましい。前記水素吸蔵合金は、格別制限され
るものではなく、電解液中で電気化学的に発生させた水
素を吸蔵でき、かつ放電時にその吸蔵水素を容易に放出
できるものであればよい。例えば、LaNi5 、MmN
5 (Mmはミッシュメタル)、LmNi5 (LmはL
aを含む希土類元素から選ばれる少なくとも一種)、こ
れら合金のNiの一部をAl、Mn、Co、Ti、C
u、Zn、Zr、Cr、Bのような元素で置換した多元
素系のもの、またはTiNi系、TiFe系のものを挙
げることができる。特に、一般式LmNiw Cox Mn
y Alz (原子比w,x,y,zの合計値は5.00≦
w+x+y+z≦5.50である)で表される組成の水
素吸蔵合金は充放電サイクルの進行に伴う微粉化を抑制
して充放電サイクル寿命を向上できるための好適であ
る。
Among them, the hydrogen storage alloy is preferable because it can improve the capacity of the storage battery as compared with the case of using the cadmium compound. The hydrogen storage alloy is not particularly limited as long as it can store hydrogen generated electrochemically in the electrolytic solution and can easily release the stored hydrogen during discharge. For example, LaNi 5 , MmN
i 5 (Mm is misch metal), LmNi 5 (Lm is L
at least one selected from rare earth elements including a), and a part of Ni of these alloys is Al, Mn, Co, Ti, C
Examples thereof include multi-element type elements substituted with elements such as u, Zn, Zr, Cr and B, or TiNi type elements and TiFe type elements. In particular, the general formula LmNi w Co x Mn
y Al z (total value of atomic ratios w, x, y, z is 5.00 ≦
w + x + y + z ≦ 5.50) is preferable because the hydrogen storage alloy having a composition represented by the formula (5 + x + y + z ≦ 5.50) can suppress pulverization accompanying the progress of the charge / discharge cycle and improve the charge / discharge cycle life.

【0018】前記導電材としては、例えばカーボンブラ
ック、黒鉛等を挙げることができる。前記結着剤として
は、例えばポリアクリル酸ソーダ、ポリアクリル酸カリ
ウムなどのポリアクリル酸塩、ポリテトラフルオロエチ
レン(PTFE)などのフッ素系樹脂、またはカルボキ
シメチルセルロース(CMC)等を挙げることができ
る。
Examples of the conductive material include carbon black and graphite. Examples of the binder include polyacrylic acid salts such as sodium polyacrylate and potassium polyacrylate, fluororesins such as polytetrafluoroethylene (PTFE), and carboxymethyl cellulose (CMC).

【0019】前記導電性基板としては、例えばパンチド
メタル、エキスパンデッドメタル、穿孔剛板、ニッケル
ネットなどの二次元基板や、フェルト状金属多孔体や、
スポンジ状金属多孔体などの三次元基板を挙げることが
できる。
As the conductive substrate, for example, a two-dimensional substrate such as punched metal, expanded metal, perforated rigid plate, nickel net, or a felt-like metal porous body,
A three-dimensional substrate such as a sponge-like metal porous body can be mentioned.

【0020】3)セパレータ このセパレータは、例えば、ポリオレフィン繊維やナイ
ロン繊維からなる不織布、同繊維からなる織布、もしく
はこれら不織布及び織布で複合化された複合シートから
形成することができる。前記セパレータをポリオレフィ
ン繊維から構成する場合、親水化処理を施すことが好ま
しい。この親水化処理としては、例えば、界面活性剤の
塗布、親水基を有するビニルモノマーのグラフト共重合
等を採用することができる。特に、前記セパレータはポ
リオレフィン系合成樹脂繊維を含むシート状物にカルボ
キシル基を有するビニルモノマーがグラフト共重合され
たものから形成されることが望ましい。
3) Separator This separator can be formed of, for example, a non-woven fabric made of polyolefin fibers or nylon fibers, a woven fabric made of the same fibers, or a composite sheet made of these non-woven fabrics and woven fabrics. When the separator is made of polyolefin fiber, it is preferably subjected to a hydrophilic treatment. As the hydrophilic treatment, for example, application of a surfactant, graft copolymerization of a vinyl monomer having a hydrophilic group, or the like can be adopted. In particular, the separator is preferably formed by graft-copolymerizing a vinyl monomer having a carboxyl group with a sheet-shaped material containing a polyolefin-based synthetic resin fiber.

【0021】前記ポリオレフィン系合成樹脂繊維として
は、1種類のポリオレフィンからなる繊維、ポリオレフ
ィン繊維からなる芯材表面に前記ポリオレフィン繊維と
は異なるポリオレフィン繊維が被覆された芯鞘構造の複
合繊維、互いに異なるポリオレフィン繊維同士が円形に
接合された分割構造の複合繊維等を挙げることができ
る。前記ポリオレフィンとしては、例えば、ポリエチレ
ン、ポリプロピレンなどを挙げることができる。
The polyolefin synthetic resin fibers include fibers made of one type of polyolefin, core-sheath composite fibers in which a polyolefin fiber different from the polyolefin fibers is coated on the surface of a core material made of polyolefin fibers, and different polyolefins from each other. Examples thereof include a composite fiber having a split structure in which fibers are joined in a circular shape. Examples of the polyolefin include polyethylene and polypropylene.

【0022】前記ポリオレフィン系合成樹脂繊維を含む
シート状物としては、例えば、前述したポリオレフィン
系合成樹脂繊維からなる不織布、同繊維からなる織布も
しくはこれら不織布及び織布で複合化された複合シート
を挙げることができる。前記不織布は、例えば、乾式
法、湿式法、スパンボンド法、メルトブロー法等によっ
て作製される。
Examples of the sheet-like material containing the polyolefin-based synthetic resin fiber include a non-woven fabric made of the above-mentioned polyolefin-based synthetic resin fiber, a woven fabric made of the same fiber, or a composite sheet formed by combining these non-woven fabrics and woven fabric. Can be mentioned. The non-woven fabric is produced by, for example, a dry method, a wet method, a spun bond method, a melt blow method, or the like.

【0023】前記ポリオレフィン系合成樹脂繊維の平均
繊維径は、機械的強度、正極と負極の間のショート防止
の観点から、1〜20μmの範囲にすることが好まし
い。前記平均繊維径のより好ましい範囲は、3〜15μ
mである。
The average fiber diameter of the polyolefin synthetic resin fibers is preferably in the range of 1 to 20 μm from the viewpoint of mechanical strength and prevention of short circuit between the positive electrode and the negative electrode. A more preferable range of the average fiber diameter is 3 to 15 μm.
m.

【0024】前記カルボキシル基を有するビニルモノマ
ーとしては、例えば、アクリル酸、メタクリル酸、前記
アクリル酸や前記メタクリル酸のエステル類等を挙げる
ことができる。前記ビニルモノマーの中でも、アクリル
酸が好適である。
Examples of the vinyl monomer having a carboxyl group include acrylic acid, methacrylic acid, esters of the acrylic acid and the methacrylic acid, and the like. Among the vinyl monomers, acrylic acid is preferable.

【0025】4)アルカリ電解液 前記アルカリ電解液としては、例えば、水酸化カリウ
ム、水酸化ナトリウム及び水酸化リチウムの混合液、水
酸化カリウム及び水酸化リチウムの混合液、水酸化ナト
リウムと水酸化リチウムの混合液等を挙げることができ
る。これらの電解液において、水酸化カリウムの濃度は
2.0〜6.0Nの範囲にすることが好ましく、水酸化
ナトリウムの濃度は1.0〜6.0N(より好ましくは
2.0〜5.0N)の範囲にすることが好ましく、水酸
化リチウムの濃度は0.3〜2.0N(より好ましくは
0.5〜1.5N)の範囲にすることが好ましい。 (第2工程)前記正極を重量で2段階以上の群に分ける
と共に、前記負極を重量で2段階以上の群に分ける。得
られた2つ以上の群から1つの群をそれぞれ選択し、選
択した群同士を組み合わせる。この組合せが最小段階の
群同士及び最大段階の群同士の組み合わせとならないよ
うにする。
4) Alkaline Electrolyte As the alkaline electrolyte, for example, potassium hydroxide, a mixture of sodium hydroxide and lithium hydroxide, a mixture of potassium hydroxide and lithium hydroxide, sodium hydroxide and lithium hydroxide. And the like. In these electrolytic solutions, the concentration of potassium hydroxide is preferably in the range of 2.0 to 6.0 N, and the concentration of sodium hydroxide is 1.0 to 6.0 N (more preferably 2.0 to 5.0 N). The concentration of lithium hydroxide is preferably 0.3 to 2.0 N (more preferably 0.5 to 1.5 N). (Second Step) The positive electrode is divided into two or more groups by weight and the negative electrode is divided into two or more groups by weight. One group is selected from each of the obtained two or more groups, and the selected groups are combined with each other. This combination should not be a combination of groups in the minimum stage and groups in the maximum stage.

【0026】この正負極の重量選別の一例を図2〜4を
参照して説明する。 (第1の選別方法)規格重量をW1 とした際に、重量が
製造公差の範囲内(W1 ±a%)にある正極を多数用意
し、重量範囲を二等分し、重量範囲が小さい方を第1群
とし、大きい方を第2群とする。一方、規格重量をW2
とした際に、重量が製造公差の範囲内(W2 ±b%)に
ある負極を多数用意し、重量範囲を二等分し、重量範囲
が小さい方を第a群とし、大きい方を第b群とする。図
2に示すように、第1群に属する正極と第b群に属する
負極とを組み合わせ、かつ第2群に属する正極と第a群
に属する負極とを組み合わせる。
An example of weight selection of the positive and negative electrodes will be described with reference to FIGS. (First sorting method) When the standard weight is W 1 , a large number of positive electrodes whose weight is within the manufacturing tolerance range (W 1 ± a%) are prepared, and the weight range is divided into two equal parts. The smaller one is the first group and the larger one is the second group. On the other hand, the standard weight is W 2
In this case, a large number of negative electrodes whose weight is within the manufacturing tolerance range (W 2 ± b%) are prepared, the weight range is divided into two, the smaller weight range is the a group, and the larger weight range is the Group b. As shown in FIG. 2, the positive electrodes belonging to the first group and the negative electrodes belonging to the b group are combined, and the positive electrodes belonging to the second group and the negative electrodes belonging to the a group are combined.

【0027】(第2の選別方法)図3に示すように、規
格重量をW1 とした際に、重量が製造公差の範囲内(W
1 ±a%)にある正極を多数用意し、重量範囲を均等に
3つにわけ、重量領域を小さい方から順に第I群、第II
群、第III 群とする。一方、規格重量をW2 とした際
に、重量が製造公差の範囲内(W2 ±b%)にある負極
を多数用意し、重量範囲を均等に3つにわけ、重量領域
を小さい方から順に第r群、第s群、第t群とする。図
4に示すように、第I群に属する正極と第t群に属する
負極とを組み合わせ、第II群に属する正極と第s群に属
する負極とを組み合わせ、かつ第III群に属する正極と
第r群に属する負極とを組み合わせる。
(Second Selection Method) As shown in FIG. 3, when the standard weight is W 1 , the weight is within the manufacturing tolerance (W
1 ± a%), prepare a large number of positive electrodes, divide the weight range into three, and divide the weight region in order from the smallest group I, group II.
Group III. On the other hand, when the standard weight is set to W 2 , prepare a large number of negative electrodes whose weight is within the manufacturing tolerance range (W 2 ± b%), divide the weight range into three equally, and from the smaller weight range The r-th group, the s-th group, and the t-th group are set in order. As shown in FIG. 4, positive electrodes belonging to group I and negative electrodes belonging to group t are combined, positive electrodes belonging to group II and negative electrodes belonging to group s are combined, and positive electrodes belonging to group III and A negative electrode belonging to the r group is combined.

【0028】(第3の選別方法)図5に示すように、規
格重量をW1 とした際に、重量が製造公差の範囲内(W
1 ±a%)にある正極を多数用意し、重量範囲を1:
2:1の3つにわけ(小さな重量の範囲及び大きな重量
の範囲をそれぞれ1とする)、小さな方から順に第i
群、第ii群、第iii 群とする。一方、規格重量をW2
した際に、重量が製造公差の範囲内(W2 ±b%)にあ
る負極を多数用意し、重量範囲を1:2:1の3つにわ
け(小さな重量の範囲及び大きな重量の範囲をそれぞれ
1とする)、小さな方から順に第x群、第y群、第z群
とする。図6に示すように、第i群に属する正極と第z
群に属する負極とを組み合わせ、第ii群に属する正極と
第y群に属する負極とを組み合わせ、かつ第iii 群に属
する正極と第x群に属する負極とを組み合わせる。
(Third sorting method) As shown in FIG. 5, when the standard weight is W 1 , the weight is within the manufacturing tolerance (W
1 ± a%), and prepare a large number of positive electrodes with a weight range of 1:
It is divided into 3 parts of 2: 1 (the small weight range and the large weight range are respectively 1), and the i-th
The group, group ii, and group iii. On the other hand, assuming that the standard weight is W 2 , we prepare a large number of negative electrodes whose weight is within the manufacturing tolerance range (W 2 ± b%), and divide the weight range into 3 parts of 1: 2: 1 (small weight). And the range of large weight are 1), and the x-th group, the y-th group, and the z-th group are arranged in order from the smaller one. As shown in FIG. 6, the positive electrode belonging to the i-th group and the z-th
A negative electrode belonging to group ii is combined, a positive electrode belonging to group ii is combined with a negative electrode belonging to group y, and a positive electrode belonging to group iii and a negative electrode belonging to group x are combined.

【0029】(第3工程)選択された群に属する正極と
負極の間にセパレータを介在して電極群を作製する。
(Third step) An electrode group is prepared with a separator interposed between the positive electrode and the negative electrode belonging to the selected group.

【0030】(第4工程)前記電極群及びアルカリ電解
液を容器内に収納し、前記電極群と外部端子との接続を
行った後、封口してアルカリ二次電池を組み立てる。
(Fourth Step) The electrode group and the alkaline electrolyte are housed in a container, the electrode group is connected to an external terminal, and then sealed to assemble an alkaline secondary battery.

【0031】前記アルカリ電解液の量C(cc)は、下
記(1)式で求められる電極群中の空隙体積V(cc)
の72〜80%に相当することが好ましい。 V(cc)={V1−(V2+V3+V4)} (1) 但し、V1は電極群を容器内に収納した状態での前記容
器内底面から前記電極群の上端までの容積(cc)、V
2は前記正極の実体積(ポロシティを除く体積,c
c)、V3は前記負極の実体積(ポロシティを除く体
積,cc)、V4は前記セパレータの実体積(ポロシテ
ィを除く体積,cc)を示す。
The amount C (cc) of the alkaline electrolyte is the void volume V (cc) in the electrode group determined by the following equation (1).
Of 72 to 80% is preferable. V (cc) = {V1- (V2 + V3 + V4)} (1) where V1 is the volume (cc) from the bottom surface of the container to the upper end of the electrode group when the electrode group is housed in the container, V
2 is the actual volume of the positive electrode (volume excluding porosity, c
c) and V3 are the actual volume of the negative electrode (volume excluding porosity, cc), and V4 is the actual volume of the separator (volume excluding porosity, cc).

【0032】前記電解液量を前記範囲に規定するのは次
のような理由によるものである。前記電解液量C(c
c)を前記電極群中の空隙体積V(cc)の72%未満
にすると、電池内の電解液量(特に正負極間の電解液保
持量)が低下して充放電サイクル寿命が低下する恐れが
ある。一方、前記電解液量C(cc)が前記電極群中の
空隙体積V(cc)の80%を越えると、容器内の空隙
体積が不足して急速充電等によりガスが発生した際に漏
液を生じる恐れがある。
The reason for limiting the amount of the electrolytic solution to the above range is as follows. The electrolytic solution amount C (c
When c) is less than 72% of the void volume V (cc) in the electrode group, the amount of electrolytic solution in the battery (particularly, the amount of electrolytic solution retained between the positive and negative electrodes) may decrease, and the charge / discharge cycle life may decrease. There is. On the other hand, when the amount C (cc) of the electrolyte solution exceeds 80% of the void volume V (cc) in the electrode group, the void volume in the container is insufficient and liquid leakage occurs when gas is generated by rapid charging or the like. May occur.

【0033】なお、前述した図1においては、正極と負
極とをその間にセパレータを介在させながら渦巻き状に
捲回して電極群を作製し、前記電極群を有底円筒形容器
内に収納したが、正極と負極とをその間にセパレータを
介在させながら交互に積層して電極群を作製し、前記電
極群を有底矩形筒状容器内に収納しても良い。
In FIG. 1 described above, the positive electrode and the negative electrode are spirally wound with a separator interposed therebetween to form an electrode group, and the electrode group is housed in a bottomed cylindrical container. Alternatively, the positive electrode and the negative electrode may be alternately laminated with a separator interposed therebetween to prepare an electrode group, and the electrode group may be housed in a bottomed rectangular tubular container.

【0034】以上詳述したように本発明に係るアルカリ
二次電池の製造方法によれば、正極を重量で2段階以上
の群に分けると共に、負極を重量で2段階以上の群に分
け、前記2段階以上の群から1つの群をそれぞれ選択す
る際、最小段階の群に属するもの同士及び最大段階の群
に属するもの同士が組み合わさらないようにし、組み合
わせた群の正負極を用いて電極群を作製する。その結
果、セパレータの重量がばらついた場合にも、前記電極
群の重量が極端に大きくなったり、小さくなったりする
のを回避することができる。このため、高容量化のため
に電解液量を少なくせざるおえない際にも、優れた充放
電サイクル寿命を維持することができ、かつ急速充電等
に起因してガスが発生した際の漏液を防止することがで
きる。
As described above in detail, according to the method of manufacturing an alkaline secondary battery of the present invention, the positive electrode is divided into two or more groups by weight, and the negative electrode is divided into two or more groups by weight. When selecting one group from each of two or more stages, those belonging to the smallest stage group and those belonging to the largest stage group should not be combined, and the positive and negative electrodes of the combined group should be used for the electrode group. To make. As a result, even if the weight of the separator varies, it is possible to prevent the weight of the electrode group from becoming extremely large or small. Therefore, even when the amount of electrolyte must be reduced to increase the capacity, excellent charge / discharge cycle life can be maintained, and leakage when gas is generated due to rapid charging, etc. The liquid can be prevented.

【0035】さらに、アルカリ電解液の量を電極群中の
空隙体積の72%〜80%に相当する量にすることによ
って、充放電サイクル寿命及び急速充電特性をより一層
向上することができる。
Further, by setting the amount of the alkaline electrolyte to an amount corresponding to 72% to 80% of the void volume in the electrode group, the charge / discharge cycle life and the quick charge characteristics can be further improved.

【0036】[0036]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 実施例1 <正極の作製>水酸化ニッケル粒子90重量部及び一酸
化コバルト粒子10重量部からなる混合物に、結着剤と
してカルボキシルメチルセルロース0.3重量部及びポ
リテトラフルオロエチレンのディスパージョン(比重
1.5,固形分60wt%)を固形分換算で0.5重量
部を添加し、さらに水45重量部を添加して混練するこ
とによりペーストを調製した。このペーストをニッケル
メッキ繊維基板内に充填し、さらにその両面に前記ペー
ストを塗布し、乾燥し、ローラプレスすることによりペ
ースト式ニッケル正極を作製した。 <正極の群分け>得られた正極から重量が製造公差の範
囲内(規格値をW1 とした際、重量がW1 ±2.4%の
範囲内である)のものを選別した。重量が前記範囲内に
属する正極は全部で100個あった。この重量範囲をW
1 ―2.4%〜W1 の範囲(第1群の正極)と、W1
越え、かつW1 +2.4%までの範囲(第2群の正極)
とに二分割した。第1群の正極は50個あり、第2群の
正極は50個あった。 <負極の作製>LmNi4.0 Co0.4 Mn0.3 Al
0.3 (ただし、LmはLa富化ミッシュメタルである)
の組成からなる水素吸蔵合金粉末100重量部に、ポリ
アクリル酸ナトリウム0.5重量部、カルボキシメチル
セルロース0.125重量部、ポリテトラフルオロエチ
レンのディスパージョン(比重1.5,固形分60wt
%)を固形分換算で2.5重量部、カーボン粉末1.0
重量部及び水50重量部を加えてペーストを調製した。
その後、前記ペーストをパンチドメタルに塗布し、乾燥
し、成形することによりペースト式水素吸蔵合金負極を
作製した。 <負極の群分け>得られた負極から重量が製造公差の範
囲内(規格値をW2 とした際、重量がW2 ±2.7%の
範囲内である)のものを選別した。重量が前記範囲内に
属する負極は全部で100個あった。この重量範囲をW
2 ―2.7%〜W2 の範囲(第a群の負極)と、W2
越え、かつW2 +2.7%までの範囲(第b群の負極)
とに二分割した。第a群の負極は50個あり、第b群の
負極は50個あった。 <セパレータの作製>ポリプロピレン樹脂からスパンボ
ンド法を用いて、繊維径が10μmの長繊維からなり、
目付量が50g/m2 で、厚さが0.20mmの不織布
を作製した。つづいて、表面が平滑な第1ロールと、表
面に複数のピンポイント状の凹凸が形成された第2ロー
ルとを互いに対向して配置し、これらのロールを互いに
反対に回転させると共に130℃に加熱した後、これら
のロール間に前記不織布を通過させて前記第1ロールと
前記第2ロールの凸部とで加圧すると共に熱融着させて
エンボス加工を施した。ひきつづき、前記不織布に紫外
線を照射した後、アクリル酸水溶液に浸漬し、アクリル
酸モノマーをグラフト共重合させた。この不織布を洗浄
して未反応のアクリル酸を除去した後、乾燥し、裁断す
ることによりセパレータを多数作製した。得られたセパ
レータの実体積は、最小のものが0.9ccで、最大の
ものが1.2ccであった。 <正負極の選別及び電極群の作製>前記第1群の正極の
うちの最大重量の正極と、前記第b群の負極のうちの最
大重量の負極とを組み合わせた(図2のMax−1)。
この正負極の間に最大実体積(1.2cc)のセパレー
タを介在させ、渦巻き状に捲回することにより電極群を
作製した。また、前記第1群の正極のうちの最小重量の
正極と、前記第b群の負極のうちの最小重量の負極とを
組み合わせ(図2のMin−1)、この正負極の間に最
小実体積(0.9cc)のセパレータを介在させ、渦巻
き状に捲回することにより電極群を作製した。一方、前
記第2群の正極のうちの最大重量の正極と、前記第a群
の負極のうちの最大重量の負極とを組み合わせ(図2の
Max−2)、この正負極の間に最大実体積(1.2c
c)のセパレータを介在させ、渦巻き状に捲回すること
により電極群を作製した。また、前記第2群の正極のう
ちの最小重量の正極と、前記第a群の負極のうちの最小
重量の負極とを組み合わせ(図2のMin−2)、この
正負極の間に最小実体積(0.9cc)のセパレータを
介在させ、渦巻き状に捲回することにより電極群を作製
した。正負極及びセパレータの実体積を下記表1にそれ
ぞれ示す。 <電池の組立>各電極群を有底円筒状金属製容器内に収
納した後、7Nの水酸化カリウムおよび1Nの水酸化リ
チウムからなるアルカリ電解液3.9ccを前記容器内
に収容し、金属蓋体等の各部材を用い、4/3Aサイズ
で、理論容量が3500mAhの円筒形ニッケル水素二
次電池を組み立てた。
The preferred embodiments of the present invention will be described in detail below. Example 1 <Production of Positive Electrode> A mixture of 90 parts by weight of nickel hydroxide particles and 10 parts by weight of cobalt monoxide particles was added to a dispersion of 0.3 parts by weight of carboxymethyl cellulose as a binder and polytetrafluoroethylene (specific gravity: 1). 0.5, solid content 60 wt%) was added in an amount of 0.5 parts by weight in terms of solid content, and 45 parts by weight of water was further added and kneaded to prepare a paste. This paste was filled in a nickel-plated fiber substrate, and the paste was applied to both surfaces of the substrate, dried and roller pressed to prepare a paste-type nickel positive electrode. <Grouping of Positive Electrodes> From the obtained positive electrodes, those having a weight within the manufacturing tolerance range (the weight is within a range of W 1 ± 2.4% when the standard value is W 1 ) were selected. There were 100 positive electrodes having a weight within the above range. This weight range is W
1 -2.4% to W-1 range (first group of positive electrode), beyond the W 1, and a range of up to W 1 + 2.4% (second group of positive electrode)
It was divided into two parts. There were 50 positive electrodes in the first group and 50 positive electrodes in the second group. <Production of negative electrode> LmNi 4.0 Co 0.4 Mn 0.3 Al
0.3 (however, Lm is La-rich misch metal)
100 parts by weight of hydrogen storage alloy powder having the composition of 0.5 parts by weight, sodium polyacrylate 0.5 parts by weight, carboxymethyl cellulose 0.125 parts by weight, polytetrafluoroethylene dispersion (specific gravity 1.5, solid content 60 wt.
%) In terms of solid content, 2.5 parts by weight, carbon powder 1.0
A paste was prepared by adding 50 parts by weight of water and 50 parts by weight of water.
Then, the paste was applied to a punched metal, dried, and molded to prepare a paste-type hydrogen storage alloy negative electrode. <Grouping of Negative Electrodes> From the obtained negative electrodes, those having a weight within the manufacturing tolerance range (the weight is within the range of W 2 ± 2.7% when the standard value is W 2 ) were selected. There were 100 negative electrodes whose weight fell within the above range. This weight range is W
2 -2.7% to W-2 in the range between (the negative electrode of the first group a), beyond the W 2, and range up to W 2 + 2.7% (negative electrode of the group b)
It was divided into two parts. There were 50 negative electrodes in the group a and 50 negative electrodes in the group b. <Preparation of Separator> Polypropylene resin is spun-bonded to have a fiber diameter of 10 μm.
A nonwoven fabric having a basis weight of 50 g / m 2 and a thickness of 0.20 mm was produced. Subsequently, a first roll having a smooth surface and a second roll having a plurality of pinpoint-shaped concavities and convexities formed on the surface are arranged so as to face each other, and these rolls are rotated in the opposite directions, and the temperature is increased to 130 ° C. After heating, the non-woven fabric was passed between these rolls, pressed by the convex portions of the first roll and the second roll, and heat-bonded to perform embossing. Subsequently, the nonwoven fabric was irradiated with ultraviolet rays and then immersed in an aqueous solution of acrylic acid to graft-copolymerize an acrylic acid monomer. This non-woven fabric was washed to remove unreacted acrylic acid, dried, and cut to prepare many separators. The actual volume of the obtained separator was 0.9 cc for the minimum and 1.2 cc for the maximum. <Selection of Positive and Negative Electrodes and Production of Electrode Group> A maximum weight positive electrode among the first group positive electrodes and a maximum weight negative electrode among the b group negative electrodes were combined (Max-1 in FIG. 2). ).
A maximum actual volume (1.2 cc) of separator was interposed between the positive and negative electrodes, and the electrode group was produced by spirally winding. In addition, a positive electrode having the minimum weight of the positive electrodes of the first group and a negative electrode having the minimum weight of the negative electrodes of the b-th group are combined (Min-1 in FIG. 2), and the minimum actual weight is provided between the positive and negative electrodes. An electrode group was produced by spirally winding with a volume (0.9 cc) separator interposed. On the other hand, a maximum weight positive electrode of the second group of positive electrodes and a maximum weight negative electrode of the a-th group of negative electrodes are combined (Max-2 in FIG. 2), and a maximum actual weight is obtained between the positive and negative electrodes. Volume (1.2c
An electrode group was produced by winding in a spiral shape with the separator of c) interposed. In addition, a minimum weight positive electrode of the second group of positive electrodes and a minimum weight negative electrode of the a group of negative electrodes are combined (Min-2 in FIG. 2), and the minimum actual weight is placed between the positive and negative electrodes. An electrode group was produced by spirally winding with a volume (0.9 cc) separator interposed. The actual volumes of the positive and negative electrodes and the separator are shown in Table 1 below. <Assembly of Battery> After accommodating each electrode group in a cylindrical metal container having a bottom, an alkaline electrolyte solution of 3.9 cc consisting of 7N potassium hydroxide and 1N lithium hydroxide is accommodated in the container and the metal is Using each member such as the lid, a cylindrical nickel-hydrogen secondary battery of 4/3 A size and theoretical capacity of 3500 mAh was assembled.

【0037】各二次電池について、容器の内容積(容器
内の底面から電極群の上端(セパレータの上端)に相当
する高さ)V1と、正極、負極及びセパレータの実体積
(V2〜V4)の合計を求め、前述した(1)式より電
極群の空隙Vを算出した。この空隙Vに対する電解液注
入量の比率を求め、その結果を下記表1に併記する。
For each secondary battery, the inner volume of the container (the height from the bottom of the container to the upper end of the electrode group (upper end of the separator)) V1 and the actual volumes of the positive electrode, the negative electrode and the separator (V2 to V4) Was calculated, and the void V of the electrode group was calculated from the above-mentioned formula (1). The ratio of the injection amount of the electrolytic solution to this void V was determined, and the results are also shown in Table 1 below.

【0038】実施例2 <正極の群分け>実施例1と同様にして得られた正極か
ら重量が製造公差の範囲内(規格値をW1 とした際、重
量がW1 ±2.4%の範囲内である)のものを選別し
た。重量が前記範囲内に属する正極は全部で100個あ
った。この重量範囲をW1 ―2.4%〜W1 ―0.8%
の範囲(第I群の正極)と、W1 ―0.8%を越え、か
つW1 +0.8%までの範囲(第II群の正極)と、W1
+0.8%を越え、かつW1+2.4%までの範囲(第I
II 群の正極)とに三分割した。第I群の正極は20個
あり、第II群の正極は60個あり、第III 群の正極は2
0個あった。 <負極の群分け>実施例1と同様にして得られた負極か
ら重量が製造公差の範囲内(規格値をW2 とした際、重
量がW2 ±2.7%の範囲内である)のものを選別し
た。重量が前記範囲内に属する負極は全部で100個あ
った。この重量範囲をW2 ―2.7%〜W2 ―0.9%
の範囲(第r群の負極)と、W2 ―0.9%を越え、か
つW2 +0.9%までの範囲(第s群の負極)と、W2
+0.9%を越え、かつW2+2.7%までの範囲(第
t群の負極)とに三分割した。第r群の負極は20個あ
り、第s群の負極は60個あり、第t群の負極は20個
あった。 <セパレータの作製>実施例1と同様にして実体積が
0.9cc〜1.2ccの範囲内にあるセパレータを多
数作製した。 <正負極の選別及び電極群の作製>前記第I群の正極の
うちの最大重量の正極と、前記第t群の負極のうちの最
大重量の負極とを組み合わせた(図4のMax−3)。
この正負極の間に最大実体積(1.2cc)のセパレー
タを介在させ、渦巻き状に捲回することにより電極群を
作製した。また、前記第I 群の正極のうちの最小重量の
正極と、前記第t群の負極のうちの最小重量の負極とを
組み合わせ(図4のMin−3)、この正負極の間に最
小実体積(0.9cc)のセパレータを介在させ、渦巻
き状に捲回することにより電極群を作製した。
Example 2 <Grouping of Positive Electrode> The weight of the positive electrode obtained in the same manner as in Example 1 was within the manufacturing tolerance (when the standard value was W 1 , the weight was W 1 ± 2.4%). (Within the range of 1). There were 100 positive electrodes having a weight within the above range. This weight range is W 1 -2.4% ~ W 1 -0.8%
Range (positive electrode of group I) and W 1 -0.8% to a range of up to W 1 + 0.8% (positive electrode of group II), W 1
Range over + 0.8% and up to W 1 + 2.4% (I
(Group II positive electrode). There are 20 positive electrodes in the group I, 60 positive electrodes in the group II, and 2 positive electrodes in the group III.
There were 0 of them. <Grouping of Negative Electrodes> The weight of the negative electrodes obtained in the same manner as in Example 1 was within the manufacturing tolerance (when the standard value was W 2 , the weight was within the range of W 2 ± 2.7%). I chose the ones. There were 100 negative electrodes whose weight fell within the above range. This weight range is W 2 -2.7% to W 2 -0.9%
Range (negative electrode of the r-th group), and a range exceeding W 2 -0.9% and up to W 2 + 0.9% (negative electrode of the s-th group), W 2
It was divided into three parts in the range of more than + 0.9% and W 2 + 2.7% (negative electrode of the t-th group). The r-th group had 20 negative electrodes, the s-th group had 60 negative electrodes, and the t-th group had 20 negative electrodes. <Production of Separator> In the same manner as in Example 1, a large number of separators having an actual volume within the range of 0.9 cc to 1.2 cc were produced. <Selection of Positive and Negative Electrodes and Production of Electrode Group> A maximum weight positive electrode of the positive electrodes of the I-th group and a maximum weight negative electrode of the negative electrodes of the t-th group were combined (Max-3 in FIG. 4). ).
A maximum actual volume (1.2 cc) of separator was interposed between the positive and negative electrodes, and the electrode group was produced by spirally winding. In addition, a positive electrode with the minimum weight of the positive electrodes of the I-th group and a negative electrode with the minimum weight of the negative electrodes of the t-th group are combined (Min-3 in FIG. 4), and the minimum actual weight is placed between the positive and negative electrodes. An electrode group was produced by spirally winding with a volume (0.9 cc) separator interposed.

【0039】前記第II群の正極のうちの最大重量の正極
と、前記第s群の負極のうちの最大重量の負極とを組み
合わせ(図4のMax−4)、この正負極の間に最大実
体積(1.2cc)のセパレータを介在させ、渦巻き状
に捲回することにより電極群を作製した。また、前記第
II群の正極のうちの最小重量の正極と、前記第s群の負
極のうちの最小重量の負極とを組み合わせ(図4のMi
n−4)、この正負極の間に最小実体積(0.9cc)
のセパレータを介在させ、渦巻き状に捲回することによ
り電極群を作製した。
A maximum weight positive electrode of the group II positive electrodes and a maximum weight negative electrode of the sth group negative electrodes are combined (Max-4 in FIG. 4), and a maximum weight is placed between the positive and negative electrodes. An electrode group was produced by spirally winding with an actual volume (1.2 cc) of separator interposed. Also, the above
The minimum weight positive electrode of the group II positive electrodes and the minimum weight negative electrode of the s-th group negative electrodes are combined (see Mi in FIG. 4).
n-4), the minimum actual volume (0.9 cc) between the positive and negative electrodes
An electrode group was produced by interposing the separator of and winding in a spiral shape.

【0040】さらに、前記第III 群の正極のうちの最大
重量の正極と、前記第r群の負極のうちの最大重量の負
極とを組み合わせ(図4のMax−5)、この正負極の
間に最大実体積(1.2cc)のセパレータを介在さ
せ、渦巻き状に捲回することにより電極群を作製した。
また、前記第III 群の正極のうちの最小重量の正極と、
前記第r群の負極のうちの最小重量の負極とを組み合わ
せ(図4のMin−5)、この正負極の間に最小実体積
(0.9cc)のセパレータを介在させ、渦巻き状に捲
回することにより電極群を作製した。正負極及びセパレ
ータの実体積を下記表2にそれぞれ示す。 <電池の組立>各電極群を有底円筒状金属製容器内に収
納した後、実施例1と同様なアルカリ電解液を前記容器
内に収容し、金属蓋体等の各部材を用い、4/3Aサイ
ズで、理論容量が3500mAhの円筒形ニッケル水素
二次電池を組み立てた。
Further, a positive electrode having the maximum weight of the positive electrodes of the group III and a negative electrode having the maximum weight of the negative electrodes of the r-th group are combined (Max-5 in FIG. 4), and the positive electrode and the negative electrode are connected. A maximum actual volume (1.2 cc) of the separator was interposed between the electrodes, and the electrode group was manufactured by spirally winding.
In addition, the positive electrode of the minimum weight of the positive electrode of the group III,
The negative electrode of the minimum weight among the negative electrodes of the r-th group is combined (Min-5 in FIG. 4), and a separator having a minimum actual volume (0.9 cc) is interposed between the positive and negative electrodes and wound in a spiral shape. By doing so, an electrode group was prepared. The actual volumes of the positive and negative electrodes and the separator are shown in Table 2 below. <Assembly of Battery> After accommodating each electrode group in a cylindrical metal container having a bottom, the same alkaline electrolyte as that of Example 1 is accommodated in the container and each member such as a metal lid is used. A cylindrical nickel-hydrogen secondary battery of / 3 A size and theoretical capacity of 3500 mAh was assembled.

【0041】各二次電池について、容器の内容積V1
と、正極、負極及びセパレータの実体積(V2〜V4)
の合計を求め、前述した(1)式より電極群の空隙Vを
算出した。この空隙Vに対する電解液注入量の比率を求
め、その結果を下記表2に併記する。
For each secondary battery, the internal volume V1 of the container
And the actual volume of the positive electrode, negative electrode, and separator (V2 to V4)
Was calculated, and the void V of the electrode group was calculated from the above-mentioned formula (1). The ratio of the injection amount of the electrolytic solution to this void V was determined, and the results are also shown in Table 2 below.

【0042】実施例3 <正極の群分け>実施例1と同様にして得られた正極か
ら重量が製造公差の範囲内(規格値をW1 とした際、重
量がW1 ±2.4%の範囲内である)のものを選別し
た。重量が前記範囲内に属する正極は全部で100個あ
った。この重量範囲をW1 ―2.4%〜W1 ―1.2%
の範囲(第i の正極)と、W1 ―1.2%を越え、かつ
1+1.2%までの範囲(第ii群の正極)と、W1
1.2%を越え、かつW1 +2.4%までの範囲(第ii
i 群の正極)とに三分割した。第i 群の正極は10個あ
り、第ii群の正極は80個あり、第iii 群の正極は10
個あった。 <負極の群分け>実施例1と同様にして得られた負極か
ら重量が製造公差の範囲内(規格値をW2 とした際、重
量がW2 ±2.7%の範囲内である)のものを選別し
た。重量が前記範囲内に属する負極は全部で100個あ
った。この重量範囲をW2 ―2.7%〜W2 ―1.35
%の範囲(第x群の負極)と、W2 ―1.35%を越
え、かつW2 +1.35%までの範囲(第y群の負極)
と、W2 +1.35%を越え、かつW2 +1.35%ま
での範囲(第z群の負極)とに三分割した。第x群の負
極は10個あり、第y群の負極は80個あり、第z群の
負極は10個あった。 <セパレータの作製>実施例1と同様にして実体積が
0.9cc〜1.2ccの範囲内にあるセパレータを多
数作製した。 <正負極の選別及び電極群の作製>前記第ii群の正極の
うちの最大重量の正極と、前記第y群の負極のうちの最
大重量の負極とを組み合わせた(図6のMax−6)。
この正負極の間に最大実体積(1.2cc)のセパレー
タを介在させ、渦巻き状に捲回することにより電極群を
作製した。また、前記第ii群の正極のうちの最小重量の
正極と、前記第y群の負極のうちの最小重量の負極とを
組み合わせ(図6のMin−6)、この正負極の間に最
小実体積(0.9cc)のセパレータを介在させ、渦巻
き状に捲回することにより電極群を作製した。正負極及
びセパレータの実体積を下記表3にそれぞれ示す。 <電池の組立>各電極群を有底円筒状金属製容器内に収
納した後、実施例1と同様なアルカリ電解液を前記容器
内に収容し、金属蓋体等の各部材を用い、4/3Aサイ
ズで、理論容量が3500mAhの円筒形ニッケル水素
二次電池を組み立てた。
Example 3 <Grouping of Positive Electrode> The weight of the positive electrode obtained in the same manner as in Example 1 was within the manufacturing tolerance (when the standard value was W 1 , the weight was W 1 ± 2.4%). (Within the range of 1). There were 100 positive electrodes having a weight within the above range. This weight range is W 1 -2.4% ~ W 1 -1.2%
Range (i-th positive electrode) and W 1 -1.2% and up to W 1 + 1.2% (ii-group positive electrode), W 1 +
Range over 1.2% and up to W 1 + 2.4% (No. ii
The positive electrode of group i) was divided into three parts. There are 10 positive electrodes in the i-th group, 80 positive electrodes in the ii-th group, and 10 positive electrodes in the iii-th group.
There was one. <Grouping of Negative Electrodes> The weight of the negative electrodes obtained in the same manner as in Example 1 was within the manufacturing tolerance (when the standard value was W 2 , the weight was within the range of W 2 ± 2.7%). I chose the ones. There were 100 negative electrodes whose weight fell within the above range. This weight range is W 2 -2.7% to W 2 -1.35
% Range (negative electrode of the x-th group) and range exceeding W 2 −1.35% and up to W 2 + 1.35% (negative electrode of the y-th group)
When, beyond the W 2 + 1.35%, and was divided into three parts in the range of up to W 2 + 1.35% (negative electrode of the z group). There were 10 negative electrodes in the x-th group, 80 negative electrodes in the y-th group, and 10 negative electrodes in the z-th group. <Production of Separator> In the same manner as in Example 1, a large number of separators having an actual volume within the range of 0.9 cc to 1.2 cc were produced. <Selection of Positive and Negative Electrodes and Fabrication of Electrode Group> A maximum weight positive electrode of the positive electrodes of the iith group and a maximum weight negative electrode of the negative electrodes of the yth group were combined (Max-6 in FIG. 6). ).
A maximum actual volume (1.2 cc) of separator was interposed between the positive and negative electrodes, and the electrode group was produced by spirally winding. In addition, a positive electrode having the minimum weight of the positive electrodes of the ii-th group and a negative electrode having the minimum weight of the negative electrodes of the y-th group are combined (Min-6 in FIG. 6), and the minimum actual weight is provided between the positive and negative electrodes. An electrode group was produced by spirally winding with a volume (0.9 cc) separator interposed. The actual volumes of the positive and negative electrodes and the separator are shown in Table 3 below. <Assembly of Battery> After accommodating each electrode group in a cylindrical metal container having a bottom, the same alkaline electrolyte as that of Example 1 is accommodated in the container and each member such as a metal lid is used. A cylindrical nickel-hydrogen secondary battery of / 3 A size and theoretical capacity of 3500 mAh was assembled.

【0043】各二次電池について、容器の内容積V1
と、正極、負極及びセパレータの実体積(V2〜V4)
の合計を求め、前述した(1)式より電極群の空隙Vを
算出した。この空隙Vに対する電解液注入量の比率を求
め、その結果を下記表3に併記する。
For each secondary battery, the internal volume V1 of the container
And the actual volume of the positive electrode, negative electrode, and separator (V2 to V4)
Was calculated, and the void V of the electrode group was calculated from the above-mentioned formula (1). The ratio of the injection amount of the electrolytic solution to this void V was determined, and the results are also shown in Table 3 below.

【0044】比較例 <正負極の組み合わせ>実施例1と同様にして得られた
正極から重量が製造公差の範囲内(規格値をW1 とした
際、重量がW1 ±2.4%の範囲内である)のものを選
別した。重量が前記範囲内に属する正極は全部で100
個あった。また、実施例1と同様にして得られた負極か
ら重量が製造公差の範囲内(規格値をW2 とした際、W
2 ±2.7%の範囲内である)のものを選別した。重量
が前記範囲内に属する負極は全部で100個あった。一
方、実施例1と同様にして実体積が0.9cc〜1.2
ccの範囲内にあるセパレータを多数作製した。これら
正負極及びセパレータを任意に組み合わせ、電極群の作
製を行った。
Comparative Example <Combination of Positive and Negative Electrodes> The weight of the positive electrode obtained in the same manner as in Example 1 was within the manufacturing tolerance (when the standard value was W 1 , the weight was W 1 ± 2.4%. Those within the range) were selected. The total number of positive electrodes whose weight falls within the above range is 100.
There was one. In addition, the weight of the negative electrode obtained in the same manner as in Example 1 was within the range of manufacturing tolerance (when the standard value was W 2 ,
2 ± 2.7%) was selected. There were 100 negative electrodes whose weight fell within the above range. On the other hand, in the same manner as in Example 1, the actual volume is 0.9 cc to 1.2.
Many separators within the range of cc were produced. An electrode group was produced by arbitrarily combining these positive and negative electrodes and separators.

【0045】ここでは、前記正極のうちの最大重量の正
極と、前記負極のうちの最大重量の負極とを組み合わせ
(図7のMax−7)、この正負極の間に最大実体積
(1.2cc)のセパレータを介在させ、渦巻き状に捲
回することにより電極群を作製した。また、前記正極の
うちの最小重量の正極と、前記負極のうちの最小重量の
負極とを組み合わせ(図7のMin−7)、この正負極
の間に最小実体積(0.9cc)のセパレータを介在さ
せ、渦巻き状に捲回することにより電極群を作製した。
正負極及びセパレータの実体積を下記表4にそれぞれ示
す。 <電池の組立>各電極群を有底円筒状金属製容器内に収
納した後、実施例1と同様なアルカリ電解液を前記容器
内に収容し、金属蓋体等の各部材を用い、4/3Aサイ
ズで、理論容量が3500mAhの円筒形ニッケル水素
二次電池を組み立てた。
Here, the positive electrode having the maximum weight of the positive electrodes and the negative electrode having the maximum weight of the negative electrodes are combined (Max-7 in FIG. 7), and the maximum actual volume (1. An electrode group was produced by spirally winding with a separator of 2 cc) interposed. In addition, a positive electrode having the smallest weight of the positive electrodes and a negative electrode having the smallest weight of the negative electrodes are combined (Min-7 in FIG. 7), and a separator having a minimum actual volume (0.9 cc) is provided between the positive and negative electrodes. The electrode group was manufactured by interposing a coil and winding it in a spiral shape.
The actual volumes of the positive and negative electrodes and the separator are shown in Table 4 below. <Assembly of Battery> After accommodating each electrode group in a cylindrical metal container having a bottom, the same alkaline electrolyte as that of Example 1 is accommodated in the container and each member such as a metal lid is used. A cylindrical nickel-hydrogen secondary battery of / 3 A size and theoretical capacity of 3500 mAh was assembled.

【0046】各二次電池について、容器の内容積V1
と、正極、負極及びセパレータの実体積(V2〜V4)
の合計を求め、前述した(1)式より電極群の空隙Vを
算出した。この空隙Vに対する電解液注入量の比率を求
め、その結果を下記表4に併記する。
For each secondary battery, the internal volume V1 of the container
And the actual volume of the positive electrode, negative electrode, and separator (V2 to V4)
Was calculated, and the void V of the electrode group was calculated from the above-mentioned formula (1). The ratio of the injection amount of the electrolytic solution to this void V was determined, and the results are also shown in Table 4 below.

【0047】得られたMax−1〜7及びMin−1〜
7の二次電池について、45℃の恒温槽中で24時間エ
ージングを行い、活性化初充電を施した。この後、2A
で−ΔV制御により充電した後、30分間休止し、2A
で電池電圧が1.0Vに達するまで放電する充放電を5
00回繰り返した。500回目の充放電における電解液
の漏液の有無、初期容量に対する500回目の放電容量
の比を100分率で求め、その結果を下記表5に示す。
The obtained Max-1 to 7 and Min-1 to
The secondary battery of No. 7 was aged for 24 hours in a constant temperature bath at 45 ° C. to carry out initial activation charging. After this, 2A
Then, after charging by -ΔV control, pause for 30 minutes, then 2A
Charge and discharge the battery until it reaches 1.0V with 5
Repeated 00 times. The presence / absence of electrolyte leakage in the 500th charge / discharge and the ratio of the 500th discharge capacity to the initial capacity were determined as a percentage, and the results are shown in Table 5 below.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】[0051]

【表4】 [Table 4]

【0052】[0052]

【表5】 [Table 5]

【0053】表1〜5から明らかなように、実施例1〜
3の二次電池は、最大重量のセパレータと郡における最
大重量の正負極(Max−1〜6)とを用いて電極群を
作製したり、あるいは最小重量のセパレータと郡におけ
る最小重量の正負極(Min−1〜6)とを用いて電極
群を作製した際に、充放電による漏液を防止することが
でき、かつ容量維持率(サイクル寿命)を向上できるこ
とがわかる。これに対し、比較例の二次電池において
は、最大重量のセパレータと最大重量の正負極(Max
−7)が組み合わさると漏液を生じ、最小重量のセパレ
ータと最小重量の正負極(Min−7)が組み合わさる
と容量維持率が著しく低くなることがわかる。また、実
施例1〜3の残りの正負極からニッケル水素二次電池を
製造したところ、電極群の空隙体積Vに占めるアルカリ
電解液の量は、実施例1が72〜80%、実施例2が7
3〜79%、実施例3が72〜80%の範囲内になり、
いずれの二次電池も500サイクル時の容量維持率が8
0%以上で、かつこのサイクル後に漏液を生じないこと
を確認した。
As can be seen from Tables 1-5, Examples 1-
In the secondary battery of No. 3, an electrode group is manufactured by using the separator having the maximum weight and the positive and negative electrodes (Max-1 to 6) having the maximum weight in the group, or the separator having the minimum weight and the positive and negative electrodes having the minimum weight in the group. It can be seen that when an electrode group is manufactured by using (Min-1 to 6), liquid leakage due to charge / discharge can be prevented and the capacity retention rate (cycle life) can be improved. On the other hand, in the secondary battery of the comparative example, the maximum weight of the separator and the maximum weight of the positive and negative electrodes (Max
It can be seen that when -7) is combined, liquid leakage occurs, and when the minimum weight separator and the minimum weight of the positive and negative electrodes (Min-7) are combined, the capacity retention rate becomes significantly low. Moreover, when a nickel-hydrogen secondary battery was manufactured from the remaining positive and negative electrodes of Examples 1 to 3, the amount of the alkaline electrolyte in the void volume V of the electrode group was 72 to 80% in Example 1 and Example 2 Is 7
3 to 79%, Example 3 is in the range of 72 to 80%,
All the secondary batteries have a capacity retention rate of 8 after 500 cycles.
It was confirmed that 0% or more and no liquid leakage occurred after this cycle.

【0054】なお、前述した実施例1〜3においては、
重量分布の正規分布が1であったため、重量範囲の分配
比と電極個数の分配比とが一致したが、重量範囲の分配
比と電極個数の分配比とを一致させる必要はない。
In the above-mentioned Examples 1 to 3,
Since the normal distribution of the weight distribution was 1, the distribution ratio in the weight range and the distribution ratio in the number of electrodes matched, but it is not necessary to match the distribution ratio in the weight range and the distribution ratio in the number of electrodes.

【0055】[0055]

【発明の効果】以上詳述したように本発明に係るアルカ
リ二次電池の製造方法によれば、適切な充放電サイクル
寿命を維持し、かつ急速な充電等によるガス発生時の漏
液を防止しつつ、高容量化を図ることができる等の顕著
な効果を奏する。
As described in detail above, according to the method of manufacturing an alkaline secondary battery of the present invention, an appropriate charge / discharge cycle life is maintained and liquid leakage at the time of gas generation due to rapid charging is prevented. At the same time, a remarkable effect such as high capacity can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法で製造されるアルカリ二次電
池の一例を示す部分切欠斜視図。
FIG. 1 is a partially cutaway perspective view showing an example of an alkaline secondary battery manufactured by a method according to the present invention.

【図2】本発明に係る方法における正負極の組合せの一
例を示す模式図。
FIG. 2 is a schematic diagram showing an example of a combination of positive and negative electrodes in the method according to the present invention.

【図3】本発明に係る方法における正極の群分けの一例
を示す模式図。
FIG. 3 is a schematic diagram showing an example of grouping of positive electrodes in the method according to the present invention.

【図4】本発明に係る方法における正負極の組合せの別
の例を示す模式図。
FIG. 4 is a schematic diagram showing another example of a combination of positive and negative electrodes in the method according to the present invention.

【図5】本発明に係る方法における正極の群分けの別の
例を示す模式図。
FIG. 5 is a schematic diagram showing another example of grouping of positive electrodes in the method according to the present invention.

【図6】本発明に係る方法における正負極の組合せのさ
らに別の例を示す模式図。
FIG. 6 is a schematic view showing still another example of a combination of positive and negative electrodes in the method according to the present invention.

【図7】比較例における正負極の組合せを示す模式図。FIG. 7 is a schematic diagram showing a combination of positive and negative electrodes in a comparative example.

【符号の説明】[Explanation of symbols]

1…容器、 2…正極、 3…セパレータ、 4…負極、 5…電極群、 7…封口板。 1 ... container, 2 ... Positive electrode 3 ... separator, 4 ... Negative electrode, 5 ... electrode group, 7 ... Sealing plate.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/28 H01M 4/26 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 10/28 H01M 4/26

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極を重量で2段階以上の群に分けると
共に、負極を重量で2段階以上の群に分け、前記2段階
以上の群から1つの群をそれぞれ選択する際、最小段階
の群に属するもの同士及び最大段階の群に属するもの同
士が組み合わさらないようにし、組み合わせた群の正負
極を用いて電極群を作製することを特徴とするアルカリ
二次電池の製造方法。
1. A positive electrode is divided into two or more groups by weight and a negative electrode is divided into two or more groups by weight, and one group is selected from each of the two or more groups. A method for manufacturing an alkaline secondary battery, characterized in that an electrode group is produced by using positive and negative electrodes of a combined group so that those belonging to the same group and those belonging to the maximum stage group are not combined.
【請求項2】 前記正極及び前記負極の重量は、製造公
差の範囲内であることを特徴とする請求項1記載のアル
カリ二次電池の製造方法。
2. The method of manufacturing an alkaline secondary battery according to claim 1, wherein the weights of the positive electrode and the negative electrode are within manufacturing tolerances.
【請求項3】 前記電極群及び前記電極群中の空隙体積
の72〜80%に相当する量のアルカリ電解液を容器内
に収納することを特徴とする請求項1記載のアルカリ二
次電池の製造方法。
3. The alkaline secondary battery according to claim 1, wherein the electrode group and an amount of the alkaline electrolyte corresponding to 72 to 80% of the void volume in the electrode group are contained in a container. Production method.
JP31824597A 1997-11-19 1997-11-19 Manufacturing method of alkaline secondary battery Expired - Fee Related JP3523775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31824597A JP3523775B2 (en) 1997-11-19 1997-11-19 Manufacturing method of alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31824597A JP3523775B2 (en) 1997-11-19 1997-11-19 Manufacturing method of alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH11154531A JPH11154531A (en) 1999-06-08
JP3523775B2 true JP3523775B2 (en) 2004-04-26

Family

ID=18097063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31824597A Expired - Fee Related JP3523775B2 (en) 1997-11-19 1997-11-19 Manufacturing method of alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP3523775B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4475840B2 (en) * 2000-04-05 2010-06-09 パナソニック株式会社 Nickel metal hydride storage battery and assembly thereof
JP4418585B2 (en) 2000-12-13 2010-02-17 パナソニック株式会社 Method for forming electrode group for prismatic battery
JP5217723B2 (en) * 2008-07-22 2013-06-19 株式会社村田製作所 Battery manufacturing method
JP6115459B2 (en) * 2013-12-09 2017-04-19 株式会社豊田自動織機 Electrode assembly manufacturing method, power storage device, and electrode assembly manufacturing apparatus

Also Published As

Publication number Publication date
JPH11154531A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
JP3523775B2 (en) Manufacturing method of alkaline secondary battery
JPH11162468A (en) Alkaline secondary battery
JP3567021B2 (en) Alkaline secondary battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3393978B2 (en) Alkaline secondary battery
JP2000082490A (en) Alkaline secondary battery
JPH10247514A (en) Nickel-hydrogen secondary battery
JP3349578B2 (en) Nickel hydride rechargeable battery
JP2000067905A (en) Secondary battery
JP2001283843A (en) Positive electrode material for alkaline battery and alkaline battery
JP3977465B2 (en) Nickel metal hydride secondary battery
JPH09167609A (en) Nickel hydrogen secondary battery
JPH11149938A (en) Nickel hydrogen secondary battery
JP3213684B2 (en) Manufacturing method of alkaline secondary battery
JPH09213360A (en) Manufacture of angular battery
JP2001273879A (en) Nickel - hydrogen secondary battery
JP2000058106A (en) Manufacture of nickel-hydrogen secondary battery
JPH08255629A (en) Nickel-hydrogen secondary battery and manufacture thereof
JPH09129222A (en) Manufacture of alkaline secondary battery
JP2000030684A (en) Alkaline storage battery
JPH0982354A (en) Manufacture of alkaline secondary battery
JP2000012073A (en) Manufacture of nickel-hydrogen secondary battery
JP2000268800A (en) Alkaline secondary battery
JP2000123817A (en) Alkaline secondary battery
JPH11176445A (en) Paste-type nickel positive electrode alkaline storage battery, and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees