JP3523222B2 - Thermal spray material and method of manufacturing the same - Google Patents

Thermal spray material and method of manufacturing the same

Info

Publication number
JP3523222B2
JP3523222B2 JP2001228103A JP2001228103A JP3523222B2 JP 3523222 B2 JP3523222 B2 JP 3523222B2 JP 2001228103 A JP2001228103 A JP 2001228103A JP 2001228103 A JP2001228103 A JP 2001228103A JP 3523222 B2 JP3523222 B2 JP 3523222B2
Authority
JP
Japan
Prior art keywords
less
granulated
rare earth
powder
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001228103A
Other languages
Japanese (ja)
Other versions
JP2002115040A (en
Inventor
和浩 綿谷
孝雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2001228103A priority Critical patent/JP3523222B2/en
Publication of JP2002115040A publication Critical patent/JP2002115040A/en
Application granted granted Critical
Publication of JP3523222B2 publication Critical patent/JP3523222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶射材料、特には
半導体製造工程でのハロゲン系腐食ガスプラズマ雰囲気
での耐腐食性に優れた溶射材料およびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal spray material, and more particularly to a thermal spray material excellent in corrosion resistance in a halogen-based corrosive gas plasma atmosphere in a semiconductor manufacturing process and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、様々な使用環境において基材を保
護するために耐腐食性に優れた溶射被膜が用いられてい
る。Al,Cr等の酸化物を溶射材料として用いられて
いたが、高温でのプラズマに晒されると、腐食性が高ま
り、特に、ハロゲン系腐食ガスプラズマ雰囲気で処理さ
れることのある半導体製品の製造においては、該材料を
用いることは不適当であった。半導体製品の製造工程で
用いられるハロゲン系腐食ガスプラズマ雰囲気には、フ
ッ素系ガスとしては、SF6 、CF4 、CHF3、Cl
3 、HF等が、また塩素系ガスとしては、Cl2 、B
Cl3 、HCl等が用いられる。
2. Description of the Related Art Conventionally, thermal spray coatings having excellent corrosion resistance have been used to protect substrates in various usage environments. Oxides such as Al and Cr have been used as thermal spraying materials, but when exposed to plasma at high temperature, their corrosiveness increases, and in particular, the manufacture of semiconductor products that may be processed in a halogen-based corrosive gas plasma atmosphere. In, it was inappropriate to use the material. The halogen-based corrosive gas plasma atmosphere used in the manufacturing process of semiconductor products includes SF 6 , CF 4 , CHF 3 , Cl as fluorine-based gas.
F 3 , HF, etc., and Cl 2 and B as chlorine-based gas
Cl 3 , HCl or the like is used.

【0003】これらの腐食性の極めて強い雰囲気中でも
使用され得る部材としては、たとえばアルミニウムのフ
ッ化物を表面に溶射することで耐腐食性に優れた部材が
得られることが知られている。溶射材料としてのアルミ
ニウムのフッ化物粉粒体は、従来、粉砕したものがその
まま用いられてきた。粉砕されたままの粉粒体の場合、
溶射に際して粉粒体供給管を詰まらせることがあり、安
定した溶射操業が行われ難いケースがあった。
As a member that can be used even in an atmosphere having these extremely corrosive properties, it is known that a member having excellent corrosion resistance can be obtained by spraying aluminum fluoride on the surface. Conventionally, pulverized aluminum fluoride powder particles as a thermal spray material have been used as they are. In the case of as-crushed powder,
In some cases, the powder and granular material supply pipe was clogged during the thermal spraying, which made it difficult to perform stable thermal spraying operation.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の問題
点に鑑み、従来の溶射材料に換わるものを選定し、従来
の溶射皮膜に比べて耐食性に優れた溶射皮膜を形成する
ための溶射材料およびその製造方法を提供することを課
題とし、特には溶射操業に適した希土類元素のフッ化物
球状粒子からなる溶射材料およびその製造方法を提供す
ることを課題とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention selects a material that replaces the conventional thermal spray material, and forms a thermal spray coating having excellent corrosion resistance as compared with the conventional thermal spray coating. It is an object of the present invention to provide a material and a method for manufacturing the same, and particularly to provide a thermal spraying material composed of fluoride spherical particles of a rare earth element suitable for a thermal spraying operation and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の溶射材料は、一次粒子の平均粒子径が1
0μm以下である希土類元素のフッ化物から造粒され
造粒粉末であって、粒子外形のアスペクト比が2以下、
平均粒子径が20μm以上200μm以下、嵩べり度が
30%以下である希土類元素のフッ化物造粒粉末からな
ることを特徴とする。造粒粉末の原料の水および水酸基
の含有量が10000ppm以下であることが好まし
い。また、本発明の製造方法は、平均粒子径が10μm
以下である希土類元素のフッ化物と結合剤とを溶媒に撹
拌混合して得たスラリーをスプレードライヤーで造粒
し、これを600℃以下の温度で焼成することを特徴と
する。
In order to solve the above problems, the thermal spray material of the present invention has an average primary particle size of 1
It has been granulated from the fluoride of a rare earth element, which is a 0μm hereinafter
It is a granulated powder, and the aspect ratio of the particle outer shape is 2 or less,
The average particle size is 20 μm or more and 200 μm or less, and the bulkiness is
Containing less than 30% of rare earth element fluoride granulated powder
It is characterized by Water and hydroxyl groups as raw materials for granulated powder
Content of less than 10000ppm is preferred
Yes. The production method of the present invention has an average particle size of 10 μm.
撹a binder and fluorides in which the rare earth element below the solvent
The slurries obtained by拌mixture was granulated with a spray drier, a feature that you firing the at 600 ° C. below the temperature
To do.

【0006】[0006]

【発明の実施の形態】本発明は、粉砕した微粒子を出発
原料として、適宜の形状・粒径を有する溶射材料に造粒
することを基本とする。溶射材料粉末としては、 1.球状粒子で流動性が良い。2.粉末の 内部まで充填している。 3.溶射材料から不要なガス成分が出てこない。 ことが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is based on the fact that pulverized fine particles are used as a starting material and granulated into a thermal spray material having an appropriate shape and particle size. It is a thermal spray materials powder, 1. Spherical particles with good fluidity. 2. The inside of the powder is filled. 3. Unnecessary gas components do not come out from the thermal spray material. Is desirable.

【0007】溶射材料として使用する場合、その粒子形
状は球状が好ましい。なぜならば、溶射材料として、溶
射のフレーム中に溶射材料を導入する際に、流動性が悪
いと、溶射材料が供給管内に詰まったりして使用上不都
合が生じるためである。この流動性の指標として、下記
の(1)式で定義される嵩べり度が有効で、嵩べり度が
30%以下なら流動性がよいことを見出した。 S=(ρT−ρA)/ρT × 100 …(1) ここで、S:嵩べり度(%) ρT:タップ密度(g/cm3) ρA:かさ密度(g/cm3)である。
When used as a thermal spray material, the particle shape is preferably spherical. This is because when the thermal spraying material is introduced into the flame spraying frame and has poor fluidity, the thermal spraying material may become clogged in the supply pipe, which causes inconvenience in use. As an index of this fluidity, it has been found that the bulkiness defined by the following formula (1) is effective, and if the bulkiness is 30% or less, the fluidity is good. S = (ρ T −ρ A ) / ρ T × 100 (1) where S: bulkiness (%) ρ T : tap density (g / cm 3 ) ρ A : bulk density (g / cm 3). ).

【0008】また、溶射材料の粒子の大きさは、20μ
m以上で200μm以下であることが好ましい。これ
は、溶射材料の粒子の大きさが小さすぎると、フレーム
中で蒸発してしまうなど、溶射歩留まりが低下するし、
粒子が大きすぎるとフレーム中で完全に溶融せず、溶射
膜の品質が低下するおそれがあるからである。造粒後の
粉末である溶射材料粉末が内部まで充填していること
は、粉末を取り扱う上で割れたりせずに安定しているこ
と、空隙部が存在するとその空隙部に好ましくないガス
成分を含有しやすいのでそれを避けることができるこ
と、等の理由から、必要なことである。
The particle size of the thermal spray material is 20 μm.
It is preferably m or more and 200 μm or less. This is because if the particle size of the spray material is too small, it will evaporate in the frame and the spray yield will decrease.
This is because if the particles are too large, they will not be completely melted in the frame, and the quality of the sprayed coating may deteriorate. After granulation
The thermal spray material powder is a powder is filled to the inside
Is necessary for handling powder because it is stable without cracking when handling powder, and if there are voids, it is easy to contain undesired gas components in the voids, so that it can be avoided. That is.

【0009】溶射材料から不要なガス成分が出てこない
ことが望ましい。溶射材料として希土類元素のフッ化物
を用いる場合、粉末が多量の水もしくは水酸基を含んで
いると、フッ化物のままでは形成が困難で、高温ではフ
ッ化物の分解が起こり、フッ化水素などのガスを発生す
る場合があり、これが溶射膜を劣化させたり他の部材を
腐食するおそれがある。そのため、水および水酸基の含
有量としては10000ppm以下である造粒粉末の原
料を使用することが望ましい。
It is desirable that unnecessary gas components do not come out from the thermal spray material. If using a fluoride of a rare earth element as a spray material, the powder contains a large amount of water or a hydroxyl group, is difficult to form the remains of fluoride, occur decomposition of the fluoride at high temperatures, such as hydrogen fluoride Gas may be generated, which may deteriorate the sprayed film or corrode other members. Therefore, the content of water and hydroxyl groups it is desirable to use raw <br/> fee der Ru granulated powder below 10000 ppm.

【0010】特に本発明では、機械的に粉砕した一次粒
子から、スプレードライ等の方法で造粒して、所望の粒
径および粒子形状の溶射材料粉末とする。一次粒子から
スプレードライ手法で溶射材料粉末を製造する場合は、
造粒するための一次粒子が10μm以下、好ましくは5
μm以下、さらに好ましくは3μm以下の粒子であるこ
とが必要であり、このような一次粒子を用いることで、
溶射材料として好適な球状粒子粉末を得ることができ
る。造粒に際して、一次粒子の平均粒子径が10μmを
超えるような粒子を使用した場合は、内部まで充填され
た流動性の良い球状粒子粉末は得られ難い。なぜなら、
均粒径が10μmを超える一次粒子を使用すると、造
粒物の輪郭は球状になるが、表面の凹凸が大きくなるた
めである。このような溶射材料を用いた場合は、その溶
射膜特性が低下するおそれがある。このような一次粒子
を用いて造粒し、平均粒径20〜200μmの球状粒
粉末を得ることにより、フレーム中での蒸発がなくな
り、歩留まりの低下が起こらない。
[0010] In particular, the present invention, the mechanically pulverized primary particles, granulated by a method such as spray drying, and spray materials powder of desired particle size and particle shape. When manufacturing a thermal spray materials powder by spray drying techniques from the primary particles,
The primary particles for granulation are 10 μm or less, preferably 5
It is necessary that the particles have a particle size of less than or equal to μm, and more preferably less than or equal to 3 μm. By using such primary particles,
A spherical particle powder suitable as a thermal spray material can be obtained. Upon granulation, if the average particle diameter of primary particles was used particles exceeding 10μm is flowability good spherical particles child powder is difficult to obtain filling the inside. Why, et al.,
When flat Hitoshitsubu diameter using a primary particle children in excess of 10 [mu] m, the contour of the granulation product becomes spherical, because the unevenness of the surface increases. When such a thermal spray material is used, the properties of the thermal spray film may deteriorate. Granulated with such primary particles, spherical particles child having an average particle diameter of 20~200μm
By obtaining the powder, evaporation in the frame is eliminated and the yield does not decrease.

【0011】さらに、造粒により得られる溶射材料粉末
、その粒子外径のアスペクト比が2以下、好ましくは
1.5以下であることが望ましい。アスペクト比は、粒
子の長径と短径との比で表される。溶射材料としては、
希土類元素のフッ化物を用いることが望ましい。用いる
希土類元素としては、YおよびLaからLuまでの3A
族元素から選ばれるが、特にY、Ce、Ybが好まし
い。希土類元素は、2種以上の元素を混用しても差し支
えない。混用する場合には、混用した原料から造粒して
もよいし、単一の元素から造粒した粒子を溶射材料とし
て用いる時点で混合してもよい。
Furthermore, thermal spray materials powder obtained by granulation
, The aspect ratio of the particle outer diameter 2 or less, it is desirable that preferably 1.5 or less. The aspect ratio is represented by the ratio of the major axis and the minor axis of particles. As a thermal spray material,
It is desirable to use a rare earth element fluoride. The rare earth element used is Y and 3A from La to Lu.
Although selected from the group elements, Y, Ce and Yb are particularly preferable. The rare earth element may be a mixture of two or more elements. When they are mixed, they may be granulated from the mixed raw materials, or may be mixed at the time when the particles granulated from a single element are used as a thermal spray material.

【0012】このような希土類元素のフッ化物を使用し
た溶射材料の製造方法としては、希土類元素のフッ化物
と溶媒、具体的には、水、炭素数1〜4のアルコール、
トルエン、シクロへキサン等を用いてスラリー濃度を1
0〜40重量%のスラリーを製造し、これをスプレード
ライ等の方法で造粒し、さらに付着している水分などを
除去する目的で、大気中、真空もしくは不活性ガス雰囲
気中で70〜200℃の温度で乾燥する方法が良い。
As a method for producing a thermal spray material using such a fluoride of a rare earth element, a fluoride of a rare earth element and a solvent, specifically, water, an alcohol having 1 to 4 carbon atoms,
Use toluene, cyclohexane, etc. to adjust the slurry concentration to 1
For the purpose of producing a slurry of 0 to 40% by weight, granulating the slurry by a method such as spray drying, and further removing water adhering to the slurry, 70 to 200 in the atmosphere, a vacuum or an inert gas atmosphere. A method of drying at a temperature of ℃ is preferable.

【0013】また、カルボキシメチルセルロースのよう
な、粒子の結合剤となる有機高分子物質と希土類元素の
フッ化物と純水とを混合したスラリーを製造し、これを
スプレードライ等の方法で造粒することで溶射材料を得
ることもできる。結合剤としては、カルボキシメチルセ
ルロースの他に、ポリビニルアルコール、ポリビニルピ
ロリドンなどが挙げられる。添加する結合剤の使用量
は、希土類元素のフッ化物に対して0.05〜10重量
%の割合で用いてスラリーにして用いる。この場合、結
合剤が溶射材料に含まれたままでもよいが、溶射膜中の
カーボン含有量を低下させるため、結合剤を溶射前に燃
焼除去してもよい。
Further, a slurry is prepared by mixing an organic polymer substance such as carboxymethyl cellulose, which serves as a binder for particles, a fluoride of a rare earth element and pure water, and granulates it by a method such as spray drying. By doing so, a thermal spray material can be obtained. Examples of the binder include polyvinyl alcohol, polyvinylpyrrolidone, and the like, in addition to carboxymethyl cellulose. The amount of the binder added is 0.05 to 10% by weight with respect to the fluoride of the rare earth element, and is used as a slurry. In this case, the binder may remain contained in the thermal spray material, but the binder may be burned and removed before thermal spraying to reduce the carbon content in the thermal spray coating.

【0014】造粒粒子から結合剤を燃焼除去するには、
酸素を含んだ雰囲気で焼成することが必要で、経済性を
考えると空気中での焼成が好ましい。希土類元素のフッ
化物を、例えば空気中で、600℃以下、好ましくは3
00〜500℃で30分〜5時間程度焼成する。600
℃を超えると明らかに重量減少があり、酸化による分解
が起こっていることがわかる。ゆえに、結合剤を燃焼除
去するには600℃以下の温度で燃焼する必要がある。
得られた本発明の溶射材料は、更に真空中または不活性
ガス中で高温に加熱してもよい。
To burn off the binder from the granulated particles,
It is necessary to perform firing in an atmosphere containing oxygen, and in terms of economy, firing in air is preferable. Rare earth element fluorides, for example, in air, at 600 ° C. or less, preferably 3
Baking is performed at 00 to 500 ° C. for about 30 minutes to 5 hours. 600
When the temperature exceeds ℃, there is a clear weight loss, and it can be seen that decomposition by oxidation occurs. Therefore, in order to burn off the binder, it is necessary to burn at a temperature of 600 ° C. or lower.
The resulting thermal spray material of the present invention may be further heated to a high temperature in vacuum or in an inert gas.

【0015】半導体製造装置用部材への溶射は、プラズ
マ溶射あるいは減圧プラズマ溶射で行われることが望ま
しい。プラズマガスとしては、窒素/水素、アルゴン/
水素、アルゴン/ヘリウム、アルゴン/窒素、アルゴン
単体、窒素ガス単体が挙げられるが、特に限定されるも
のではない。溶射される半導体製造装置用部材として
は、アルミニウム、ニッケル、クロム、亜鉛、およびそ
れらの合金、アルミナ、窒化アルミニウム、窒化珪素、
炭化珪素、石英ガラス等が挙げられ、溶射層は50〜5
00μmの厚さを形成させるとよい。溶射する際に、本
発明によって得られた希土類のフッ化物に、更に同様な
粒径の希土類酸化物を混合して溶射材料として用いても
よい。
The thermal spraying on the member for semiconductor manufacturing equipment is preferably performed by plasma spraying or low pressure plasma spraying. Plasma gas is nitrogen / hydrogen, argon /
Examples thereof include hydrogen, argon / helium, argon / nitrogen, simple substance of argon, and simple substance of nitrogen gas, but are not particularly limited. As the member for semiconductor manufacturing equipment to be sprayed, aluminum, nickel, chromium, zinc, and alloys thereof, alumina, aluminum nitride, silicon nitride,
Silicon carbide, quartz glass, etc. are mentioned, and the sprayed layer is 50 to 5
A thickness of 00 μm may be formed. Upon thermal spraying, the rare earth fluoride obtained by the present invention may be further mixed with a rare earth oxide having a similar particle size to be used as a thermal spray material.

【0016】[0016]

【実施例】[実施例1]水および水酸基の含有量が10
00ppm、平均粒子径が30μmのフッ化イットリウ
ム5kgをジェットミルで粉砕し、平均粒子径3μmの
フッ化イットリウムを得た。これを純水に撹拌混合し3
0%スラリーを作った。これをスプレードライヤーを用
いて造粒したところ、平均粒径が約50μmの球状の造
粒粉末を得た。この造粒粉末の水分含有量を測定したと
ころ、約1%の水分を含んでいた。水分は、カールフィ
ッシャー水分分析法を用いて測定した。
[Example 1] [Example 1] The content of water and hydroxyl groups was 10
Yttrium fluoride (5 kg, 00 ppm, average particle diameter: 30 μm) was pulverized by a jet mill to obtain yttrium fluoride (average particle diameter: 3 μm). Stir this in pure water and mix it 3
A 0% slurry was made. When this was granulated using a spray dryer, a spherical granulated powder having an average particle size of about 50 μm was obtained. When the water content of this granulated powder was measured, it contained about 1% water. Moisture was measured using the Karl Fischer moisture analysis method.

【0017】この造粒粉末を真空中400℃で2時間加
熱して球状の乾燥造粒粉末を得た。この乾燥造粒粉末の
水分含有量を測定したところ、50ppm以下であっ
た。この造粒粉末のアスぺクト比は、1.03で、嵩べ
り度は19%であった。このフッ化イットリウムは溶射
材料として好適なものであった。なお、アスぺクト比は
SEM写真により粒子の短径と長径を180個測定し、
平均した。また、嵩べり度は、30gの溶射材料を10
0ミリリットルのメスシリンダーに充填(180回振と
う)し、J.ENGELSMANN A.G.製STA
MPFVOLUMETER STAV2003を用いて
測定した。
This granulated powder was heated in vacuum at 400 ° C. for 2 hours to obtain a spherical dry granulated powder. The water content of this dried granulated powder was measured and found to be 50 ppm or less. The granulated powder had an aspect ratio of 1.03 and a bulkiness of 19%. This yttrium fluoride was suitable as a thermal spray material. As for the aspect ratio, 180 minor and major diameters of particles were measured by SEM photographs,
Averaged. In addition, the bulkiness of the sprayed material of 30 g is 10
Fill a 0 ml graduated cylinder (shake 180 times), ENGELSMANN A. G. Made STA
It measured using MPFVOLUMTER STAV2003.

【0018】[実施例2] 実施例1の水および水酸基の含有量が1000ppm、
平均粒子径3μmの粉砕フッ化イットリウム3kgに、
結合剤としてカルボキシメチルセルロースの1%溶液を
1リットル、純水を6リットル加えて30%スラリーを
作った。これをスプレードライヤーで造粒し、平均粒径
が約45μmの造粒粉末を得た。この造粒粉末の炭素含
有量を測定したところ、約0.3%であった。この造粒
粉末を空気中500℃で1時間焼成して球状の造粒焼成
粉末を得た。この造粒焼成粉末の炭素濃度を測定したと
ころ、50ppm以下であった。また、酸素濃度を分析
したところ約2000ppmであった。この造粒粉末の
アスぺクト比は、1.04で、嵩べり度は21%であっ
た。酸素と炭素はIR法により測定した。
Example 2 The content of water and hydroxyl groups in Example 1 was 1000 ppm,
To 3 kg of ground yttrium fluoride with an average particle size of 3 μm,
As a binder, 1 liter of a 1% solution of carboxymethyl cellulose and 6 liter of pure water were added to make a 30% slurry. This was granulated with a spray dryer to obtain granulated powder having an average particle size of about 45 μm. When the carbon content of this granulated powder was measured, it was about 0.3%. This granulated powder was calcined in air at 500 ° C. for 1 hour to obtain a spherical granulated calcined powder. When the carbon concentration of this granulated and fired powder was measured, it was 50 ppm or less. The oxygen concentration was analyzed and found to be about 2000 ppm. The granulated powder had an aspect ratio of 1.04 and a bulkiness of 21%. Oxygen and carbon were measured by the IR method.

【0019】[比較例1]水および水酸基の含有量が1
000ppm、平均粒子径が30μmのフッ化イットリ
ウム5kgを純水に撹拌混合し、30%スラリーを作っ
た。これをスプレードライヤーを用いて造粒したとこ
ろ、流動性がよい球状粒子は得られなかった。この造粒
粉末の水分含有量を測定したところ、約1%の水分を含
んでいた。この造粒粉末を真空中で400℃で2時間加
熱して乾燥造粒粉末を得た。この乾燥造粒粉末の水分含
有量を測定したところ、約500ppmであった。この
フッ化イットリウムの乾燥造粒粉末の嵩べり度は、35
%で、粒子の流れ性が悪く、溶射材料として好適なもの
でなかった。
[Comparative Example 1] The content of water and hydroxyl groups was 1
5 kg of yttrium fluoride having an average particle diameter of 30 μm and 000 ppm was stirred and mixed with pure water to prepare a 30% slurry. When this was granulated using a spray dryer, spherical particles with good fluidity could not be obtained. When the water content of this granulated powder was measured, it contained about 1% water. This granulated powder was heated in vacuum at 400 ° C. for 2 hours to obtain a dry granulated powder. The water content of this dried granulated powder was measured and found to be about 500 ppm. The dry granulation powder of this yttrium fluoride has a bulkiness of 35.
%, The flowability of particles was poor, and it was not suitable as a thermal spray material.

【0020】[0020]

【発明の効果】本発明は、細粒の原料から造粒すること
により、所望の形状、所望の粒径を有する溶射材料粉末
容易に調製することができ、溶射操業に際して粉末で
供給管を詰まらせることがなく、溶融不良を起こすこと
のない、好適な溶射材料を得ることができる。
According to the present invention, by granulating the granules of raw material, a desired shape, spraying materials powder having a desired particle size
The can be easily prepared, without clogging the <br/> supply pipe by hand powder upon spray operation can be obtained without causing melt defects, a suitable spray material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−48415(JP,A) 特開 平4−160016(JP,A) 特開 昭62−187112(JP,A) 特開 平5−47404(JP,A) 特開 平7−106433(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 4/04 C01F 17/00 C04B 41/87 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-48415 (JP, A) JP-A-4-160016 (JP, A) JP-A-62-187112 (JP, A) JP-A-5- 47404 (JP, A) JP-A-7-106433 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C23C 4/04 C01F 17/00 C04B 41/87

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一次粒子の平均粒子径が10μm以下で
ある希土類元素のフッ化物から造粒された造粒粉末であ
って、粒子外形のアスペクト比が2以下、平均粒子径が
20μm以上200μm以下、嵩べり度が30%以下で
ある希土類元素のフッ化物造粒粉末からなることを特徴
とする溶射材料。
1. A mean particle diameter of primary particles under 10μm or less
Granulated powder der was granulated from a fluoride of a rare earth element
Therefore, the aspect ratio of the particle outer shape is 2 or less, and the average particle diameter is
20 μm or more and 200 μm or less and the degree of bulkiness is 30% or less
Spray material, wherein the fluoride granulated powder or Ranaru of a rare earth element.
【請求項2】 一次粒子の平均粒子径が10μm以下で
あり、水および水酸基の含有量が10000ppm以下
である希土類元素のフッ化物から造粒された造粒粉末で
あって、粒子外形のアスペクト比が2以下、粉末の平均
粒子径が20μm以上200μm以下、嵩べり度が30
%以下である希土類元素のフッ化物造粒粉末からなるこ
とを特徴とする溶射材料。
2. The average particle size of primary particles is 10 μm or less.
Yes, water and hydroxyl content of 10,000 ppm or less
With a granulated powder that is granulated from a rare earth fluoride that is
And the aspect ratio of the particle outline is 2 or less, the average of the powder
Particle size is 20 μm or more and 200 μm or less, bulkiness is 30
% Or less of a rare earth element fluoride granulated powder.
And a thermal spray material.
【請求項3】 平均粒子径が10μm以下である希土類
元素のフッ化物または平均粒子径が10μm以下である
希土類元素のフッ化物と結合剤とを溶媒に撹拌混合して
得たスラリーをスプレードライヤーで造粒し、これを6
00℃以下の温度で焼成することを特徴とする請求項1
または請求項2に記載の溶射材料の製造方法。
3. A fluorinated compound or the average particle size of an average particle diameter of 10μm or less rare earth element is 10μm or less
Stir-mix the rare earth fluoride and binder in a solvent
The resulting slurry was granulated by a spray dryer, this is the 6
00 ° C. and firing at a temperature according to claim 1
Or the method of manufacturing the thermal spraying, the material of claim 2.
JP2001228103A 2000-07-31 2001-07-27 Thermal spray material and method of manufacturing the same Expired - Lifetime JP3523222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001228103A JP3523222B2 (en) 2000-07-31 2001-07-27 Thermal spray material and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-230467 2000-07-31
JP2000230467 2000-07-31
JP2001228103A JP3523222B2 (en) 2000-07-31 2001-07-27 Thermal spray material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002115040A JP2002115040A (en) 2002-04-19
JP3523222B2 true JP3523222B2 (en) 2004-04-26

Family

ID=26597001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001228103A Expired - Lifetime JP3523222B2 (en) 2000-07-31 2001-07-27 Thermal spray material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3523222B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551059B2 (en) 2011-11-10 2017-01-24 Shin-Etsu Chemical Co., Ltd. Rare earth fluoride spray powder and rare earth fluoride-sprayed article
KR20170015236A (en) 2015-07-31 2017-02-08 신에쓰 가가꾸 고교 가부시끼가이샤 Yttrium thermal spraying coating and method for manufacturing the same
JP2017190475A (en) * 2016-04-12 2017-10-19 信越化学工業株式会社 Yttrium-based fluoride thermal spray film, thermal spray material for forming said thermal spray film, and anticorrosion film containing said thermal spray film
JP2019019413A (en) * 2018-10-16 2019-02-07 信越化学工業株式会社 Yttrium based fluoride thermal spray coating, thermal spray material for forming the same, method for forming thermal spray coating and corrosion-resistant coating including thermal spray coating
US10435569B2 (en) 2012-08-22 2019-10-08 Shin-Etsu Chemical Co., Ltd. Rare earth element oxyflouride powder spray material and sprayed article
US10538836B2 (en) 2015-10-23 2020-01-21 Shin-Etsu Chemical Co., Ltd. Yttrium fluoride spray material, yttrium oxyfluoride-deposited article, and making methods
US11306383B2 (en) 2016-09-16 2022-04-19 Fujimi Incorporated Thermal spraying material
US11359270B2 (en) 2016-09-16 2022-06-14 Fujimi Incorporated Thermal spraying matertal

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894313B2 (en) 2002-12-19 2007-03-22 信越化学工業株式会社 Fluoride-containing film, coating member, and method for forming fluoride-containing film
JP5137304B2 (en) * 2004-10-18 2013-02-06 株式会社日本セラテック Corrosion resistant member and manufacturing method thereof
JP5013123B2 (en) * 2008-08-25 2012-08-29 Tdk株式会社 Slurry production method
JP5527884B2 (en) * 2009-12-28 2014-06-25 コバレントマテリアル株式会社 Thermal spray powder
JP5396672B2 (en) 2012-06-27 2014-01-22 日本イットリウム株式会社 Thermal spray material and manufacturing method thereof
JP5495165B1 (en) * 2012-12-04 2014-05-21 日本イットリウム株式会社 Thermal spray material
JP5636573B2 (en) * 2013-01-18 2014-12-10 日本イットリウム株式会社 Thermal spray material
WO2015019673A1 (en) 2013-08-08 2015-02-12 日本イットリウム株式会社 Slurry for thermal spraying
CN104193409B (en) * 2014-08-27 2016-08-24 济南大学 A kind of rare earth oxide coating and preparation method thereof
JP6281507B2 (en) * 2015-03-03 2018-02-21 信越化学工業株式会社 Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member
JP6706894B2 (en) * 2015-09-25 2020-06-10 株式会社フジミインコーポレーテッド Thermal spray material
WO2018012454A1 (en) 2016-07-14 2018-01-18 信越化学工業株式会社 Slurry for suspension plasma spraying, method for forming rare earth acid fluoride sprayed film, and spraying member
JP7147675B2 (en) 2018-05-18 2022-10-05 信越化学工業株式会社 Thermal spray material and method for producing thermal spray member
JP7359136B2 (en) 2020-12-22 2023-10-11 信越化学工業株式会社 Methods for producing particulate thermal spray materials and rare earth oxide thermal spray materials, and rare earth oxide thermal spray coatings and methods for forming the same.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551059B2 (en) 2011-11-10 2017-01-24 Shin-Etsu Chemical Co., Ltd. Rare earth fluoride spray powder and rare earth fluoride-sprayed article
US10435569B2 (en) 2012-08-22 2019-10-08 Shin-Etsu Chemical Co., Ltd. Rare earth element oxyflouride powder spray material and sprayed article
KR20170015236A (en) 2015-07-31 2017-02-08 신에쓰 가가꾸 고교 가부시끼가이샤 Yttrium thermal spraying coating and method for manufacturing the same
KR20230011461A (en) 2015-07-31 2023-01-20 신에쓰 가가꾸 고교 가부시끼가이샤 Yttrium thermal spraying coating and method for manufacturing the same
US10538836B2 (en) 2015-10-23 2020-01-21 Shin-Etsu Chemical Co., Ltd. Yttrium fluoride spray material, yttrium oxyfluoride-deposited article, and making methods
US11098397B2 (en) 2015-10-23 2021-08-24 Shin-Etsu Chemical Co., Ltd. Yttrium fluoride spray material, yttrium oxyfluoride-deposited article, and making methods
US11098398B2 (en) 2015-10-23 2021-08-24 Shin-Etsu Chemical Co., Ltd. Yttrium fluoride spray material, yttrium oxyfluoride-deposited article, and making methods
US11390939B2 (en) 2015-10-23 2022-07-19 Shin-Etsu Chemical Co., Ltd. Yttrium fluoride spray material, yttrium oxyfluoride-deposited article, and making methods
JP2017190475A (en) * 2016-04-12 2017-10-19 信越化学工業株式会社 Yttrium-based fluoride thermal spray film, thermal spray material for forming said thermal spray film, and anticorrosion film containing said thermal spray film
US11306383B2 (en) 2016-09-16 2022-04-19 Fujimi Incorporated Thermal spraying material
US11359270B2 (en) 2016-09-16 2022-06-14 Fujimi Incorporated Thermal spraying matertal
JP2019019413A (en) * 2018-10-16 2019-02-07 信越化学工業株式会社 Yttrium based fluoride thermal spray coating, thermal spray material for forming the same, method for forming thermal spray coating and corrosion-resistant coating including thermal spray coating

Also Published As

Publication number Publication date
JP2002115040A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP3523222B2 (en) Thermal spray material and method of manufacturing the same
KR102066820B1 (en) Rare earth oxyfluoride spray powder and rare earth oxyfluoride-sprayed article
US11098398B2 (en) Yttrium fluoride spray material, yttrium oxyfluoride-deposited article, and making methods
US9551059B2 (en) Rare earth fluoride spray powder and rare earth fluoride-sprayed article
US20020015853A1 (en) Method for formation of thermal-spray coating layer of rare earth fluoride
EP1167565B1 (en) Method for thermal spray coating and rare earth oxide powder used therefor
JP3672833B2 (en) Thermal spray powder and thermal spray coating
CN114045455B (en) Yttrium thermal spray coating film using yttrium particle powder and method for producing same
JP6281507B2 (en) Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member
EP1243666A1 (en) Thermal spray rare earth oxide particles, sprayed components and corrosion resistant components
JP6620793B2 (en) Rare earth element oxyfluoride powder sprayed material and method for producing rare earth element oxyfluoride sprayed member
JP6844654B2 (en) Method for manufacturing yttrium oxyfluoride powder sprayed material and yttrium oxyfluoride sprayed member
JP2005097747A (en) Thermal-spraying powder and thermal-sprayed film
TW200902474A (en) Ceramic member and corrosion-resistant member
JPS63219561A (en) Chromium-oxide rod for thermal spraying and its production
JPH06179902A (en) Production of metallic powder for monolithic refractory

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040205

R150 Certificate of patent or registration of utility model

Ref document number: 3523222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

EXPY Cancellation because of completion of term